七年级数学下册1《从实际问题到方程》课后拓展训练华东师大版
- 格式:doc
- 大小:47.00 KB
- 文档页数:3
《新课程课堂同步练习册·数学(华东版七年级下册)》参考答案第6章 一元一次方程§6.1 从实际问题到方程一、1.D 2. A 3. A二、1. x = - 6 2. 2x -15=25 3. x =3(12-x )三、1.解:设生产运营用水x 亿立方米,则居民家庭用水(5.8-x )亿立方米,可列方程为:5.8-x =3x+0.62.解:设苹果买了x 千克, 则可列方程为: 4x +3(5-x )=173.解:设原来课外数学小组的人数为x ,则可列方程为:)4(21431+=+x x§6.2 解一元一次方程(一) 一、1. D 2. C 3.A 二、1.x =-3,x =38 2.10 3. x =5三、1. x =7 2. x =4 3. x =37- 4. x =49 5. x =3 6. y =67-§6.2 解一元一次方程(二) 一、1. B 2. D 3. A 二、1.x =-5,y =3 2. 21 3. -3三、1. (1)x =31 (2)x =-2 (3)x =114 (4) x =-4 (5)x =83 (6)x=-22. (1)设初一(2)班乒乓球小组共有x 人, 得:9x -5=8x +2. 解得:x =7 (2)48人3. (1)x =-7 (2)x =-3§6.2 解一元一次方程(三)一、1. C 2. D 3. B 4. B 二、1. 1 2.34 3. 10三、1. (1) x =3 (2) x =7 (3)x =–1 (4)x =83-(5) x=4 (6) x=23-2. 3(31x -2) -4(x -41)=4 解得 x=-3 3. 3元§6.2 解一元一次方程(四) 一、1. B 2.B 3. D 二、1. 5 2. 1736, 23-3. 51-4. 15三、1. (1)y =52-(2)y =6 (3)49-=x (4)x =11172. 由方程3(5x -6)=3-20x 解得x =53,把x =53代入方程a -310x =2a +10x ,得a =-8.∴ 当a =-8时,方程3(5x -6)=3-20x 与方程a -310x =2a +10x 有相同的解.3.0)332(532=---x x 解得:x =9§6.2 解一元一次方程(五) 一、1.A 2. B 3. C二、1.2(x +8)=40 2. 4,6,8 3.2x +10=6x +5 4. 15 5. 160元 三、1. 设调往甲处x 人, 根据题意,得27+x =2[19+(20-x )]. 解得:x =172. 设该用户5月份用水量为x 吨,依题意,得1.2×6+2(x -6)=1.4 x . 解得 x=8. 于是1.4x =11.2(元) .3. 设学生人数为x 人时,两家旅行社的收费一样多. 根据题意,得 240+120x =144(x +1),解得 x =4. §6.3 实践与探索(一)一、1. B 2. B 3. A 二、1. 36 2.81131)290(22⨯=x π 3. 42,270三、1. 设原来两位数的个位上的数字为x ,根据题意,得10x +11-x =10(11-x )+x +63. 解得 x =9. 则原来两位数是29. 2.设儿童票售出x 张,则成人票售出(700-x )张.依题意,得30x +50(700-x )=29000 . 解得:x =300, 则700-x=700-300=400人.则儿童票售出300张,成人票售出400张.§6.3 实践与探索(二)一、1. A 2. C 3. C 二、1.51x +52x +1+1=x 2. 23.75% 3. 2045三、1. 设乙每小时加工x 个零件,依题意得,5(x +2)+4(2x +2)=200 解得x =14.则甲每小时加工16个零件,乙每小时加工14个零件.2. 设王老师需从住房公积金处贷款x 元,依题意得,3.6%x +4.77%(250000-x )=10170. 解得 x =150000.则王老师需从住房公积金处贷款150000元,普通住房贷款100000元.3. 设乙工程队再单独做此工程需x 个月能完成,依题意,得16)6141(2=++x 解得 x = 14.21小时第7章 二元一次方程组§7.1 二元一次方程组和它的解 一、1. C 2. C 3. B二、1. ⎩⎨⎧==12y x 2. 5 3. ⎪⎩⎪⎨⎧=+=-42230y x y x三、1. 设甲原来有x 本书、乙原来有y 本书,根据题意,得 ⎩⎨⎧+=--=+1010)10(510y x y x2. 设每大件装x 罐,每小件装y 罐,依题意,得⎩⎨⎧=+=+843212043y x y x .3. 设有x 辆车,y 个学生,依题意⎩⎨⎧=-=+yx y x )1(601545§7.2二元一次方程组的解法(一) 一、1. D 2. B 3. B 二、1. ⎩⎨⎧==41y x 2.略 3. 20三、1. ⎩⎨⎧==412y x 2. ⎩⎨⎧-=-=31y x 3. ⎩⎨⎧-==32y x 4. ⎪⎪⎩⎪⎪⎨⎧==14111413y x§7.2二元一次方程组的解法(二)一、1. D 2. C 3. A 二、1.568-x ,856y + 2. 18,12 3. ⎩⎨⎧==13y x三、1. ⎩⎨⎧==15y x 2. ⎩⎨⎧==11y x 3. ⎪⎩⎪⎨⎧-==412y x 4. ⎩⎨⎧==32y x 四、设甲、乙两种蔬菜的种植面积分别为x 、y 亩,依题意可得:⎩⎨⎧=+=+138001*********y x y x 解这个方程组得⎩⎨⎧==64y x§7.2二元一次方程组的解法(三) 一、1. B 2.A 3.B 4. C 二、1. ⎩⎨⎧==34y x 2. 9 3. 180,20三、1.⎩⎨⎧==13y x 2.⎪⎩⎪⎨⎧-==761y x 3. ⎪⎩⎪⎨⎧-=-=1611y x ⎩⎨⎧-==284y x 四、设金、银牌分别为x 枚、y 枚,则铜牌为(y +7)枚,依题意,得⎩⎨⎧+++==+++2)7(100)7(y y x y y x 解这个方程组,⎩⎨⎧==2151y x , 所以 y +7=21+7=28.§7.2二元一次方程组的解法(四)一、1. D 2. C 3. B二、1. ⎩⎨⎧==35y x 2. 3, 52-3. -13三、1. 1.⎩⎨⎧==33y x 2. ⎪⎩⎪⎨⎧-==325y x 3.⎩⎨⎧==12y x 4. ⎩⎨⎧==75y x 5.⎩⎨⎧==50y x 6.⎪⎩⎪⎨⎧==373y x四、设小明预订了B 等级、C 等级门票分别为x 张和y 张. 依题意,得 ⎩⎨⎧⨯=+=+.3500150300,7y x y x 解这个方程组得⎩⎨⎧==.4,3y x§7.2二元一次方程组的解法(五) 一、1. D 2. D 3. A二、1. 24 2. 6 3. 28元, 20元 三、1. (1)(2)由(1)得:⎩⎨⎧=+=+1000008000600015y x y x 解得⎩⎨⎧==510y x∴7058103=⨯+⨯ 答:这批蔬菜共有70吨.2.设A 种篮球每个x 元,B 种篮球每个y 元,依题意,得⎩⎨⎧=+=+840812720146y x y x 解得⎩⎨⎧==3050y x 3.设不打折前购买1件A 商品和1件B 商品需分别用x 元,y 元,依题意,得⎩⎨⎧=+=+10836845y x y x 解这个方程组,得⎩⎨⎧==.416y x 因此50×16+50×4-960=40(元). §7.3实践与探索(一)一、1. C 2. D 3.A二、1. 72 2. ⎪⎩⎪⎨⎧=+-=9)(232y x y x 3. 14万,28万三、1.设甲、乙两种商品的原销售价分别为x 元,y 元,依题意,得 ⎩⎨⎧=+=+386%90%70500y y x 解得⎩⎨⎧==180320y x2. 设沙包落在A 区域得x 分,落在B 区域得y 分, 根据题意,得⎩⎨⎧=+=+3222343y x y x 解得 ⎩⎨⎧==79y x ∴307393=⨯+=+y x 答:小敏的四次总分为30分. 3.(1)设A 型洗衣机的售价为x 元,B 型洗衣机的售价为y 元, 则据题意,可列方程组5001313351.y x x y -=⎧⎨%+%=⎩,解得11001600.x y =⎧⎨=⎩,(2)小李实际付款:1100(113)957-%=(元);小王实际付款:1600(113)1392-%=(元). §7.3实践与探索(二)一、1. A 2. A 3.D二、1. 55米/分, 45米/分 2. 20,18 3.2,1三、1. 设这个种植场今年“妃子笑”荔枝收获x 千克,“无核Ⅰ号”荔枝收获y 千克.根据题意得 320081230400x y x y +=⎧⎨+=⎩,.解这个方程组得20001200x y =⎧⎨=⎩,.2.设一枚壹元硬币x 克,一枚伍角硬币y 克,依题意得:⎩⎨⎧+==+.10201510105y x y x 解得:⎩⎨⎧==.46y x3.设原计划生产小麦x 吨,生产玉米y 吨,根据题意,得1812102018.x y x y +=⎧⎨+=-⎩,%%解得108.x y =⎧⎨=⎩,10×(1+12%)=11.2(吨),8×(1+10%)=8.8(吨).4. 略5. 40吨第8章 一元一次不等式§8.1 认识不等式一、1.B 2.B 3.A二、1. <;>;> ; > 2. 2x +3<5 3. 2433t ≤≤ 4. ω≤50 三、1.(1)2x -1>3;(2)a +7<0;(3)a 2+b 2≥0;(4)m3 ≤-2;(5)∣a -4∣≥a ;(6)-2<2y +3<4. 2.80+20n >100+16n ; n =6,7,8,… §8.2 解一元一次不等式(一) 一、1.C 2.A 3.C二、1.3,0,1,32 ,- 103;2-,4-,0,1 2. x ≥-1 3. -2<x <2 4. x <16三、1.不能,因为x <0不是不等式3-x >0的所有解的集合,例如x =1也是不等式3-x >0的一个解. 2.略 §8.2 解一元一次不等式(二) 一、1. B 2. C 3.A二、1.>;<;≤ 2. x ≥-3 3. >三、1. x >3; 2. x ≥-2 3.x <534. x >5四、x ≥-1 图略 五、(1)34>x (2)34=x (3) 34<x§8.2 解一元一次不等式(三) 一、1. C 2.A二、1. x ≤-3 2. x ≤- 943. k >2三、1. (1)x >-2 (2)x ≤-3 (3)x ≥-1 (4)x <-2 (5)x ≤5 (6) x ≤-1 (图略)2. x ≥257 3.八个月§8.2 解一元一次不等式(四) 一、1. B 2. B 3.A二、1. -3,-2,-1 2. 5 3. x ≤1 4. 24三、1. 解不等式6(x -1)≤2(4x +3)得x ≥-6,所以,能使6(x -1)的值不大于2(4x +3)的值的所有负整数x 的值为-6,-5,-4,-3,-2,-1.2. 设该公司最多可印制x 张广告单,依题意得 80+0.3x ≤1200,解得x ≤373313 .答:该公司最多可印制3733张广告单.3. 设购买x 把餐椅时到甲商场更优惠,当x >12时,得 200×12+50(x -12)<0.85(200×12+50x ),解得x <32 所以12<x <32; 当0<x ≤12时,得200×12<0.85(200×12+50x )解得x >17144 ,所以17144<x ≤12 其整数解为9,10,11,12.所以购买大于或等于9张且小于32张餐椅时到甲商场更优惠.§8.3 一元一次不等式组(一) 一、1. A 2. B二、1. x >-1 2. -1<x ≤2 3. x ≤-1三、1. (1) x ≥6 (2) 1<x <3 (3)4≤x <10 (4) x >2 (图略)2. 设幼儿园有x 位小朋友,则这批玩具共有3x +59件,依题意得 1≤3x +59-5(x -1)≤3,解得30.5≤x ≤31.5,因x 为整数,所以x =31,3x +59=3×31+59=152(件) §8.3 一元一次不等式组(二) 一、1. C 2. B.3.A二、1. m ≥2 2. 12 <x <23三、1. (1)3<x <5 (2)-2≤x <3 (3)-2≤x <5 (4) x ≥13(图略) 2. 设苹果的单价为x 元,依题意得解得4<x <535 ,因x 恰为整数,所以x =5(元)(答略) 3. -2<x ≤3 正整数解是1,2,34. 设剩余经费还能为x 名山区小学的学生每人购买一个书包和一件文化衫,依题意得 350≤1800-(18+30)x ≤400,解得2916 ≤x ≤30524 ,因人数应为整数,所以x =30.5.(1)这批货物有66吨 (2)用2辆载重为5吨的车,7辆载重为8吨的车.2×3+2.5x <204×3+2x >20第九章多边形§9.1三角形(一)一、1. C 2. C二、1. 3,1,1; 2. 直角内 3. 12三、1. 8个;△ABC、△FDC、△ADC是锐角三角形;△ABD、△AFC是钝角三角形;△AEF、△AEC、△BEC是直角三角形.2.(1)略(2)三条中线交于一点,交点把每条中线分成的两条线段的比均为1:2.3.不符合,因为三角形内角和应等于180°.4.∠A=95°∠B=52.5°∠C=32.5°§9.1三角形(二)一、1.C 2.B 3. A.二、1.(1)45°;(2)20°,40°(3)25°,35° 2. 165° 3. 20°4. 20°5.3:2:1三、1. ∠BDC应为21°+ 32°+ 90°=143°(提示:作射线AD)2. 70°3. 20°§9.1三角形(三)一、1.D 2.A二、1.12cm 2. 3个 3. 5<c<9,7三、1.其他两边长都为8cm 2. 略.§9.2多边形的内角和与外角和一、1.C 2. C. 3.C 4.C二、1.八,1080° 2. 10,1800° 3. 125° 4. 120米.三、1.15 2.十二边形 3.九边形,少加的那个内角的度数为135°.4.11§9.3用多种正多边形拼地板(一)一、1. B 2. C.二、1. 6 2. 正六边形 3. 11,(3n+2).三、1.(1)因为围绕一点拼在一起的正多边形的内角的和为360°.(2)不能,因为正八边形的每个内角都为135°,不能整除360°.(3)略.2.应选“80×80cm2”这种规格的瓷砖,因为长方形客厅的长和宽都是80cm的整数倍,需要这种瓷砖32块。
6.1 从实际问题到方程-华东师大版七年级数学下册教案一、教学目标1.知识目标:掌握如何从实际问题中建立代数方程,进一步了解代数方程的概念、性质和解法。
2.能力目标:培养学生应用代数方程解决实际问题的能力。
3.情感目标:激发学生学习数学的兴趣和积极性。
二、教学重点和难点1.教学重点:通过实际问题引入代数方程的概念及其解法。
2.教学难点:改变学生对代数方程的认知方式,培养学生建立代数方程的能力。
三、教学过程1. 导入新课1.引入问题:班级里有多少男生和女生?男生比女生多几人,男生和女生总数是32人。
请你们分别用文字叙述和代数方式表示该问题。
2. 讲解代数方程1.让学生将上述问题用代数方式表示出来。
–设女生人数为x,男生人数为x+3。
–由题可得x+(x+3)=32,即2x=29。
–所以女生人数为x=14.5,男生人数为x+3=17.5。
2.介绍代数方程的概念:代数方程是用字母表示一个或多个数,并用等号将它们连接起来的式子,其中包括未知数和已知数。
3.给出典型的代数方程例子:2x+3=11。
–将未知数x代入方程中,求出方程的解为x=4。
4.强调代数方程的解可能有多个或没有解,并介绍如何验证方程的解是否符合题意。
5.提醒学生解方程时要注意两边进行相同的变形操作。
3. 练习1.设某品牌的珠宝销售额为x元,其中黄金和铂金的销售额比是2:3,请用代数方式表示出来。
2.一只瓶子装满的时间是1小时30分钟,其中注水管注水的时间比倒出水的时间长10分钟,请用代数方式表示出来。
4. 总结1.回顾本节课所学的内容和代数方程的概念。
2.提醒学生在后续课程中要注意应用代数方程解决实际问题。
四、课后作业1.完成课堂上的练习题。
2.课外自行编写实际问题,并用代数方式表示出来。
3.阅读课本相关内容,预习下节课程。
五、教学反思本节课通过实际问题引入代数方程,并给出典型的代数方程例子,加深了学生对代数方程的认识和理解。
在解决实际问题时,学生通过建立代数方程,将问题转化为数学模型,进一步提高了数学抽象思维能力。
华师大新版七年级下学期《6.1 从实际问题到方程》2019年同步练习卷一.选择题(共19小题)1.下列选项中哪个是方程()A.5x2+5B.2x+3y=5C.2x+3≠﹣5D.4x+3>12.下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=13.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=84.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±25.下列各式中,是方程的是()A.B.14﹣5=9C.a>3b D.x=16.下列四个式子中,是方程的是()A.﹣3+5=2B.x=1C.2x﹣3D.8﹣2(2x﹣4)7.下列叙述中,正确的是()A.方程是含有未知数的式子B.方程是等式C.只有含有字母x,y的等式才叫方程D.带等号和字母的式子叫方程8.下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式9.下列等式中,方程的个数为()①5+3=8;②a=0;③y2﹣2y;④x﹣3=8.A.1B.2C.3D.410.在以下的式子中:+8=3;12﹣x;x﹣y=3;x+1=2x+1;3x2=10;2+5=7;其中是方程的个数为()A.3B.4C.5D.611.若x=1是方程ax+3x=2的解,则a的值是()A.﹣1B.5C.1D.﹣512.方程﹣3(•﹣9)=5x﹣1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A.2B.3C.4D.613.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=114.下列方程的根是x=1的是()A.B.C.﹣5x=5D.2(x+1)=0 15.下列方程中,解为x=1的是()A.x﹣1=﹣1B.﹣2x=C.x=﹣2D.2x﹣1=116.下列方程中,解为x=2的方程是()A.x+2=0B.2+3x=8C.3x﹣1=2D.4﹣2x=117.下列方程中,解为x=2的是()A.3x+6=3B.﹣x+6=2x C.4﹣2(x﹣1)=1D.18.下列各数是方程x﹣9=1的解是()A.0B.1C.2D.319.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6B.﹣3C.﹣4D.﹣5二.填空题(共22小题)20.已知式子:①3﹣4=﹣1;②2x﹣5y;③1+2x=0;④6x+4y=2;⑤3x2﹣2x+1=0,其中是等式的有,是方程的有.21.若单项式3ac x+2与﹣7ac2x﹣1是同类项,可以得到关于x的方程为.22.在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有(填序号)23.在①2x﹣1;②2x+1=3x;③|π﹣3|=π﹣3;④t+1=3中,等式有,方程有.(填入式子的序号)24.语句“x的3倍比y的大7”用方程表示为:.25.下列式子是方程的是.①3x+8,②5x+2=8,③x2+1=5,④9=3×3,⑤=8.26.下列各式中是方程的有.(仅填序号)(1)5﹣(﹣3)=8:(2)ab+3a;(3)6x﹣1﹣9;(4)8x>1;(5)xy=3.27.一根细铁丝用去后还剩2m,若设铁丝的原长为xm,可列方程为.28.x的10%与y的差比y的2倍少3,列方程为.29.某校长方形的操场周长为210m,长与宽之差为15m,设宽为xm,列方程为.30.下列式子各表示什么意义?(1)(x+y)2:;(2)5x=y﹣15:;(3)(x+x)=24:.31.一件衣服打八折后,售价为88元,设原价为x元,可列方程为.32.写出一个一元一次方程,同时满足方程的解为3,这个方程可以是.33.写出一个解为x=3的方程:.34.对于有理数a,b,规定一种新运算:a*b=ab+b.例如,2*3=2×3+3=9有下列结论:①(﹣3)*4=﹣8;②a*b=b*a;③方程(x﹣4)*3=6的解为x=5;④(4*3)*2=32.其中,正确的是.(填序号)35.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是.36.已知x=5是方程ax﹣8=20+a的解,则a=.37.如果x=8是方程(x﹣2)(x﹣2k)=0的一个解,则k=.38.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:.39.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是.40.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为.41.方程的解:解方程就是求出使方程中等号左右两边的未知数的值,这个值就是方程的解.(1)在x=3,x=0,x=﹣2中,方程5x+7=7﹣2x的解是.(2)在x=1000和x=2000中,方程0.52x﹣(1﹣0.52)x=80的解是.三.解答题(共9小题)42.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈(1)中,属于一次方程的序号填入圆圈(2)中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①3x+5=9:②x2+4x+4=0;③2x+3y=5:④x2+y=0;⑤x﹣y+z=8:⑥xy=﹣1.43.判断下列各式是不是方程,不是的说明为什么(1)4×5=3×7﹣1(2)2x+5y=3.(3)9﹣4x>0.(4)(5)2x+3.44.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)45.方程17+15x=245,,2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?46.小张去水果市场购买苹果和桔子,他看中了A、B两家的苹果和桔子,这两家的苹果和桔子的品质都一样,售价也相同,但每千克苹果要比每千克桔子多12元,买2千克苹果与买5千克桔子的费用相等.(1)根据题意列出方程;(2)在x=6,x=7,x=8中,哪一个是(1)中所列方程的解;(3)经洽谈,A家优惠方案是:每购买10千克苹果,送1千克桔子;B家优惠方案是:若购买苹果超过5千克,则购买桔子打八折,设每千克桔子x元,假设小张购买30千克苹果和a千克桔子(a>5).①请用含a的式子分别表示出小张在A、B两家购买苹果和桔子所花的费用;②若a=16,你认为在哪家购买比较合算?47.已知关于x的方程的两个解是;又已知关于x的方程的两个解是;又已知关于x的方程的两个解是;…,小王认真分析和研究上述方程的特征,提出了如下的猜想.关于x的方程的两个解是;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题.(1)关于x的方程的两个解是x1=和x2=;(2)已知关于x的方程,则x的两个解是多少?48.阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m =0,移项得:m=﹣c3﹣pc2﹣qc,即有:m=c×(﹣c2﹣pc﹣q),由于﹣c2﹣pc﹣q与c 及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数.例如:方程x3+4x2+3x﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x3+4x2+3x﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?(2)方程x3﹣2x2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.49.先阅读下列一段文字,然后解答问题.已知:方程的解是x1=2,x2=﹣;方程的解是x l=3,x2=﹣;方程的解是x l=4,x2=﹣;方程的解是x l=5,x2=﹣.问题:观察上述方程及其解,再猜想出方程的解,并写出检验.50.下列各方程在后面的括号内分别给出了一组数,从中找出方程的解.(1)3x+1=x+5(0,1,2);(2)x﹣5x+6=0(,,3).华师大新版七年级下学期《6.1 从实际问题到方程》2019年同步练习卷参考答案与试题解析一.选择题(共19小题)1.下列选项中哪个是方程()A.5x2+5B.2x+3y=5C.2x+3≠﹣5D.4x+3>1【分析】根据方程的定义判断即可.【解答】解:A、5x2+5不是等式,不能属于方程,错误;B、2x+3y=5符号方程的定义,正确;C、2x+3≠﹣5不是等式,不能属于方程,错误;D、4x+3>1不是等式,不能属于方程,错误;故选:B.【点评】此题考查方程的定义,关键是根据方程的定义判断.2.下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=1【分析】根据方程的定义:含有未知数的等式叫方程,可得出正确答案.【解答】解:A、不是等式,错误;B、是一元一次方程,正确;C、不是等式,错误;D、不含未知数,错误;故选:B.【点评】本题考查了方程的定义,含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).3.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=8【分析】根据方程的定义(含有未知数的等式叫方程),即可解答.【解答】解:3π+4≠5中不含未知数,所以错误.故选:B.【点评】本题主要考查了方程的定义,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.4.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±2【分析】根据一元一次方程的定义列出关于a的不等式组,求出a的值即可.【解答】解:∵方程(a+3)x|a|﹣2+6=0是关于x的一元一次方程,∴,解得a=3.故选:A.【点评】本题考查的是一元一次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.5.下列各式中,是方程的是()A.B.14﹣5=9C.a>3b D.x=1【分析】根据方程的定义:含有未知数的等式叫方程可得答案.【解答】解:A、没有等号,故不是方程,故此选项错误;B、等式中没有未知数,不是方程,故此选项错误;C、是不等式,不是方程,故此选项错误;D、符合方程的定义,是方程,故此选项正确;故选:D.【点评】此题主要考查了方程,关键是掌握方程定义.6.下列四个式子中,是方程的是()A.﹣3+5=2B.x=1C.2x﹣3D.8﹣2(2x﹣4)【分析】本题主要考查的是方程的定义,含有未知数的等式叫方程,据此可得出正确答案.【解答】解:A、不含未知数,故不是方程,选项错误;B、正确;C、不是等式,故选项错误;D、不是等式,故选项错误.故选:B.【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).7.下列叙述中,正确的是()A.方程是含有未知数的式子B.方程是等式C.只有含有字母x,y的等式才叫方程D.带等号和字母的式子叫方程【分析】根据方程的定义结合选项选出正确答案即可.【解答】解:A、方程是含有未知数的等式,错误;B、方程是含有未知数的等式,故选项正确;C、并不是只有含有字母x,y的等式才叫方程,错误;D、含有未知数的等式叫做方程,错误;故选:B.【点评】本题考查了方程的定义,掌握各知识点的定义是解答本题的关键.8.下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式【分析】含有未知数的等式叫方程,等式是用等号连接的,表示相等关系的式子,代数式一定不是等式,等式不一定含有未知数也不一定是方程.【解答】解:方程的定义是指含有未知数的等式,A、代数式不是等式,故不是方程;B、方程不是代数式,故B错误;C、等式不一定含有未知数,也不一定是方程;D、方程一定是等式,正确;故选:D.【点评】本题主要考查方程的概念,含有未知数的等式叫方程,要熟练掌握方程的定义.9.下列等式中,方程的个数为()①5+3=8;②a=0;③y2﹣2y;④x﹣3=8.A.1B.2C.3D.4【分析】方程是含有未知数的等式,所以依据方程的定义判断即可.【解答】解:①5+3=8,不含有未知数,故不是方程;②a=0,符合方程的定义,故是方程;③y2﹣2y,不是等式,故不是方程;④x﹣3=8,符合方程的定义,故是方程.所以②、④是方程,故选:B.【点评】此题考查了方程的定义,要明确方程必须具备两个条件:①含有未知数;②是等式.10.在以下的式子中:+8=3;12﹣x;x﹣y=3;x+1=2x+1;3x2=10;2+5=7;其中是方程的个数为()A.3B.4C.5D.6【分析】根据方程的定义对各选项进行逐一分析即可.【解答】解:12﹣x不是方程,因为不是等式;2+5=7不是方程,因为不含有未知数;+8=3、x﹣y=3、x+1=2x+1、3x2=10都是方程,字母是未知数,式子又是等式;故选:B.【点评】本题考查的是方程的定义,熟知含有未知数的等式叫方程是解答此题的关键.11.若x=1是方程ax+3x=2的解,则a的值是()A.﹣1B.5C.1D.﹣5【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值.【解答】解:把x=1代入原方程得:a+3=2解得:a=﹣1故选:A.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母的方程进行求解.12.方程﹣3(•﹣9)=5x﹣1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A.2B.3C.4D.6【分析】设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.【解答】解:设•处的数字是a,则﹣3(a﹣9)=5x﹣1,将x=2代入,得:﹣3(a﹣9)=9,解得a=6,故选:D.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.13.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=1【分析】把x=4代入各方程检验即可.【解答】解:解是x=4的方程是3x﹣8=4,故选:C.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.下列方程的根是x=1的是()A.B.C.﹣5x=5D.2(x+1)=0【分析】可解每个方程,然后判断,也可把根代入每个方程,得结果.【解答】解:(法一)把x=1代入各个方程,只有选项A的左边等于右边.故选:A法(二)因为,去分母,得x﹣1=0解得x=1所以x=1是A中方程的根;因为=﹣1,解得x=﹣1所以x=1不是选项B中方程的根;因为﹣5x=﹣5,解得x=﹣1所以x=1不是选项C中方程的根;因为2(x+1)=0,解得x=﹣1所以x=1不是选项D中方程的根.故选:A.【点评】本题考查了方程的解.题目难度不大,用代入检验法比较简便.15.下列方程中,解为x=1的是()A.x﹣1=﹣1B.﹣2x=C.x=﹣2D.2x﹣1=1【分析】各项中方程计算得到结果,即可作出判断.【解答】解:A、方程解得:x=0,不符合题意;B、方程系数化为1,得x=﹣,不符合题意;C、方程系数化为1,得x=﹣4,不符合题意;D、方程移项合并得:2x=2,解得:x=1,符合题意,故选:D.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.下列方程中,解为x=2的方程是()A.x+2=0B.2+3x=8C.3x﹣1=2D.4﹣2x=1【分析】求出各项中方程的解,即可作出判断.【解答】解:A、方程x+2=0,解得:x=﹣2,不合题意;B、方程2+3x=8,解得:x=2,符合题意;C、方程3x﹣1=2,解得:x=1,不合题意;D、方程4﹣2x=1,解得:x=1.5,不合题意,故选:B.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.下列方程中,解为x=2的是()A.3x+6=3B.﹣x+6=2x C.4﹣2(x﹣1)=1D.【分析】把x=2代入方程判断即可.【解答】解:A、把x=2代入方程,12≠3,错误;B、把x=2代入方程,4=4,正确;C、把x=2代入方程,2≠1,错误;D、把x=2代入方程,3≠0,错误;故选:B.【点评】此题考查方程的解问题,关键是把x=2代入方程,利用等式两边是否相等判断.18.下列各数是方程x﹣9=1的解是()A.0B.1C.2D.3【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【解答】解:A、当x=0时,左边=﹣9≠右边,则不是方程的解;B、当x=1时,左边=﹣9=﹣≠右边,则不是方程的解;C、当x=2时,左边=﹣9=﹣≠右边,则不是方程的解;D、当x=3时,左边=右边=1,则x=3是方程的解.故选:D.【点评】本题考查了方程的解的定义,理解定义是关键.19.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6B.﹣3C.﹣4D.﹣5【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.【解答】解:把x=2代入方程得:6+a=0,解得:a=﹣6.故选:A.【点评】本题主要考查了方程解的定义,已知x=2是方程的解实际就是得到了一个关于a 的方程.二.填空题(共22小题)20.已知式子:①3﹣4=﹣1;②2x﹣5y;③1+2x=0;④6x+4y=2;⑤3x2﹣2x+1=0,其中是等式的有①③④⑤,是方程的有③④⑤.【分析】等式的特点:用等号连结的式子,方程的特点:①含未知数,②是等式.【解答】解:①3﹣4=﹣1是等式;③1+2x=0即是等式也是方程;④6x+4y=2即是等式也是方程;⑤3x2﹣2x+1=0即是等式也是方程,故答案为:①③④⑤;③④⑤.【点评】本题主要考查的是方程的定义,熟练掌握方程的概念是解题的关键.21.若单项式3ac x+2与﹣7ac2x﹣1是同类项,可以得到关于x的方程为x+2=2x﹣1.【分析】所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可得到关于x的方程.【解答】解:∵单项式3ac x+2与﹣7ac2x﹣1是同类项,∴x+2=2x﹣1.故答案为:x+2=2x﹣1.【点评】本题考查的是同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同,(2)相同字母的指数相同,是易混点,还要注意同类项与字母的顺序无关,与系数无关.同时考查了方程的定义:含有未知数的等式叫方程.22.在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有②,③(填序号)【分析】根据含有未知数的等式叫方程,可得答案.【解答】解:∵①不含未知数,①不是方程;∵②、③含有未知数的等式,②、③是方程;④不是等式,④不是方程,故答案为:②、③.【点评】本题考查了方程,方程是含有未知数的等式,注意不含未知数的等式不是方程,含有字母的代数式不是方程.23.在①2x﹣1;②2x+1=3x;③|π﹣3|=π﹣3;④t+1=3中,等式有②③④,方程有②④.(填入式子的序号)【分析】方程是含有未知数的等式,因而方程是等式,等式不一定是方程,只是含有未知数的等式是方程.【解答】解:等式有②③④,方程有②④.故答案为:②③④,②④.【点评】本题考查了方程的定义,方程与等式的关系,是一个考查概念的基本题目.24.语句“x的3倍比y的大7”用方程表示为:3x=y+7.【分析】根据x的3倍=x的+7,直接列方程.【解答】解:由题意,得3x=y+7.故答案为:3x=y+7.【点评】本题考查了列方程.列方程的关键是正确找出题目的相等关系,找的方法是通过题目中的关键词如:大,小,倍等.25.下列式子是方程的是②③⑤.①3x+8,②5x+2=8,③x2+1=5,④9=3×3,⑤=8.【分析】根据方程的定义:含有未知数的等式叫方程,可得出正确答案.【解答】解:①3x+8是代数式,②5x+2=8是一元一次方程,③x2+1=5是一元二次方程,④9=3×3是等式,不是方程,⑤=8是一元一次方程,故答案为:②③⑤.【点评】本题考查了方程的定义,含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).26.下列各式中是方程的有(5).(仅填序号)(1)5﹣(﹣3)=8:(2)ab+3a;(3)6x﹣1﹣9;(4)8x>1;(5)xy=3.【分析】本题主要考查的是方程的定义,含有未知数的等式叫方程,据此可得出正确答案.【解答】解:(1)不含未知数,故不是方程;(2)(3)(4)不是等式,故不是方程;(5)是方程.故答案是:(5)【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).27.一根细铁丝用去后还剩2m,若设铁丝的原长为xm,可列方程为x﹣x=2.【分析】设铁丝的原长为xm,用去全长的后还剩2m,根据题意可得出数量关系式:铁丝的全长﹣铁丝全长×=剩下铁丝的长度,据此可列出方程.【解答】解:设铁丝的原长为xm,由题意,得:x﹣x=2.故答案为:x﹣x=2.【点评】本题考查学生利用数量关系式列方程,培养学生的分析能力.28.x的10%与y的差比y的2倍少3,列方程为10%x﹣y=2y﹣3.【分析】根据数学语言列出数量关系等式即可.【解答】解:x的10%与y的差比y的2倍少3,列方程为10%x﹣y=2y﹣3.故答案为:10%x﹣y=2y﹣3.【点评】本题考查了列一元一次方程,主要是数学语言转化为等式的能力的训练,比较简单.29.某校长方形的操场周长为210m,长与宽之差为15m,设宽为xm,列方程为2(x+x+15)=210.【分析】先表示出长,再根据长方形的周长公式列出方程即可.【解答】解:设宽为xm,则长为(x+15)m,根据题意得,2(x+x+15)=210.故答案为:2(x+x+15)=210.【点评】本题考查了一元一次方程,主要利用了长方形的周长公式.30.下列式子各表示什么意义?(1)(x+y)2:x,y的和的平方;(2)5x=y﹣15:x的5倍比y的一半小15;(3)(x+x)=24:x与它的的和的一半等于24.【分析】此题只需将式子用文字语言阐述出来即可.【解答】解:由题意得:(1)(x+y)2:x,y的和的平方;(2)5x=y﹣15:x的5倍比y的一半小15;(3)(x+x)=24:x与它的的和的一半等于24.故答案为:x,y的和的平方;x的5倍比y的一半小15;x与它的的和的一半等于24.【点评】本题考查了方程的定义和阐述式子所要表达的意义,较为新颖.31.一件衣服打八折后,售价为88元,设原价为x元,可列方程为0.8x=88.【分析】根据打八折后售价等于88元列式即可.【解答】解:设原价为x元,根据题意得,0.8x=88.故答案为:0.8x=88.【点评】本题考查了方程的定义,理解打折的意义是解题的关键.32.写出一个一元一次方程,同时满足方程的解为3,这个方程可以是2x=6.【分析】根据一元一次方程的定义,只要含有一个未知数(元),并且未知数的指数是1(次),且还要满足方程的解是3,这样的方程即可,答案不唯一,只要符合以上条件即可.【解答】解:答案不唯一,如2x=6等.故答案为:2x=6【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.33.写出一个解为x=3的方程:x﹣3=0(答案不唯一).【分析】方程的解是指使方程两边相等的未知数的值,根据方程解的定义进行填空即可.【解答】解:∵方程的解为x=3,∴方程为x﹣3=0,故答案为:x﹣3=0(答案不唯一).【点评】本题考查了方程的解,掌握方程解的定义是解题的关键.34.对于有理数a,b,规定一种新运算:a*b=ab+b.例如,2*3=2×3+3=9有下列结论:①(﹣3)*4=﹣8;②a*b=b*a;③方程(x﹣4)*3=6的解为x=5;④(4*3)*2=32.其中,正确的是①③④.(填序号)【分析】原式各项利用已知的新定义计算得到结果,即可做出判断.【解答】解:①根据题中的新定义得:(﹣3)*4=﹣12+4=﹣8,正确;②a*b=ab+b;b*a=ab+a,不一定相等,错误;③方程整理得:3(x﹣4)+3=6,去括号得:3x﹣12+3=6,移项合并得:3x=15,解得:x=5,正确;④(4*3)*2=(12+3)⊕2=15*2=30+2=32,正确.故答案为:①③④.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是1.【分析】●用a表示,把x=1代入方程得到一个关于a的方程,解方程求得a的值.【解答】解:●用a表示,把x=1代入方程得1=1﹣,解得:a=1.故答案是:1.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.36.已知x=5是方程ax﹣8=20+a的解,则a=7.【分析】使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a的值.【解答】解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为:7.【点评】已知条件中涉及到方程的解,可以把方程的解代入原方程,转化为关于字母a的方程进行求解.37.如果x=8是方程(x﹣2)(x﹣2k)=0的一个解,则k=4.【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=8代入方程,得到关于k的方程,就可求出k的值.【解答】解:把x=8代入方程得到:6(8﹣2k)=0,解得:k=4.故填4.【点评】本题主要考查了方程解的定义,已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于k的方程进行求解.可把它叫做“有解就代入”.38.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:+=1.【分析】根据观察,可发现规律:第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,可得答案.【解答】解:由一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,得第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,解是x=2017的方程:+=1,故答案为:+=1.【点评】本题考查了方程的解,观察方程得出规律是解题关键.39.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是4.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得2+▲=6,解得▲=4.故答案为:4.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.40.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为x=1.【分析】根据互为相反数(非0)两数之商为﹣1,即可求出方程的解.【解答】解:∵a,b互为相反数,且ab≠0,∴=﹣1,方程ax+b=0,解得:x=﹣=1.故答案为:x=1.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.41.方程的解:解方程就是求出使方程中等号左右两边的未知数的值,这个值就是方程的解.(1)在x=3,x=0,x=﹣2中,方程5x+7=7﹣2x的解是x=0.(2)在x=1000和x=2000中,方程0.52x﹣(1﹣0.52)x=80的解是x=2000.【分析】将每一个x的值分别代入方程,使方程左右两边相等的x得值就是方程的解,据此解答填空即可.【解答】解:(1)将x=3代入,左边=22,右边=1,故不是;将x=0代入,左边=7,右边=7,故x=0是方程的解;将x=﹣2代入,左边=﹣3,右边=11,故不是;(2)将x=1000代入,左边=40,右边=80,故不是;将x=2000代入,左边=80=右边,x=2000是方程的解.故答案为x=0,x=2000.【点评】此题考查了方程的解,注意使方程中等号左右两边的未知数的值就是方程的解.三.解答题(共9小题)42.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈(1)中,属于一次方程的序号填入圆圈(2)中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①3x+5=9:②x2+4x+4=0;③2x+3y=5:④x2+y=0;⑤x﹣y+z=8:⑥xy=﹣1.【分析】根据一次方程与一元一次方程的定义即可解答.【解答】解:(1)一元方程,①3x+5=9②x2+4x+4=0;(2)一次方程①3x+5=9⑤x﹣y+z=8③2x+3y=5;(3)既属于一元方程又属于一次方程的是①3x+5=9.【点评】此题很简单,关键是熟知一次方程与一元一次方程的定义即可解答.43.判断下列各式是不是方程,不是的说明为什么(1)4×5=3×7﹣1(2)2x+5y=3.(3)9﹣4x>0.(4)(5)2x+3.【分析】根据方程的定义对各小题进行逐一分析即可.【解答】解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.【点评】本题考查的是方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.44.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)【分析】设x年后爸爸的年龄是小明年龄的2倍,再根据x年后两人的年龄是2倍关系列出方程即可.【解答】解:设x年后爸爸的年龄是小明年龄的2倍,根据题意得,36+x=2(12+x),x=12.【点评】本题考查了列一元一次方程,需要注意父子二人的年龄都增加x.45.方程17+15x=245,,2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?【分析】根据一元一次方程的定义,一元二次方程的定义,二元一次方程的定义进行求解.【解答】解:方程x2+3=4,x2+2x+1=0,x+y=5不是一元一次方程;x2+3=4和x2+2x+1=0是一元二次方程;x+y=5是二元一次方程.【点评】本题考查了方程的定义.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.只含有一个未知数,未知项的次数为2的整式方程,叫一元二次方程.含有2个未知数,最高次项的次数是1的方程叫做二元一次方程.46.小张去水果市场购买苹果和桔子,他看中了A、B两家的苹果和桔子,这两家的苹果和桔子的品质都一样,售价也相同,但每千克苹果要比每千克桔子多12元,买2千克苹果与买5千克桔子的费用相等.(1)根据题意列出方程;(2)在x=6,x=7,x=8中,哪一个是(1)中所列方程的解;(3)经洽谈,A家优惠方案是:每购买10千克苹果,送1千克桔子;B家优惠方案是:若购买苹果超过5千克,则购买桔子打八折,设每千克桔子x元,假设小张购买30千克苹果和a千克桔子(a>5).①请用含a的式子分别表示出小张在A、B两家购买苹果和桔子所花的费用;②若a=16,你认为在哪家购买比较合算?【分析】(1)根据题意列方程即可;(2)把x=6,x=7,x=8分别代入2(x+12)=5x,即可得到结论;(3)①根据题意列代数式即可;②把a=16代入代数式即可得到结论.【解答】解:(1)根据题意得,2(x+12)=5x;(2)把x=6,x=7,x=8分别代入2(x+12)=5x的,当x=6时,2(x+12)=36,5x=30,∴等号的左右两边不相等,∴x=6不是方程的解;当x=7时,2(x+12)=38,5x=35,∴等号的左右两边不相等,∴x=7不是方程的解;。
6.1 从实际问题到方程教学目标:1、通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2、使学生会列一元一次方程解决一些简单的应用题。
3、会判断一个数是不是某个方程的解。
教学重点、难点:重点:会列一元一次方程解决一些简单的应用题。
难点:弄清题意,找出相等关系。
教学过程:一、知识回顾小学里已经学过列方程解简单的应用题,请同学们回顾一下,如何列方程解应用题: 例如:一本笔记本2.1元,小红有6元钱,那么她最多能买到几本这样的笔记本呢? 解:设小红能买到x 本笔记本,那么根据题意,得:62.1=x5=x答:小红最多能买这样的笔记本5本。
二、探究新知问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?分析:引导学生弄清题意,寻找相等关系。
(1)用以前算术解法怎样列出式子?(2)若设需要租用x 辆客车,那么列出的方程是怎样的?(3)观察所列的方程有什么特点?解法1:算术法:()6442644464328=÷=÷-(辆)解法2:列方程解应用题。
设需要租用x 辆客车,那么这些客车可以乘坐x 44,加上乘坐校车的64人,就是全校师生328人,可得:3286444=+x ①解这个方程,就能得到所求的结果。
(你能求出吗?)问题2:初2009级1班50名师生准备乘车外出春游,已有一辆客车可以乘坐35人,还需租用5座的面包车多少辆?分析:引导学生弄清题意,寻找相等关系。
思路:相等关系→算术解法→方程解法→方程特点。
解析:列方程得:50355=+x .想一想:(1)上述等式具有什么特点?尝试刻画方程的意义。
(2)找出满足上述等式的x 的值.尝试刻画方程的解。
方程的概念:含有未知数的等式叫做方程。
注意:(1)方程必须是等式,即方程是等式的特殊形式。
(2)方程中必定有一个待定确定的数,即未知数,二者缺一不可。
问题3:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,经过几年你们的年龄正好是我年龄的三分之一?”“三年!”小敏同学很快说出了答案。
6.1 从实际问题到方程主备人:课题: 6.1 从实际问题到方程教学目标:1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
教学重难点:1、重点:会列一元一次方程解决一些简单的应用题。
2、难点:弄清题意,找出“相等关系”。
课时安排:1课时教学方法:先学后教当堂训练教学过程:一、导入1、完成下列问题:(1)一本笔记本1.2元,买x本需要元。
(2)一支铅笔a元,一支钢笔b元,小强买两支铅笔和三支钢笔,一共需要元。
(3)长方形的宽为a,长比宽长3,则该长方形的面积为___________。
(4)x辆44座的汽车加上2辆23座的汽车最多可以坐人。
二、学习目标1.会用方程描述具体问题中的数量关系和变化规律,建立数学模型,2.理解方程的解的意义,会检验所给的数值是不是一个方程的解,3.能运用数学知识分析解决实际问题,体会数学知识在现实生活中的运用。
三、整体感知1、阅读教材第2—3页。
2、想一想中的问题,你有哪些解决的方法?3、通过小敏解决问题的方法,你怎样找到一个方程的解?四、合作探究我们再来看下面一个例子:问题1:某校七年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?问:你能解决这个问题吗?有哪些方法?(让学生思考后,回答,教师再作讲评)算术法:(328-64)÷44=264÷44=6(辆)列方程解应用题:设需要租用x 辆客车,那么这些客车共可乘44x 人,加上乘坐校车的64人,就是全体师生328人,可得。
44x+64=328 (1)解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。
)问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”小敏同学很快说出了答案。
课题从实际问题到方程【学习目标】1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用.2.让学生会列一元一次方程解决一些简单的应用题,并学会用查验的方式判定一个数是不是为方程的解.【学习重点】列一元一次方程解决一些简单的应用题.【学习难点】理清题意,找出题中相等的关系.行为提示:创设问题,情景导入,激发学生的求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮忙,大部份学生完成后,进行小组交流.知识链接:列方程:将欲求的未知量设为未知数,依照题中的等量关系列出等式即可.解题思路:那个方程不太好解,大伙儿能够用尝试、查验的方式找出它的解.方式指导:列方程解应用题的大体进程是:观看题意,找出等量关系;设未知数,并列出方程;解所列的方程;写出答案.情景导入生成问题旧知回忆:1.在现实生活中,有很多问题都跟数学有关,例如下面的问题:某校七年级328名师生搭车外出春游,已有2辆校车可乘坐64人,还需租用44座的客车多少辆?解:(328-64)÷44=264÷44=6(辆).答:还需租用44座的客车6辆.2.请大伙儿回忆一下,在小学里还学过什么方式能够解决上面的问题?答:列方程.3.一本笔记本元,小红有20元钱,那么她最多能买到几本如此的笔记本呢?解:设小红能买到x本笔记本,依照题意,得2.5x=20,因为×8=20,因此小红能买到8本笔记本.自学互研生成能力【自主探讨】1.方程的概念:含有未知数的等式叫做方程.2.方程的解是指使方程左、右两边相等的未知数的值.查验某个数是不是是方程的解,只要将那个数代入方程的左侧和右边,若是左侧=右边,那么那个数是方程的解,反之就不是方程的解.3.在课外活动中,张教师发觉同窗的年龄大多是13岁,就问同窗:“我今年45岁,几年后你们的年龄是我年龄的三分之一?”方式一:咱们能够按年龄的增加依次去试.1年后,教师的年龄是46岁,同窗的年龄是14岁,不是教师年龄的三分之一;2年后,教师的年龄是47岁,同窗的年龄是15岁,也不是教师年龄的三分之一;3年后,教师的年龄是48岁,同窗的年龄是16岁,恰好是教师年龄的三分之一.学习笔记:1.含有未知数的等式叫做方程.2.使方程左右两边的值相等的未知数的值,确实是方程的解.3.查验一个数是不是为方程的解的方式:只要把那个数代入方程的左右两边,看可否使左右两边的值相等.若是左右两边的值相等,那么那个数确实是方程的解.4.列方程解应用题的大体进程是:找、设、列、解、检、答.行为提示:教师结合各组反馈的疑难问题分派任务,各组展现进程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.学习笔记:1.培育学生相应的代入方式.2.明白列方程的前提是寻觅等量关系.方式二:也能够用列方程的方法来解.解:设x年后同窗的年龄是教师年龄的三分之一,x年后同窗的年龄是(13+x)岁,教师的年龄是(45+x)岁.依照题意,得13+x =31(45+x).【合作探讨】例1:以下各式:①3+(-2)=5-4;②x +2y =5;③2x 2-6x -7>0;④x 2-3=4y +1.其中是方程的有( B ) A .1个 B .2个 C .3个 D .4个例2:以下方程的解为x =1的是( B )A .2x -1=10B .2-x =2x -1C .x 2+1=0D .x 2=2【自主探讨】1.列方程解应用题的大体进程是:找、设、列、解、检、答.2.设未知数的方式:直接设未知数法和间接设未知数法.【合作探讨】例3:甲、乙两车间共生产电视机120台,甲车间生产的台数是乙车间的3倍少16,求甲、乙两车间各生产电视机多少台?(列出方程,不解方程)分析:等量关系是:甲车间生产的台数+乙车间生产的台数=电视机总台数.解:设乙车间生产电视机的台数为x 台,那么甲车间生产电视机的台数是(3x -16)台 ,依照题意,得x +(3x -16)=120.交流展现 生成新知1.将阅读教材时“生成的新问题”和通过“自主探讨、合作探讨”得出的结论展现在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题彼此释疑.2.各小组由组长统一分派展现任务,由代表将“问题和结论”展现在黑板上,通过交流“生成新知”.知识模块一 方程的概念和方程的解知识模块二 实际问题与方程检测反馈 达到目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收成:________________________________________________________________________2.存在困惑:________________________________________________________________________。
华师大版七下数学6.1《从实际问题到方程》说课稿1一. 教材分析华师大版七下数学6.1《从实际问题到方程》这一节内容,是在学生学习了初中数学基础知识之后进行的教学。
本节课的主要内容是引导学生从实际问题中抽象出方程,让学生通过观察、分析、归纳等方法,掌握方程的定义和基本性质,培养学生解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于方程的概念和性质已经有了一定的了解。
但是,学生在解决实际问题时,往往不知道如何将实际问题转化为方程,对于方程的运用还不够熟练。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出方程,并通过大量的练习,提高学生解方程的能力。
三. 说教学目标1.知识与技能目标:让学生掌握方程的定义和基本性质,能够从实际问题中抽象出方程,并求解方程。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:让学生从实际问题中抽象出方程,并求解方程。
2.教学难点:如何引导学生将实际问题转化为方程,以及如何解决方程中的实际问题。
五. 说教学方法与手段本节课采用问题驱动的教学方法,通过引导学生观察、分析、归纳等方法,让学生自主探索,发现方程的定义和性质。
同时,利用多媒体教学手段,展示实际问题,使学生更直观地理解方程的应用。
六. 说教学过程1.导入新课:通过展示一个实际问题,引导学生思考如何将实际问题转化为方程,从而引出本节课的主题。
2.自主探究:让学生通过观察、分析、归纳等方法,自主探索方程的定义和性质。
3.教师讲解:对于学生自主探究过程中遇到的问题,进行讲解和引导,帮助学生理解和掌握方程的知识。
4.课堂练习:让学生通过解决实际问题,运用方程的知识,提高解题能力。
5.总结提升:对本节课的内容进行总结,使学生形成知识体系。
七. 说板书设计板书设计如下:从实际问题到方程1.方程的定义:……2.方程的性质:……3.方程的解法:……八. 说教学评价本节课的教学评价主要通过以下几个方面进行:1.学生对方程知识的掌握程度。
6.1从实际问题到方程1. 方程-21+ x =2 x 的解是 A. x =21 B. x =-21 C. x =2 D. x =-2 2. 下列方程中解为x =-3的是( )A. 3 x-9=0B. 5 x +3=12C. 3(x -2)-2(x -3)=5 xD.41-x =623x --25 3. “y 比x 的2倍大5”可列方程为A. y +5=2xB. y -5=2xC. 2y +5=xD. 2y -5=x4.一次数学测验共有20道题,做对一道得5分,做错或没做一道扣1分,小强在这次测验中得了88分,则他做对的题数是( )A. 18道B. 17道C. 16道D. 15道5. 甲、乙两仓库共有大米50吨,若从甲仓库取出101,从乙仓库取出52,则两仓库所剩大米相等,若设甲仓库原有大米x 吨,则可列方程为____.6. 任写一个以x =2为解的方程,可以是_______.7. 三捆树苗共670株,第一捆比第二捆多30株,第三捆比第二捆多40株,设第二捆有x 株,可列方程为_______.8. 根据题意列方程.(1)x 的5倍减去7等于它的3倍加上8;(2)某数的2倍与-9的差等于这个数的51加上6,求这个数; (3)甲数比乙数的2倍少3,且甲数减乙数的差为11,求乙数.9. 判断下列方程后面大括号内所列各数是否为相应方程的解.(1)5x -14=21-x ,{3,-7}; (2)5 x +1=3,⎭⎬⎫-⎩⎨⎧52,52.10. 某品牌电脑按原售价降价800元后,又降价20%,现售价为4900元,那么该电脑的原售价是多少元?(要求:列出方程即可)11. 某数学小组中的女同学占全组人数的31,若再加入6名女同学,则数学小组中的女同学的总人数就占此时全组人数的一半,该数学小组原来有多少名同学?(要求:列出方程即可)12. 七年级(1)班举办了一次邮票展览,展出的邮票的数量是一定的,若每人3枚,则剩余24枚,若每人4枚,则还少26枚,这个班有多少名学生?(要求:列出方程即可) 参考答案1. B [提示:当x =-21时,方程左边=-21+(-21)=-1,右边=2×(-21)=-1,左边=右边,所以x =-21是原方程的解.故选B.] 2. D [提示:把x =-3代入各个选项,其中选项D 的左边=413--=-1,右边=6)3(23-⨯--25=-1,左边=右边,所以x =-3是方程41-x =623x --25的解.故选 D. ] 3. B4. A [提示:设小强做对了x 道题.根据题意,得5x -(20-x )=88.分别把x =18,17,16,15代入方程中,当x =18时,方程的左边=5×18-(20-18)=88,右边=88,左边=右边,即x =18是方程5x -(20-x )=88的解.故选A.]5.(1011-)x =(521-)(50-x )[提示:若甲仓库原有x 吨大米,则乙仓库原有(50- x )吨大米,从甲仓库取出101后,剩(1011-)x 吨,从乙仓库取出52后,剩(521-)(50-x )吨,于是可列方程为(1011-)x =(521-)(50-x ).] 6. x -2=0[提示:答案不唯一,符合题意即可. ]7. (x +30)+ x +(x +40)=6708. 解:(1)5 x -7=3 x +8. (2)设这个数为x ,列方程得2 x -(-9)=51 x +6. (3)设乙数为x ,则甲数为2 x -3,列方程得(2x -3)-x =11.9. 提示:(1)x =3是原方程的解. x =-7不是原方程的解.(2)x =52是原方程的解. x =-52不是原方程的解.10. 解:设该电脑的原售价是x 元,则电脑的现售价为(x -800)(1-20%)元.根据题意列方程得(x -800)(1-20%)=4900.11. 解:设该数学小组原来有x 名同学.根据题意列方程得31 x +6=21(x +6).12. 解:设这个班有x名学生.根据题意列方程得3x+24=4 x-26.。
6.1从实际问题到方程
1. 方程-
2
1+ x =2 x 的解是 A. x =21 B. x =-21 C. x =2 D. x =-2 2. 下列方程中解为x =-3的是( )
A. 3 x-9=0
B. 5 x +3=12
C. 3(x -2)-2(x -3)=5 x
D.
41-x =623x --25 3. “y 比x 的2倍大5”可列方程为
A. y +5=2x
B. y -5=2x
C. 2y +5=x
D. 2y -5=x
4.一次数学测验共有20道题,做对一道得5分,做错或没做一道扣1分,小强在这次测验中得了88分,则他做对的题数是( )
A. 18道
B. 17道
C. 16道
D. 15道
5. 甲、乙两仓库共有大米50吨,若从甲仓库取出101,从乙仓库取出5
2,则两仓库所剩大米相等,若设甲仓库原有大米x 吨,则可列方程为____.
6. 任写一个以x =2为解的方程,可以是_______.
7. 三捆树苗共670株,第一捆比第二捆多30株,第三捆比第二捆多40株,设第二捆有x 株,可列方程为_______.
8. 根据题意列方程.
(1)x 的5倍减去7等于它的3倍加上8;
(2)某数的2倍与-9的差等于这个数的5
1加上6,求这个数; (3)甲数比乙数的2倍少3,且甲数减乙数的差为11,求乙数.
9. 判断下列方程后面大括号内所列各数是否为相应方程的解.
(1)5x -14=2
1-x ,{3,-7}; (2)5 x +1=3,⎭⎬⎫-⎩⎨⎧52,52
.
10. 某品牌电脑按原售价降价800元后,又降价20%,现售价为4900元,那么该电脑的原售价是多少元?(要求:列出方程即可)
11. 某数学小组中的女同学占全组人数的3
1,若再加入6名女同学,则数学小组中的女同学的总人数就占此时全组人数的一半,该数学小组原来有多少名同学?(要求:列出方程即可)
12. 七年级(1)班举办了一次邮票展览,展出的邮票的数量是一定的,若每人3枚,则剩余24枚,若每人4枚,则还少26枚,这个班有多少名学生?(要求:列出方程即可) 参考答案
1. B [提示:当x =-
21时,方程左边=-21+(-21)=-1,右边=2×(-21)=-1,左边=右边,所以x =-2
1是原方程的解.故选B.] 2. D [提示:把x =-3代入各个选项,其中选项D 的左边=
413--=-1,右边=6
)3(23-⨯--25=-1,左边=右边,所以x =-3是方程41-x =623x --25的解.故选 D. ] 3. B
4. A [提示:设小强做对了x 道题.根据题意,得5x -(20-x )=88.分别把x =18,17,16,15代入方程中,当x =18时,方程的左边=5×18-(20-18)=88,右边=88,左边=右边,即x =18是方程5x -(20-x )=88的解.故选A.]
5.(1011-
)x =(5
21-)(50-x )[提示:若甲仓库原有x 吨大米,则乙仓库原有(50- x )吨大米,从甲仓库取出101后,剩(1011-)x 吨,从乙仓库取出52后,剩(5
21-)(50-x )吨,于是可列方程为(1011-)x =(521-)(50-x ).] 6. x -2=0[提示:答案不唯一,符合题意即可. ]
7. (x +30)+ x +(x +40)=670
8. 解:(1)5 x -7=3 x +8. (2)设这个数为x ,列方程得2 x -(-9)=
51 x +6. (3)设乙数为x ,则甲数为2 x -3,列方程得(2x -3)-x =11.
9. 提示:(1)x =3是原方程的解. x =-7不是原方程的解.(2)x =
52是原方程的解. x =-52不是原方程的解.
10. 解:设该电脑的原售价是x 元,则电脑的现售价为(x -800)(1-20%)元.根据题意列方程得(x -800)(1-20%)=4900.
11. 解:设该数学小组原来有x 名同学.根据题意列方程得
31 x +6=2
1(x +6).
12. 解:设这个班有x名学生.根据题意列方程得3x+24=4 x-26.。