2017-2018学年高中数学选修2-2人教A版 创新应用课下能力提升(七) Word版 含解析
- 格式:doc
- 大小:104.50 KB
- 文档页数:8
课下能力提升(七)[学业水平达标练]题组1 求函数的最值1.函数f (x )=2x -cos x 在(-∞,+∞)上( ) A .无最值 B .有极值 C .有最大值 D .有最小值2.函数f (x )=x 2e x在区间(-3,-1)上的最大值为( ) A .9e -3B .4e -2C .e -1D .4e 23.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.4.已知函数f (x )=ln xx.(1)求f (x )在点(1,0)处的切线方程; (2)求函数f (x )在[1,t ]上的最大值.题组2 由函数的最值确定参数的值5.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92,则m 等于( )A .0B .1C .2 D.526.设f (x )=-13x 3+12x 2+2ax .当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值.题组3 与最值有关的恒成立问题7.若对任意的x >0,恒有ln x ≤px -1(p >0),则p 的取值范围是( ) A .(0,1] B .(1,+∞) C .(0,1) D .[1,+∞)8.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ).(1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值;(2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围.[能力提升综合练]1.函数f (x )=13x 3-2x 2在区间[-1,5]上( )A .有最大值0,无最小值B .有最大值0,最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值2.函数f (x )=x ·2x ,则下列结论正确的是( ) A .当x =1ln 2时,f (x )取最大值B .当x =1ln 2时,f (x )取最小值C .当x =-1ln 2时,f (x )取最大值D .当x =-1ln 2时,f (x )取最小值3.对于R 上可导的任意函数f (x ),若满足x ≠1时(x -1)·f ′(x )>0,则必有( ) A .f (0)+f (2)>2f (1) B .f (0)+f (2)<2f (1) C .f (0)+f (2)≥2f (1)D .f (0)+f (2)≤2f (1)4.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小值时t 的值为( )A .1 B.12C.52 D.225.已知函数f (x )=e x-2x +a 有零点,则a 的取值范围是________.6.已知函数f (x )=2ln x +ax2(a >0).若当x ∈(0,+∞)时,f (x )≥2恒成立,则实数a 的取值范围是________.7.已知函数f (x )=(x -k )e x. (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.8.设函数f (x )=2ax -b x +ln x ,若f (x )在x =1,x =12处取得极值,(1)求a 、b 的值;(2)在⎣⎢⎡⎦⎥⎤14,1上存在x 0使得不等式f (x 0)-c ≤0成立,求c 的取值范围.答案题组1 求函数的最值1. 解析:选A f ′(x )=2+sin x >0,∴f (x )在(-∞,+∞)上是增函数,∴f (x )在(-∞,+∞)上无最值.2.解析:选B ∵f ′(x )=e x (x 2+2x ),令f ′(x )=0得x =-2或x =0(舍). ∴f (x )在(-3,-2)上递增;在(-2,-1)上递减. ∴f (x )在(-3,-1)上的最大值为f (-2)=4e -2. 3.解析:令f ′(x )=3x 2-12=0,解得x =±2.计算得f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1, 所以M =24,m =-8,所以M -m =32. 答案:324. 解:f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1-ln xx2. (1)f ′(1)=1,所以切线方程为y =x -1. (2)令f ′(x )=1-ln xx2=0,解得x =e. 当x ∈(0,e)时,f ′(x )>0,f (x )单调递增, 当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减, 当1<t <e 时,f (x )在[1,t ]上单调递增,f (x )max =f (t )=ln tt,当t ≥e 时,f (x )在[1,e]上单调递增, 在[e ,t ]上单调递减,f (x )max =f (e)=1e,综上,f (x )max=⎩⎪⎨⎪⎧ln t t ,1<t <e ,1e ,t ≥e.题组2 由函数的最值确定参数的值 5.解析:选C y ′=3x 2+3x =3x (x +1), 令y ′=0,得x =0或x =-1.因为f (0)=m ,f (-1)=m +12,又f (1)=m +52,f (-2)=m -2,所以f (1)=m +52最大,所以m +52=92,所以m =2.6.解:令f ′(x )=-x 2+x +2a =0, 得两根x 1=1-1+8a 2,x 2=1+1+8a2.所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增. 当0<a <2时,有x 1<1<x 2<4,所以f (x )在[1,4]上的最大值为f (x 2). 又f (4)-f (1)=-272+6a <0,即f (4)<f (1),所以f (x )在[1,4]上的最小值为f (4)=8a -403=-163,得a =1,x 2=2,从而f (x )在[1,4]上的最大值为f (2)=103.题组3 与最值有关的恒成立问题7.解析:选D 原不等式可化为ln x -px +1≤0,令f (x )=ln x -px +1,故只需f (x )max≤0,由f ′(x )=1x-p 知f (x )在⎝ ⎛⎭⎪⎫0,1p 上单调递增;在⎝ ⎛⎭⎪⎫1p ,+∞上单调递减.故f (x )max =f ⎝ ⎛⎭⎪⎫1p =-ln p ,即-ln p ≤0,解得p ≥1. 8. 解:(1)f ′(x )=3x 2-2ax +b , ∵函数f (x )在x =-1和x =3处取得极值, ∴-1,3是方程3x 2-2ax +b =0的两根. ∴⎩⎪⎨⎪⎧-1+3=23a ,-1×3=b3,∴⎩⎪⎨⎪⎧a =3,b =-9. (2)由(1)知f (x )=x 3-3x 2-9x +c ,f ′(x )=3x 2-6x -9.当x 变化时,f ′(x ),f (x )的变化情况如下表:而f (-2)=c -2,f (6)=c +54,∴x ∈[-2,6]时,f (x )的最大值为c +54, 要使f (x )<2|c |恒成立,只要c +54<2|c |即可, 当c ≥0时,c +54<2c , ∴c >54;当c <0时,c +54<-2c , ∴c <-18,∴c 的取值范围为(-∞,-18)∪(54,+∞).[能力提升综合练]1. 解析:选B f ′(x )=x 2-4x =x (x -4). 令f ′(x )=0,得x =0或x =4,而f (0)=0,f (4)=-323,f (-1)=-73,f (5)=-253,∴f (x )max =f (0)=0,f (x )min =f (4)=-323.2. 解析:选D f ′(x )=2x+x ·(2x)′=2x+x ·2x·ln 2. 令f ′(x )=0,得x =-1ln 2.当x ∈⎝⎛⎭⎪⎫-∞,-1ln 2时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫-1ln 2,+∞时,f ′(x )>0,故函数在x =-1ln 2处取极小值,也是最小值. 3.解析:选A 当x >1时,f ′(x )>0,函数f (x )在(1,+∞)上是增函数; 当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数,故f (x )在x =1处取得最小值,即有f (0)>f (1),f (2)>f (1),得f (0)+f (2)>2f (1).4.解析:选D |MN |的最小值,即函数h (t )=t 2-ln t 的最小值,h ′(t )=2t -1t=2t 2-1t ,显然t =22是函数h (t )在其定义域内唯一的极小值点,也是最小值点,故t =22. 5.解析:f ′(x )=e x-2.由f ′(x )>0得e x-2>0,∴x >ln 2.由f ′(x )<0得,x <ln 2. ∴f (x )在x =ln 2处取得最小值. 只要f (x )min ≤0即可. ∴eln 2-2ln 2+a ≤0,∴a ≤2ln 2-2. 答案:(-∞,2ln 2-2]6.解析:f (x )≥2,即a ≥2x 2-2x 2ln x . 令g (x )=2x 2-2x 2ln x ,x >0,则g ′(x )=2x (1-2ln x ).由g ′(x )=0得x =e 12, 且当0<x <e 12时,g ′(x )>0;当x >e 12时,g ′(x )<0, ∴当x =e 12时,g (x )取最大值g (e 12)=e , ∴a ≥e. 答案:[e ,+∞)7. 解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.当x 变化时,f (x )与f ′(x )的变化情况如下表:所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞). (2)当k -1≤0,即k ≤1时, 函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时, 函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 8. 解:(1)∵f (x )=2ax -b x+ln x ,∴f ′(x )=2a +b x2+1x.∵f (x )在x =1,x =12处取得极值,∴f ′(1)=0,f ′⎝ ⎛⎭⎪⎫12=0, 即⎩⎪⎨⎪⎧2a +b +1=0,2a +4b +2=0,解得⎩⎪⎨⎪⎧a =-13,b =-13.∴所求a 、b 的值分别为-13、-13.(2)在⎣⎢⎡⎦⎥⎤14,1上存在x 0,使得不等式f (x 0)-c ≤0成立,只需c ≥f (x )min ,x ∈⎣⎢⎡⎦⎥⎤14,1,由f ′(x )=-23-13x 2+1x=-2x 2-3x +13x 2=-(2x -1)(x -1)3x2, ∴当x ∈⎝ ⎛⎭⎪⎫14,12时,f ′(x )<0,f (x )是减函数; 当x ∈⎝ ⎛⎭⎪⎫12,1时,f ′(x )>0,f (x )是增函数; ∴f ⎝ ⎛⎭⎪⎫12是f (x )在⎣⎢⎡⎦⎥⎤14,1上的最小值. 而f ⎝ ⎛⎭⎪⎫12=13+ln 12=13-ln 2,∴c ≥13-ln 2.∴c 的取值范围为⎣⎢⎡⎭⎪⎫13-ln 2,+∞.。
课下能力提升(二)[学业水平达标练]题组1用2×2列联表分析两分类变量间的关系1.分类变量X和Y的列联表如下:A.ad-bc越小,说明X与Y关系越弱B.ad-bc越大,说明X与Y关系越强C.(ad-bc)2越大,说明X与Y关系越强D.(ad-bc)2越接近于0,说明X与Y关系越强2.假设有两个变量X与Y,它们的取值分别为x1,x2和y1,y2,其列联表为:() A.a=50,b=40,c=30,d=20B.a=50,b=30,c=40,d=20C.a=20,b=30,c=40,d=50D.a=20,b=30,c=50,d=403.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:填“是”或“否”).题组2用等高条形图分析两分类变量间的关系4.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的百分比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%5.观察下列各图,其中两个分类变量x,y之间关系最强的是()6.为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:题组3独立性检验7.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力() A.平均数与方差B.回归分析C.独立性检验D.概率8.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是()A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大9.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K 2的观测值k >6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.10.为了解决高二年级统计案例入门难的问题,某校在高一年级的数学教学中设有试验班,着重加强统计思想的渗透,下面是高二年级统计案例的测验成绩统计表(单位:分)的一部分,试分析试验效果.附:1.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握认为事件A 和B 有关系,则具体计算出的数据应该是( )A .k ≥6.635B .k <6.635C .k ≥7.879D .k <7.8792.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )算得,观测值k =110×(40×30-20×20)260×50×60×50≈7.8.附表:A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别无关”3.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表3A.成绩B.视力C.智商D.阅读量4.下列关于K2的说法中,正确的有________.①K2的值越大,两个分类变量的相关性越大;②K2的计算公式是K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d);③若求出K2=4>3.841,则有95%的把握认为两个分类变量有关系,即有5%的可能性使得“两个分类变量有关系”的推断出现错误;④独立性检验就是选取一个假设H0条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝H0的推断.5.某班主任对全班50名学生作了一次调查,所得数据如表:)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.6.随着生活水平的提高,人们患肝病的越来越多,为了解中年人患肝病与经常饮酒是否有关,现对30名中年人进行了问卷调查得到如下列联表:已知在全部30人中随机抽取1人,抽到肝病患者的概率为415.(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患肝病与常饮酒有关?说明你的理由;(2)现从常饮酒且患肝病的中年人(恰有2名女性)中,抽取2人参加电视节目,则正好抽到一男一女的概率是多少?参考数据:抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本频率分布直方图.表1甲流水线样本频数分布表(1)根据上表数据作出甲流水线样本频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据作出2×2列联表,并回答在犯错误的概率不超过多少的前提下认为“产品的包装质量与两条要自动包装流水线的选择有关”.答案[学业水平达标练]1.解析:选C|ad-bc|越小,说明X与Y关系越弱,|ad-bc|越大,说明X与Y关系越强.2.解析:选D当(ad-bc)2的值越大,随机变量K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)的值越大,可知X与Y有关系的可能性就越大.显然选项D中,(ad-bc)2的值最大.3.解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba+b=1858,dc+d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.答案:是4.解析:选C从图中可以分析,男生喜欢理科的可能性比女生大一些.5.解析:选D在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.6.解:等高条形图如图所示:由图形观察可以看出父母吸烟者中子女吸烟的比例要比父母不吸烟者中子女吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.7.解析:选C 判断两个分类变量是否有关的最有效方法是进行独立性检验. 8.解析:选B k 越大,“X 与Y 没有关系”的可信程度越小,则“X 与Y 有关系”的可信程度越大,即k 越小,“X 与Y 有关系”的可信程度越小.9.解析:K 2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.答案:③10.解:根据列联表中的数据,由公式得K 2的观测值 k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d ) =100(32×38-18×12)250×50×44×56≈16.234.因为16.234>6.635,所以,在犯错误的概率不超过0.01的前提下认为高二年级统计案例的测试成绩与高一年级数学教学中增加统计思想的渗透有联系.[能力提升综合练]1.解析:选C 有99.5%的把握认为事件A 和B 有关系,即犯错误的概率为0.5%,对应的k 0的值为7.879,由独立性检验的思想可知应为k ≥7.879.2.解析:选A 由k ≈7.8及P (K 2≥6.635)=0.010可知,在犯错误的概率不超过1%的前提下认为“爱好该项运动与性别有关”,也就是有99%以上的把握认为“爱好该项运动与性别有关”.3.解析:选D 因为K 21=52×(6×22-14×10)216×36×32×20=52×8216×36×32×20, K 22=52×(4×20-16×12)216×36×32×20=52×112216×36×32×20,k 23=52×(8×24-12×8)216×36×32×20=52×96216×36×32×20,K 24=52×(14×30-6×2)216×36×32×20=52×408216×36×32×20,则有K 24>K 22>K 23>K 21,所以阅读量与性别有关联的可能性最大.4.解析:对于①,K 2的值越大,只能说明我们有更大的把握认为二者有关系,却不能判断相关性大小,故①错;对于②,(ad -bc )应为(ad -bc )2,故②错;③④对.答案:③④5.解析:查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k 0=6.635,本题中,k ≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.答案:不能6.解:(1)设患肝病中常饮酒的人有x 人,x +230=415,x =6.由已知数据可求得K 2=30×(6×18-2×4)10×20×8×22≈8.523>7.879,因此有99.5%的把握认为患肝病与常饮酒有关.(2)设常饮酒且患肝病的男性为A ,B ,C ,D ,女性为E ,F ,则任取两人有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种.其中一男一女有AE ,AF ,BE ,BF ,CE ,CF ,DE ,DF ,共8种.故抽出一男一女的概率是P =815.7.解:(1)甲流水线样本频率分布直方图如下:(2)由表1知甲样本合格品数为8+14+8=30,由图1知乙样本中合格品数为(0.06+0.09+0.03)×5×40=36, 故甲样本合格品的频率为3040=0.75,乙样本合格品的频率为3640=0.9,据此可估计从甲流水线任取1件产品, 该产品恰好是合格品的概率为0.75. 从乙流水线任取1件产品, 该产品恰好是合格品的概率为0.9. (3)2×2列联表如下:因为K 2的观测值k =n (ad -bc )(a +b )(c +d )(a +c )(b +d )=80×(120-360)66×14×40×40≈3.117>2.706,所以在犯错误的概率不超过0.1的前提下认为产品的包装质量与两条自动包装流水线的选择有关.。
课下能力提升(七)[学业水平达标练]题组求函数的最值.函数()=-在(-∞,+∞)上( ).无最值.有极值.有最大值.有最小值.函数()=在区间(-,-)上的最大值为( ).-.-.-..已知函数()=-+在区间[-,]上的最大值与最小值分别为,,则-=..已知函数()=).()求()在点(,)处的切线方程;()求函数()在[,]上的最大值.题组由函数的最值确定参数的值.若函数=++在[-,]上的最大值为,则等于( )....设()=-++.当<<时,()在[,]上的最小值为-,求()在该区间上的最大值.题组与最值有关的恒成立问题.若对任意的>,恒有≤-(>),则的取值范围是( ).(,] .(,+∞).(,) .[,+∞).已知函数()=-++(,,∈).()若函数()在=-和=处取得极值,试求,的值;()在()的条件下,当∈[-,]时,()<恒成立,求的取值范围.[能力提升综合练].函数()=-在区间[-,]上( ).有最大值,无最小值.有最大值,最小值-.有最小值-,无最大值.既无最大值也无最小值.函数()=·,则下列结论正确的是( ).当=)时,()取最大值.当=)时,()取最小值.当=-)时,()取最大值.当=-)时,()取最小值.对于上可导的任意函数(),若满足≠时(-)·′()>,则必有( ).()+()>().()+()<().()+()≥().()+()≤().设直线=与函数()=,()=的图象分别交于点,,则当达到最小值时的值为( ) ..已知函数()=-+有零点,则的取值范围是..已知函数()=+(>).若当∈(,+∞)时,()≥恒成立,则实数的取值范围是..已知函数()=(-).()求()的单调区间;()求()在区间[,]上的最小值.。
课下能力提升(十)[学业水平达标练]题组1 求简单函数的定积分 1.⎠⎛02(x -1)d x 等于( )A .-1B .1C .0D .2 2.⎠⎛01(e x +2x)d x 等于( )A .1B .e -1C .eD .e +1A .πB .2C .π-2D .π+2题组2 求分段函数的定积分5.设f(x)=⎩⎪⎨⎪⎧x 2,0≤x ≤1,2-x ,1<x ≤2,则⎠⎛02f(x)d x 等于( )A.34B.45C.56 D .不存在 6.计算下列定积分: (1)⎠⎛25|x -3|d x ;题组3 根据定积分求参数7.若⎠⎛0k (2x -3x 2)d x =0,则k 等于( )A .0B .1C .0或1D .不确定8.设f (x)=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,若f(f(1))=1,则a =________.9.已知2≤⎠⎛12(kx +1)d x ≤4,则实数k 的取值范围为________.10.已知f(x)是二次函数,其图象过点(1,0),且f ′(0)=2,⎠⎛01f(x)d x =0,求f(x)的解析式.[能力提升综合练]1.已知⎠⎛02f(x)d x =3,则⎠⎛02[f(x)+6]d x =( )A .9B .12C .15D .18 2.若函数f(x)=x m +nx的导函数是f ′(x)=2x +1,则⎠⎛12f (-x )d x =( ) A .56 B .12 C .23 D .163.若y =⎠⎛0x (sin t +cos t·sin t)d t ,则y 的最大值是( )A .1B .2C .-1D .04.若f(x)=x 2+2⎠⎛01f(x)d x ,则⎠⎛01f(x)d x 等于( )A .-1B .-13C .13D .1 5.⎠⎛02(4-2x)(4-3x 2)d x =________.7.计算下列定积分.8.已知f(x)=⎠⎛x -a (12t +4a)d t ,F(a)=⎠⎛01[f(x)+3a 2]d x ,求函数F(a)的最小值.答案题组1 求简单函数的定积分1.解析:选C ⎠⎛02(x -1)d x =⎝⎛⎭⎫12x 2-x |20=12×22-2=0.2.解析:选C ⎠⎛01(e x +2x)d x =(e x +x 2)10=(e 1+1)-e 0=e .3.解析:选D ∵(x +sin x)′=1+cos x ,4.答案:23题组2 求分段函数的定积分5. 解析:选C ⎠⎛02f(x)d x =⎠⎛01x 2d x +⎠⎛12(2-x)d x=13+⎝⎛⎭⎫4-2-2+12=56. 6.解:(1)∵|x -3|=⎩⎪⎨⎪⎧3-x ,x ∈[2,3),x -3,x ∈[3,5],∴⎠⎛25|x-3|d x=⎠⎛23|x-3|d x+⎠⎛35|x-3|d x=⎠⎛23(3-x)d x+⎠⎛35(x-3)d x=⎝⎛⎭⎫9-12×9-6+2+⎝⎛⎭⎫252-15-92+9=52.=13+⎝⎛⎭⎫1-π2=43-π2.题组3根据定积分求参数7.解析:选B⎠⎛k(2x-3x2)d x=(x2-x3)︱k0=k2-k3=0,∴k=0(舍)或k=1.8.解析:显然f(1)=lg 1=0,f(0)=0+⎠⎛a3t2d t=a3,得a3=1,a=1.答案:19.解析:⎠⎛12(kx+1)d x=⎝⎛⎭⎫12kx2+x︱21=(2k+2)-⎝⎛⎭⎫12k+1=32k+1,所以2≤32k+1≤4,解得23≤k≤2.答案:⎣⎡⎦⎤23,210.解:设f(x)=ax2+bx+c(a≠0),∴a+b+c=0.∵f′(x)=2ax+b,①∴f′(0)=b=2.②⎠⎛1f(x)d x=⎠⎛1(ax2+bx+c)d x=⎝⎛⎭⎫13ax3+12bx2+cx|10=13a+12b+c=0.③由①②③得⎩⎪⎨⎪⎧a=-32,b=2,c=-12,∴f(x)=-32x 2+2x -12.[能力提升综合练]1.解析:选C ⎠⎛02[f(x)+6]d x =⎠⎛02f(x)d x +⎠⎛026d x =3+6x ︱20=3+12=15.2.解析:选A ∵f(x)=x m +nx 的导函数是f ′(x)=2x +1,∴f(x)=x 2+x ,∴⎠⎛12f(-x)d x =⎠⎛12(x 2-x)d x=⎝⎛⎭⎫13x 3-12x 2︱21=56.3.解析:选B y =⎠⎛0x (sin t +cos t·sin t)d t=⎠⎛0x sin t d t +⎠⎛0xsin 2t 2d t =-cos t ︱x 0-14cos 2t ︱x 0 =-cos x +1-14 (cos 2x -1)=-14cos 2x -cos x +54=-12cos 2x -cos x +32=-12(cos x +1)2+2≤2.4.解析:选B 因为⎠⎛01f(x)d x 是常数,所以f ′(x)=2x ,所以可设f(x)=x 2+c(c 为常数),所以c =2⎠⎛01f(x)d x =2⎠⎛01(x 2+c)d x =2⎝⎛⎭⎫13x 3+cx |10,解得c =-23,⎠⎛01f(x)d x =⎠⎛01(x 2+c)d x =⎠⎛01⎝⎛⎭⎫x 2-23d x=⎝⎛⎭⎫13x 3-23x ︱10=-13. 5.解析:⎠⎛02(4-2x)(4-3x 2)d x =⎠⎛02(16-12x 2-8x +6x 3)d x =⎝⎛⎭⎫16x -4x 3-4x 2+32x 4︱20=8. 答案:86.=13-cos 1.答案:13-cos 17.解:(1)∵|2x+3|+|3-2x|=⎩⎪⎨⎪⎧-4x,x≤-32,6,-32<x<32,4x,x≥32.=(-2)×⎝⎛⎭⎫-322-(-2)×(-3)2+6×32-6×⎝⎛⎭⎫-32+2×32-2×⎝⎛⎭⎫322=45.(2)⎠⎛14⎝⎛⎭⎫2x-1xd x=⎠⎛142x d x-⎠⎛141xd x=⎝⎛⎭⎫16ln 2-2ln 2-(24-2)=14ln 2-2.8.。
课下能力提升(五)[学业水平达标练]题组1 函数与导函数图象间的关系1.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )2.若函数y =f ′(x )在区间(x 1,x 2)内是单调递减函数,则函数y =f (x )在区间(x 1,x 2)内的图象可以是( )3.如图所示的是函数y =f (x )的导函数y =f ′(x )的图象,则在[-2,5]上函数f (x )的单调递增区间为________.题组2 判断(证明)函数的单调性、求函数的单调区间 4.函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D . (2,+∞) 5.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)6.证明函数f (x )=sin x x 在⎝ ⎛⎭⎪⎫π2,π上单调递减.题组3 与参数有关的函数单调性问题7.函数f (x )=ax 3-x 在R 上为减函数,则( ) A .a ≤0 B .a <1 C .a <2 D .a ≤138.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.9.已知函数f (x )=12x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.[能力提升综合练]1.y =x ln x 在(0,5)上是( ) A .单调增函数 B .单调减函数C .在⎝ ⎛⎭⎪⎫0,1e 上减,在⎝ ⎛⎭⎪⎫1e ,5上增 D .在⎝ ⎛⎭⎪⎫0,1e 上增,在⎝ ⎛⎭⎪⎫1e ,5上减 2.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2) D .f (e)<f (3)<f (2)3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )5.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是________.6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.7.已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性.8.已知函数f (x )=ln x , g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.答案题组1 函数与导函数图象间的关系1. 解析:选A 由函数f (x )的导函数y =f ′(x )的图象自左至右是先减后增,可知函数y =f (x )图象的切线的斜率自左至右是先减小后增大.2. 解析:选B 选项A 中,f ′(x )>0且为常数函数;选项C 中,f ′(x )>0且f ′(x )在(x 1,x 2)内单调递增;选项D 中,f ′(x )>0且f ′(x )在(x 1,x 2)内先增后减.故选B.3. 解析:因为在(-1,2)和(4,5]上f ′(x )>0,所以f (x )在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]题组2 判断(证明)函数的单调性、求函数的单调区间4.解析:选D f ′(x )=(x -3)′e x+(x -3)(e x)′=e x(x -2).由f ′(x )>0得x >2,∴f (x )的单调递增区间是(2,+∞).5.解析:选B 函数y =12x 2-ln x 的定义域为(0,+∞),y ′=x -1x =(x -1)(x +1)x ,令y ′≤0,则可得0<x ≤1.6.证明:∵f (x )=sin xx,∴f ′(x )=(sin x )′x -sin x ·(x )′x 2=x cos x -sin x x2. 由于x ∈⎝ ⎛⎭⎪⎫π2,π,∴cos x <0,sin x >0,x cos x -sin x <0.故f ′(x )<0,∴f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减.题组3 与参数有关的函数单调性问题 7.解析:选A f ′(x )=3ax 2-1. ∵f (x )在R 上为减函数, ∴f ′(x )≤0在R 上恒成立. ∴a ≤0,经检验a =0符合题意.8.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69. 解:函数f (x )的定义域为(0,+∞),f ′(x )=x +a x,当a >0时,f ′(x )>0,函数f (x )只有单调递增区间为(0,+∞).当a <0时,由f ′(x )=x +ax >0,得x >-a ;由f ′(x )=x +a x<0,得0<x <-a , 所以当a <0时,函数f (x )的单调递增区间是(-a ,+∞),单调递减区间是(0,-a ).[能力提升综合练]1. 解析:选C ∵y ′=x ′·ln x +x ·(ln x )′=ln x +1, ∴当0<x <1e时,ln x <-1,即y ′<0.∴y 在⎝ ⎛⎭⎪⎫0,1e 上减.当1e <x <5时,ln x >-1,即y ′>0.∴y 在⎝ ⎛⎭⎪⎫1e ,5上增. 2.解析:选A 当x ∈(0,+∞)时,f ′(x )=12x +1x >0,所以f (x )在(0,+∞)上是增函数, 所以有f (2)<f (e)<f (3).3. 解析:选D 对于选项A ,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D ,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.解析:若函数y =-43x 3+bx 有三个单调区间,则y ′=-4x 2+b 有两个不相等的实数根,所以b >0.答案:(0,+∞)6.解析:函数f (x )的定义域为(0,+∞), f ′(x )=4x -1x =4x 2-1x.由f ′(x )> 0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,327. 解:f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.8.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x -12-1. 因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以 a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x16x=(7x -4)(x -4)16x.因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.。
课下能力提升(九)[学业水平达标练]题组1 求曲边梯形的面积1.在求直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积时,把区间[0,2]等分成n 个小区间,则第i 个小区间是( )A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1nC.⎣⎢⎡⎦⎥⎤i -n,2i n D.⎣⎢⎡⎦⎥⎤2i n,i +n2.对于由直线x =1,y =0和曲线y =x 3所围成的曲边梯形,把区间3等分,则曲边梯形面积的近似值(取每个区间的左端点)是( )A.19B.125C.127 D.1303.求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积.题组2 求变速直线运动的路程4.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( )A.13B.12C. 1D.325.若做变速直线运动的物体v (t )=t 2在0≤t ≤a 内经过的路程为9,求a 的值.题组3 定积分的计算及性质 6.下列等式不成立的是( )7.图中阴影部分的面积用定积分表示为( )A.⎠⎛012xd x B.⎠⎛01(2x-1)d xC .⎠⎛01(2x +1)d x D.⎠⎛01(1-2x )d x8.S 1=⎠⎛01x d x 与S 2=⎠⎛01x 2d x 的大小关系是( )A .S 1=S 2B . S 21=S 2C .S 1>S 2D .S 1<S 29.已知⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,则⎠⎛02(x 2+1)d x =________.10.用定积分的几何意义计算下列定积分:[能力提升综合练]1.若⎠⎛a b f(x)d x =1,⎠⎛a b g(x)d x =-3,则⎠⎛a b[2f(x)+g(x)]d x =( )A .2B .-3C .-1D .42.若f(x)为偶函数,且⎠⎛06f(x)d x =8,则等于( )A .0B .4C .8D .163.定积分⎠⎛13(-3)d x 等于( )A .-6B .6C .-3D .36.用定积分表示下列曲线围成的平面区域的面积. (1)y =|sin x|,y =0,x =2,x =5;答案题组1 求曲边梯形的面积1.解析:选C 将区间[0,2]等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n .2.解析:选A 将区间[0,1]三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为S =03·13+⎝ ⎛⎭⎪⎫133·13+⎝ ⎛⎭⎪⎫233·13=981=19.3.解:(1)分割将曲边梯形分割成n 个小曲边梯形,在区间[0,1]上等间隔地插入n -1个点,将区间[0,1]等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1, 记第i 个区间为⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ),其长度为Δx =i n -i -n=1n.把每个小曲边梯形的面积记为 ΔS 1,ΔS 2,…,ΔS n . (2)近似代替根据题意可得第i 个小曲边梯形的面积 ΔS i =⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫i -1n ·Δx=⎪⎪⎪⎪⎪⎪⎣⎢⎡⎦⎥⎤i -n ·⎝ ⎛⎭⎪⎫i -1n -1·1n=i -1n 2·⎝ ⎛⎭⎪⎫1-i -1n (i =1,2,…,n ).(3)求和把每个小曲边梯形近似地看作矩形,求出这n 个小矩形的面积的和S n =∑i =1n ⎪⎪⎪⎪⎪⎪f ⎝⎛⎭⎪⎫i -1n ·Δx=∑i =1ni -1n 2·⎝ ⎛⎭⎪⎫1-i -1n=16·⎝ ⎛⎭⎪⎫1-1n 2, 从而得到所求图形面积的近似值S ≈16·⎝ ⎛⎭⎪⎫1-1n 2.(4)取极限即直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积为16.题组2 求变速直线运动的路程4.解析:选B 曲线v (t )=t 与直线t =0,t =1,横轴围成的三角形面积S =12即为这段时间内物体所走的路程.5.解:将区间[0,a ]n 等分,记第i 个区间为a i -n,ai n(i =1,2,…,n ),此区间长为a n,用小矩形面积⎝ ⎛⎭⎪⎫ai n 2·a n 近似代替相应的小曲边梯形的面积,则∑i =1n⎝⎛⎭⎪⎫ai n 2·a n =a 3n 3·(12+22+…+n 2)=a 33⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n 近似地等于速度曲线v (t )=t 2与直线t =0,t =a ,t 轴围成的曲边梯形的面积.∴a33=9,解得a =3. 题组3 定积分的计算及性质6.解析:选C 利用定积分的性质可判断A ,B ,D 成立,C 不成立. 例如⎠⎛02x d x =2,⎠⎛022d x =4,⎠⎛022xd x =4,但⎠⎛022xd x ≠⎠⎛02xd x ·⎠⎛022d x .7.解析:选B 根据定积分的几何意义,阴影部分的面积为⎠⎛012x d x -⎠⎛011d x =⎠⎛01(2x -1)d x.8.解析:选C ⎠⎛01x d x 表示由直线x =0,x =1,y =x 及x 轴所围成的图形的面积,而⎠⎛01x 2d x 表示的是由曲线y =x 2与直线x =0,x =1及x 轴所围成的图形的面积,因为在x∈[0,1]内直线y =x 在曲线y =x 2的上方,所以S 1>S 2.9.解析:由定积分的性质可知⎠⎛02(x 2+1)d x =⎠⎛02x 2d x +⎠⎛021d x=⎠⎛01x 2d x +⎠⎛12x 2d x +2 =13+73+2=143. 答案:14310.而S =52×52=254,(2)令y =4-x 2+2,则y =4-x 2+2表示以(0,2)为圆心,2为半径的圆的上半圆,[能力提升综合练]1.解析:选C ⎠⎛a b [2f(x)+g(x)]d x =2⎠⎛a b f(x)d x +⎠⎛a bg(x)d x =2×1-3=-1.2.解析:选D ∵被积函数f(x)为偶函数,∴在y 轴两侧的函数图象对称,从而对应的曲边梯形面积相等. 3.解析:选A∵⎠⎛133d x 表示图中阴影部分的面积S =3×2=6,∴⎠⎛13(-3)d x =-⎠⎛133d x =-6.4.又y =sin x 与y =2x 都是奇函数,故所求定积分为0. 答案:05.解析:由y =4-x 2可知x 2+y 2=4(y≥0),其图象如图.等于圆心角为60°的弓形CD 的面积与矩形ABCD 的面积之和.S 弓形=12×π3×22-12×2×2sin π3=2π3- 3.S 矩形=AB·BC=2 3.答案:2π3+ 36.解:(1)曲线所围成的平面区域如图所示.设此面积为S ,(2)曲线所围成的平面区域如图所示.7.解:如图,。
课下能力提升(六)[学业水平达标练]题组1 求函数的极值1.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .-1和2C .-1D .-3 2.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值 D .极小值-27,无极大值3.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎪⎫-3,-12内单调递增;②函数y =f (x )在区间⎝ ⎛⎭⎪⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.其中正确的结论为________. 题组2 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( ) A .1,-3 B .1,3 C .-1,3 D .-1,-35.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <126.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.题组3 含参数的函数的极值问题7.设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.8.已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.[能力提升综合练]1.函数f (x )=-x 3+x 2+x -2的零点个数及分布情况为( ) A .一个零点,在⎝⎛⎭⎪⎫-∞,-13内 B .二个零点,分别在⎝⎛⎭⎪⎫-∞,-13,(0,+∞)内C .三个零点,分别在⎝ ⎛⎭⎪⎫-∞,-13,⎝ ⎛⎭⎪⎫-13,1,(1,+∞)内D .三个零点,分别在⎝⎛⎭⎪⎫-∞,-13,(0,1),(1,+∞)内 2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )·f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)3.若函数y =x 3-2ax +a 在(0,1)内有极小值没有极大值,则实数a 的取值范围是( ) A .(0,3) B .(-∞,3)C .(0,+∞) D.⎝ ⎛⎭⎪⎫0,324.设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点5.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =________. 6.已知函数f (x )=ax 3+bx 2+cx 的极大值为5,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则a =________,b =________,c =________.7.已知函数f (x )=e x(ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.答案题组1 求函数的极值1.解析:选C f ′(x )=-x 2+x +2=-(x +1)(x -2),则在区间(-∞,-1)和(2,+∞)上,f ′(x )<0,在区间(-1,2)上,f ′(x )>0,故当x =-1时,f (x )取极小值.2. 解析:选C 由y ′=3x 2-6x -9=0,得x =-1或x =3.当x <-1或x >3时,y ′>0;当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5;3∉(-2,2),故无极小值. 3.解析:由图象知,当x ∈(-∞,-2)时,f ′(x )<0, 所以f (x )在(-∞,-2)上为减函数,同理,f (x )在(2,4)上为减函数,在(-2,2)上是增函数,在(4,+∞)上为增函数, 所以可排除①和②,可选择③.由于函数在x =2的左侧递增,右侧递减, 所以当x =2时,函数有极大值;而在x =-12的左右两侧,函数的导数都是正数,故函数在x =-12的左右两侧均为增函数,所以x =-12不是函数的极值点.排除④和⑤.答案:③题组2 已知函数的极值求参数 4.解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3. 5.解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.解析:f ′(x )=3x 2+6ax +3(a +2), ∵函数f (x )既有极大值又有极小值, ∴方程f ′(x )=0有两个不相等的实根, ∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1. 答案:(-∞,-1)∪(2,+∞) 题组3 含参数的函数的极值问题7. 解:(1)因为f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x. 令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值,且f (1)=3.8. 解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax.(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1), 即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a ,又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.[能力提升综合练]1. 解析:选A 利用导数法易得函数在⎝ ⎛⎭⎪⎫-∞,-13内递减,在⎝ ⎛⎭⎪⎫-13,1内递增,在(1,+∞)内递减,而f ⎝ ⎛⎭⎪⎫-13=-5927<0,f (1)=-1<0,故函数图象与x 轴仅有一个交点,且交点横坐标在⎝⎛⎭⎪⎫-∞,-13内.2.解析:选D 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数在x =-2处取得极大值,在x =2处取得极小值.3.解析:选D f ′(x )=3x 2-2a , ∵f (x )在(0,1)内有极小值没有极大值,∴⎩⎪⎨⎪⎧f ′(0)<0,f ′(1)>0⇒⎩⎪⎨⎪⎧-2a <0,3-2a >0.即0<a <32.4. 解析:选D 取函数f (x )=x 3-x ,则x =-33为f (x )的极大值点,但f (3)>f ⎝ ⎛⎭⎪⎫-33,排除A ;取函数f (x )=-(x -1)2,则x =1是f (x )的极大值点,但-1不是f (-x )的极小值点,排除B ;-f (x )=(x -1)2,-1不是-f (x )的极小值点,排除C.故选D.5.解析:设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.答案:-2或2 6. 解析:由题图得依题意,得⎩⎪⎨⎪⎧f (1)=5,f ′(1)=0,f ′(2)=0.即⎩⎪⎨⎪⎧a +b +c =5,3a +2b +c =0,12a +4b +c =0.解得a =2,b =-9,c =12. 答案:2 -9 127. 解:(1)f ′(x )=e x(ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8,从而a =4,b =4. (2)由(1)知,f (x )=4e x(x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎪⎫e x-12.令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2). 8.解:f ′(x )=3x 2-6x ,函数f (x )的定义域为R , 由f ′(x )=0得x =0或x =2.当x 变化时,f ′(x )与f (x )的变化情况如下表:因此,函数在x =0处有极大值,极大值为f (0)=-a ; 在x =2处有极小值,极小值为f (2)=-4-a .函数y =f (x )恰有一个零点即y =f (x )的图象与x 轴只有一个交点(如图),所以⎩⎪⎨⎪⎧f (0)>0,f (2)>0或⎩⎪⎨⎪⎧f (0)<0,f (2)<0, 即⎩⎪⎨⎪⎧-a >0,-4-a >0或⎩⎪⎨⎪⎧-a <0,-4-a <0,解得a <-4或a >0,所以当a >0或a <-4时,函数f (x )恰有一个零点.。
1.导数的几何意义:函数y =f (x )在点x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率.2.导数的几何意义的应用:利用导数的几何意义可以求出曲线上任意一点处的切线方程y -y 0=f ′(x 0)(x -x 0),明确“过点P (x 0,y 0)的曲线y =f (x )的切线方程”与“在点P (x 0,y 0)处的曲线y =f (x )的切线方程”的异同点.3.围绕着切点有三个等量关系:切点(x 0,y 0),则k =f ′(x 0),y 0=f (x 0),(x 0,y 0)满足切线方程,在求解参数问题中经常用到.[典例1] 已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)∵f ′(x )=(x 3+x -16)′=3x 2+1,∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)法一:设切点为(x 0,y 0), 则直线l 的斜率为f ′(x 0)=3x 20+1, ∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16. 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16.整理得,x 30=-8,∴x 0=-2. ∴y 0=(-2)3+(-2)-16=-26. k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). 法二:设直线l 的方程为y =kx ,切点为(x 0,y 0), 则k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1. 解得,x 0=-2,∴y 0=(-2)3+(-2)-16=-26. k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4. 设切点坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, ∴x 0=±1.∴⎩⎪⎨⎪⎧ x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18.即切点为(1,-14)或(-1,-18).切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14. [对点训练]1.设函数f (x )=4x 2-ln x +2,求曲线y =f (x )在点(1,f (1))处的切线方程. 解:f ′(x )=8x -1x.所以在点(1,f (1))处切线的斜率k =f ′(1)=7, 又f (1)=4+2=6,所以切点的坐标为(1,6).所以切线的方程为y -6=7(x -1),即7x -y -1=0.借助导数研究函数的单调性,尤其是研究含有ln x ,e x ,-x 3等线性函数(或复合函数)的单调性,是近几年高考的一个重点.其特点是导数f ′(x )的符号一般由二次函数来确定;经常同一元二次方程、一元二次不等式结合,融分类讨论、数形结合于一体.[典例2] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性. 解:(1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞). 此时f ′(x )=2(x +1)2.可得f ′(1)=12,又f (1)=0, 所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0. (2)函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a ,由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,函数f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,上单调递增.[典例3] 若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.解:函数f (x )的导数f ′(x )=x 2-ax +a -1. 令f ′(x )=0,解得x =1或x =a -1.当a -1≤1,即a ≤2时,函数f (x )在(1,+∞)上为增函数,不合题意.当a -1>1,即a >2时,函数f (x )在(-∞,1)上为增函数,在(1,a -1)上为减函数,在(a -1,+∞)上为增函数.依题意当x ∈(1,4)时,f ′(x )<0, 当x ∈(6,+∞)时,f ′(x )>0. 故4≤a -1≤6,即5≤a ≤7. 因此a 的取值范围是[5,7]. [对点训练]2.已知函数f (x )=x e kx (k ≠0),求f (x )的单调区间. 解:f ′(x )=(1+kx )e kx ,若k >0,则由f ′(x )>0得1+kx >0,x >-1k ;由f ′(x )<0得x <-1k.∴k >0时,f (x )的单调递增区间为⎝⎛⎭⎫-1k ,+∞,递减区间为⎝⎛⎭⎫-∞,-1k . 若k <0,则由f ′(x )>0得1+kx >0,x <-1k ;由f ′(x )<0得x >-1k .∴k <0时,f (x )的单调递增区间为⎝⎛⎭⎫-∞,-1k ,递减区间为⎝⎛⎭⎫-1k ,+∞. 3.若a ≥-1,求函数f (x )=ax -(a +1)ln(x +1)的单调区间. 解:由已知得函数f (x )的定义域为(-1,+∞),且f ′(x )=ax -1x +1(a ≥-1), (1)当-1≤a ≤0时,f ′(x )<0,函数f (x )在(-1,+∞)上单调递减; (2)当a >0时,由f ′(x )=0,解得x =1a .f ′(x ),f (x )随x 的变化情况如下表:从上表可知,当x ∈⎝⎛⎭⎫-1,1a 时,f ′(x )<0,函数f (x )在⎝⎛⎭⎫-1,1a 上单调递减.当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )>0,函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增. 综上所述,当-1≤a ≤0时,函数f (x )在(-1,+∞)上单调递减.当a >0时,函数f (x )在⎝⎛⎭⎫-1,1a 上单调递减,函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增.1.极值和最值是两个迥然不同的概念,前者是函数的“局部”性质,而后者是函数的“整体”性质.另函数有极值未必有最值,反之亦然.2.判断函数“极值”是否存在时,务必把握以下原则: (1)确定函数f (x )的定义域. (2)解方程f ′(x )=0的根.(3)检验f ′(x )=0的根的两侧f ′(x )的符号: 若左正右负,则f (x )在此根处取得极大值. 若左负右正,则f (x )在此根处取得极小值.即导数的零点未必是极值点,这一点是解题时的主要失分点,学习时务必引起注意. 3.求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤: (1)求f (x )在(a ,b )内的极值.(2)将(1)求得的极值与f (a ),f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.[典例4] 已知函数f (x )=x 3-ax 2+3x ,且x =3是f (x )的极值点. (1)求实数a 的值;(2)求f (x )在x ∈[1,5]上的最小值和最大值. 解:(1)f ′(x )=3x 2-2ax +3. f ′(3)=0,即27-6a +3=0, ∴a =5.(2)f (x )=x 3-5x 2+3x .令f ′(x )=3x 2-10x +3=0,解得x =3或x =13(舍去).当x 变化时,f ′(x )、f (x )的变化情况如下表:因此,当x =3时,f (x )在区间[1,5]上有最小值为f (3)=-9; 当x =5时,f (x )在区间[1,5]上有最大值是f (5)=15. [典例5] 已知函数f (x )=x 2+ax -ln x ,a ∈R .(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若函数f (x )在[1,2]上是减函数,求实数a 的取值范围;(3)令g (x )=f (x )-x 2,是否存在实数a ,当x ∈(0,e](e 是自然对数的底数)时,函数g (x )的最小值是3,若存在,求出a 的值;若不存在,说明理由.解:(1)当a =0时,曲线f (x )=x 2-ln x ,所以f ′(x )=2x -1x ⇒f ′(1)=1,f (1)=1.所以曲线y =f (x )在点(1,f (1))处的切线方程为x-y =0.(2)因为函数在[1,2]上是减函数,所以f ′(x )=2x +a -1x =2x 2+ax -1x≤0在[1,2]上恒成立,令h (x )=2x 2+ax -1,有⎩⎪⎨⎪⎧h (1)≤0,h (2)≤0, 得⎩⎪⎨⎪⎧a ≤-1,a ≤-72,得a ≤-72. 即实数a 的取值范围为⎝⎛⎦⎤-∞,-72. (3)假设存在实数a ,使g (x )=ax -ln x (x ∈(0,e])有最小值3,g ′(x )=a -1x =ax -1x .①当a ≤0时,g ′(x )<0,所以g (x )在(0,e]上单调递减,g (x )min =g (e)=a e -1=3,a =4e (舍去).②当1a ≥e 时,g ′(x )≤0在(0,e]上恒成立,所以g (x )在(0,e]上单调递减. g (x )min =g (e)=a e -1=3,a =4e(舍去).③当0<1a <e 时,令g ′(x )<0⇒0<x <1a ,所以g (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎦⎤1a ,e 上单调递增.所以g (x )min =g ⎝⎛⎫1a =1+ln a =3,a =e 2,满足条件. 综上,存在实数a =e 2,使得当x ∈(0,e]时,g (x )有最小值3. [对点训练]4.设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解:对f (x )求导得f ′(x )=e x 1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x =32,或x =12.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax+1≥0在R 上恒成立.因此Δ=4a 2-4a =4a (a -1)≤0,又由a >0,得0<a ≤1.即a 的取值范围为(0,1].5.已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内x =-1时取极小值,x =23时取极大值.(1)求曲线y =f (x )在x =-2处的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值. 解:(1)f ′(x )=-3x 2+2ax +b ,又x =-1,x =23分别对应函数的极小值,极大值,所以-1,23为方程-3x 2+2ax +b =0的两个根.即23a =-1+23,-b 3=(-1)×23. 于是a =-12,b =2,则f (x )=-x 3-12x 2+2x .x =-2时,f (-2)=2,即切点为(-2,2).又切线斜率为k =f ′(-2)=-8, 所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.则f (x )在[-2,1]上的最大值为2,最小值为-32.从近几年高考题看,利用导数证明不等式这一知识点常考到,一般出现在高考题解答题中.利用导数解决不等式问题(如:证明不等式,比较大小等),其实质就是利用求导数的方法研究函数的单调性,而证明不等式(或比较大小)常与函数最值问题有关.因此,解决该类问题通常是构造一个函数,然后考查这个函数的单调性,结合给定的区间和函数在该区间端点的函数值使问题得以求解.其实质是这样的:要证不等式f (x )>g (x ),则构造函数φ(x )=f (x )-g (x ),只需证φ(x )>0即可,由此转化成求φ(x )最小值问题,借助于导数解决.[典例6] 已知函数f (x )=x 2e x -1-13x 3-x 2.(1)讨论函数f (x )的单调性;(2)设g (x )=23x 3-x 2,求证:对任意实数x ,都有f (x )≥g (x ).解:(1)f ′(x )=x (x +2)(e x -1-1),由f ′(x )=0得x 1=-2,x 2=0,x 3=1. 当-2<x <0或x >1时,f ′(x )>0; 当x <-2或0<x <1时,f ′(x )<0,所以函数f (x )在(-2,0)和(1,+∞)上是增函数,在(-∞,-2)和(0,1)上是减函数.(2)证明:f (x )-g (x )=x 2e x -1-x 3=x 2(e x -1-x ).设h (x )=e x -1-x ,h ′(x )=e x -1-1, 由h ′(x )=0得x =1,则当x <1时,h ′(x )<0,即函数h (x )在(-∞,1)上单调递减; 当x >1时,h ′(x )>0,即函数h (x )在(1,+∞)上单调递增. 因此,当x =1时,h (x )取最小值h (1)=0.即对任意实数x 都有h (x )≥0,又x 2≥0,所以f (x )-g (x )≥0, 故对任意实数x ,恒有f (x )≥g (x ). [对点训练]6.证明不等式ln x >2(x -1)x +1,其中x >1.证明:设f (x )=ln x -2(x -1)x +1(x >1),则f ′(x )=1x -4(x +1)2=(x -1)2x (x +1)2.∵x >1,∴f ′(x )>0,即f (x )在(1,+∞)内为单调递增函数. 又∵f (1)=0,∴当x >1时,f (x )>f (1)=0, 即ln x -2(x -1)x +1>0,∴ln x >2(x -1)x +1.解决恒成立问题的方法:(1)若关于x 的不等式f (x )≤m 在区间D 上恒成立,则转化为f (x )max ≤m . (2)若关于x 的不等式f (x )≥m 在区间D 上恒成立,则转化为f (x )min ≥m . (3)导数是解决函数f (x )的最大值或最小值问题的有力工具. [典例7] 已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求a 的取值范围; (2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.解:(1)由题意得g ′(x )=f ′(x )+a =ln x +a +1.∵函数g (x )在区间[e 2,+∞)上为增函数, ∴当x ∈[e 2,+∞)时,g ′(x )≥0,即ln x +a +1≥0在[e 2,+∞)上恒成立. ∴a ≥-1-ln x .又当x ∈[e 2,+∞)时,ln x ∈[2,+∞). ∴-1-ln x ∈(-∞,-3],∴a ≥-3,即a 的取值范围为[-3,+∞). (2)由题知,2f (x )≥-x 2+mx -3, 即mx ≤2x ·ln x +x 2+3. 又x >0,∴m ≤2x ·ln x +x 2+3x .令h (x )=2x ·ln x +x 2+3x,h ′(x )=(2x ln x +x 2+3)′·x -(2x ln x +x 2+3)·x ′x 2=(2ln x +2+2x )x -(2x ln x +x 2+3)x 2=2x +x 2-3x 2,令h ′(x )=0.解得x =1,或x =-3(舍).当x ∈(0,1)时,h ′(x )<0,函数h (x )在(0,1)上单调递减,当x ∈(1,+∞)时,h ′(x )>0,函数h (x )在(1,+∞)上单调递增.∴h (x )min =h (1)=4, 即m 的最大值为4. [对点训练]7.已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )有极值,求b 的取值范围;(2)若f (x )在x =1处取得极值,当x ∈[-1,2]时,则f (x )<c 2恒成立,求c 的取值范围; (3)若f (x )在x =1处取得极值,求证:对[-1,2]内的任意两个值x 1,x 2,都有|f (x 1)-f (x 2)|≤72.解:(1)f ′(x )=3x 2-x +b ,令f ′(x )=0, 由Δ>0得1-12b >0,解得b <112.即b 的取值范围为⎝⎛⎭⎫-∞,112. (2)∵f (x )在x =1处取得极值,∴f ′(1)=0,∴3-1+b =0,得b =-2. 令f ′(x )=0,得x =-23或x =1,f ⎝⎛⎭⎫-23=2227+c ,f (1)=-32+c . 又f (-1)=12+c ,f (2)=2+c .∴f (x )max =f (2)=2+c ,由f (x )<c 2在x ∈[-1,2]上恒成立,得2+c <c 2,即c 2-c -2>0.解得c >2或c <-1. 故所求c 的取值范围为(-∞,-1)∪(2,+∞). (3)证明:由(2)知f (x )max =2+c ,f (x )min =-32+c ,故对[-1,2]内的任意两个值x 1,x 2,都有|f (x 1)-f (x 2)|≤|f (x )min -f (x )max |=⎪⎪⎪⎪⎝⎛⎭⎫-32+c -(2+c )=72.讨论方程根的个数,研究函数图象与x 轴或某直线的交点个数、不等式恒成立问题的实质就是函数的单调性与函数极(最)值的应用.问题破解的方法是根据题目的要求,借助导数将函数的单调性与极(最)值列出,然后再借助单调性和极(最)值情况,画出函数图象的草图,数形结合求解.[典例8] 设函数f (x )=x 3-6x +5,x ∈R . (1)求f (x )的极值点;(2)若关于x 的方程f (x )=a 有3个不同实根,求实数a 的取值范围; (3)已知当x ∈(1,+∞)时,f (x )≥k (x -1)恒成立,求实数k 的取值范围. 解:(1)f ′(x )=3(x 2-2),令f ′(x )=0,得x 1=-2,x 2= 2.当x ∈(-∞,-2)∪(2,+∞)时,f ′(x )>0,当x ∈()-2,2时,f ′(x )<0, 因此x 1=-2,x 2=2分别为f (x )的极大值点、极小值点.(2)由(1)的分析可知y =f (x )图象的大致形状及走向如图所示.要使直线y =a 与y =f (x )的图象有3个不同交点需5-42=f (2)<a <f (-2)=5+4 2.则方程f (x )=a 有3个不同实根时,所求实数a 的取值范围为(5-42,5+42).(3)法一:f (x )≥k (x -1),即(x -1)(x 2+x -5)≥k (x -1),因为x >1,所以k ≤x 2+x -5在(1,+∞)上恒成立,令g (x )=x 2+x -5,由二次函数的性质得g (x )在(1,+∞)上是增函数, 所以g (x )>g (1)=-3,所以所求k 的取值范围是为(-∞,-3]. 法二:直线y =k (x -1)过定点(1,0)且f (1)=0, 曲线f (x )在点(1,0)处切线斜率f ′(1)=-3,由(2)中草图知要使x ∈(1,+∞)时,f (x )≥k (x -1)恒成立需k ≤-3.故实数k 的取值范围为(-∞,-3].[对点训练]8.设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明若f (x )有零点,则f (x )在区间(1,e)上仅有一个零点. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=x -k x =x 2-kx.因为k >0,所以令f ′(x )=0得x =k ,列表如下:减区间为当x =k 时,取得极小值f (k )=k -k ln k2.(2)当k ≤1,即0<k ≤1时,f (x )在(1,e)上单调递增, f (1)=12,f (e)=e 2-k 2=e -k 2>0,所以f (x )在区间(1,e)上没有零点.当1<k <e ,即1<k <e 时,f (x )在(1,k )上递减,在(k ,e)上递增,f (1)=12>0,f ()e =e -k 2>0,f ()k =k -k ln k 2=k (1-ln k )2>0,此时函数没有零点.当k ≥e ,即k ≥e 时,f (x )在()1,e 上单调递减,f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e)上仅有一个零点.综上,若f (x )有零点,则f (x )在区间(1,e)上仅有一个零点.解决优化问题的步骤:(1)首先要分析问题中各个数量之间的关系,建立适当的函数模型,并确定函数的定义域.(2)其次要通过研究相应函数的性质,如单调性、极值与最值,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.(3)最后验证数学问题的解是否满足实际意义.[典例9] 如图,四边形ABCD 是一块边长为4 km 的正方形地域,地域内有一条河流MD ,其经过的路线是以AB 中点M 为顶点且开口向右的抛物线的一部分(河流宽度忽略不计).某公司准备投资建一个大型矩形游乐园PQCN ,试求游乐园的最大面积.解:如图,以M 点为原点,AB 所在直线为y 轴建立直角坐标系,则D (4,2).设抛物线方程为y 2=2px . ∵点D 在抛物线上, ∴22=8p .解得p =12.∴曲线MD 的方程为y 2=x (0≤x ≤4,0≤y ≤2). 设P (y 2,y )(0≤y ≤2)是曲线MD 上任一点, 则|PQ |=2+y ,|PN |=4-y 2. ∴矩形游乐园面积为S =|PQ |·|PN |=(2+y )(4-y 2)=8-y 3-2y 2+4y . 求导得,S ′=-3y 2-4y +4,令S ′=0, 得3y 2+4y -4=0,解得y =23或y =-2(舍).当y ∈⎝⎛⎭⎫0,23时,S ′>0,函数为增函数; 当y ∈⎝⎛⎭⎫23,2时,S ′<0,函数为减函数. ∴当y =23时,S 有最大值.这时|PQ |=2+y =2+23=83,|PN |=4-y 2=4-⎝⎛⎭⎫232=329.∴游乐园的最大面积为S max =83×329=25627(km 2).[对点训练]9.某地建一座桥,两端的桥墩已建好,这两端桥墩相距m 米.余下工程只需建两端桥墩之间的桥面和桥墩,经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?解:(1)设需新建n 个桥墩,则(n +1)x =m ,即n =mx -1,所以y =f (x )=256n +(n +1)(2+x )x=256⎝⎛⎭⎫m x -1+m x (2+x )x =256mx+m x +2m -256(0<x ≤m ). (2)由(1)知,f ′(x )=-256m x 2+12mx -12=m 2x 2(x 32-512). 令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数. 所以f (x )在x =64处取得最小值, 此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.由定积分求曲边梯形面积的方法步骤:(1)画出函数的图象,明确平面图形的形状. (2)通过解方程组,求出曲线交点的坐标.(3)确定积分区间与被积函数,转化为定积分计算.(4)对于复杂的平面图形,常常通过“割补法”求各部分的面积之和. [典例10] 求由曲线y 2=x ,y =x 3所围图形的面积S .解:作出曲线y 2=x ,y =x 3的草图,如图所示,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y 2=x ,y =x 3得交点的横坐标为x =0及x =1. 因此,所求图形的面积为S =⎠⎛01x d x -⎠⎛01x 3d x =23x 32|10-14x 4|10=512.[对点训练]10.试求由抛物线y =x 2+1与直线y =-x +7以及x 轴、y 轴所围成图形的面积.解:画出图形(如图).解方程组⎩⎪⎨⎪⎧y =x 2+1,y =-x +7得⎩⎪⎨⎪⎧x =2,y =5,即抛物线与直线相交于点(2,5).于是所求面积为S =⎠⎛02(x 2+1)d x +⎠⎛27(7-x)d x =⎝⎛⎭⎫13x 3+x |20+⎝⎛⎭⎫7x -12x 2|72=143+252=1036.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f(x)=ln xx 2,则f ′(e )=( )A .1e 3B .1e 2C .-1e 2D .-1e3解析:选D ∵f ′(x)=x 2x -2x ln x x 4=1-2ln xx 3, ∴f ′(e )=1-2ln e e 3=-1e3. 2.若函数f(x)=13x 3-f ′(1)·x 2-x ,则f ′(1)的值为( )A .0B .2C .1D .-1解析:选A ∵f(x)=13x 3-f ′(1)·x 2-x ,∴f ′(x)=x 2-2f ′(1)·x -1,∴f ′(1)=1-2f ′(1)-1,∴f ′(1)=0.3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2 解析:选A ∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2, ∴k =y ′|x =-1=2(-1+2)2=2,∴切线方程为:y +1=2(x +1),即y =2x +1. 4.已知对任意实数x ,有f(-x)=-f(x),g(-x)=g(x).且x>0时,f ′(x)>0,g ′(x)>0,则x<0时( )A .f ′(x)>0,g ′(x)>0B .f ′(x)>0,g ′(x)<0C .f ′(x)<0,g ′(x)>0D .f ′(x)<0,g ′(x)<0解析:选B f(x)为奇函数且x>0时单调递增,所以x<0时单调递增,f ′(x)>0; g(x)为偶函数且x>0时单调递增,所以x<0时单调递减,g ′(x)<0.A .13B .23C .23 D .-236.若f(x)=-12x 2+b ln (x +2)在(-1,+∞)上是减函数,则实数b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 解析:选C f ′(x)=-x +b x +2. ∵f(x)在(-1,+∞)上是减函数,∴f ′(x)=-x +bx +2≤0在(-1,+∞)上恒成立,∴b ≤x(x +2)在(-1,+∞)上恒成立. 又∵x(x +2)=(x +1)2-1>-1,∴b ≤-1.7.已知函数f(x)=x(ln x -ax)有两个极值点,则实数a 的取值范围是( ) A .(-∞,0) B .⎝⎛⎭⎫0,12 C .(0,1) D .(0,+∞)解析:选B 由题知,x>0,f ′(x)=ln x +1-2ax ,由于函数f(x)有两个极值点,则f ′(x)=0有两个不等的正根,即函数y =ln x +1与y =2ax 的图象有两个不同的交点(x>0),则a>0.设函数y =ln x +1上任一点(x 0,1+ln x 0)处的切线为l ,则k l =y ′|x =x 0=1x 0,当l 过坐标原点时,1x 0=1+ln x 0x 0⇒x 0=1,令2a =1⇒a =12,结合图象知0<a<12.8.方程2x 3-6x 2+7=0在(0,2)内根的个数为( ) A .0 B .1 C .2 D .3解析:选B 设f(x)=2x 3-6x 2+7, 则f ′(x)=6x 2-12x =6x(x -2). ∵x ∈(0,2),∴f ′(x)<0.∴f(x)在(0,2)上递减,又f(0)=7,f(2)=-1, ∴f(x)在(0,2)上有且只有一个零点,即方程2x 3-6x 2+7=0在(0,2)内只有一个根.9.曲线y =x 2-1与x 轴围成图形的面积等于( ) A .13 B .23 C .1 D .43解析:选D 函数y =x 2-1与x 轴的交点为(-1,0),(1,0),且函数图象关于y 轴对称,故所求面积为S =2⎠⎛01(1-x 2)d x =2⎝⎛⎭⎫x -13x 3︱10=2×23=43. 10.若函数f(x)在R 上可导,且f (x )>f ′(x ),则当a >b 时,下列不等式成立的是( )A .e a f (a )>e b f (b )B .e b f (a )>e a f (b )C .e b f (b )>e a f (a )D .e a f (b )>e b f (a ) 解析:选D ∵⎝⎛⎭⎫f (x )e x ′=e xf ′(x )-e xf (x )(e x )2=e x [f ′(x )-f (x )](e x )2<0,∴y =f (x )e x 单调递减,又a >b ,∴f (a )e a <f (b )e b, ∴e a f (b )>e b f (a ).11.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 当x >0时,令F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,∴当x >0时,F (x )=f (x )x为减函数. ∵f (x )为奇函数,且由f (-1)=0,得f (1)=0,故F (1)=0. 在区间(0,1)上,F (x )>0;在(1,+∞)上,F (x )<0. 即当0<x <1时,f (x )>0;当x >1时,f (x )<0.又f (x )为奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上可知,f (x )>0的解集为(-∞,-1)∪(0,1).12.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝⎛⎭⎫1k <1kB .f ⎝⎛⎭⎫1k >1k -1C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>k k -1, 解析:选C 构造函数F (x )=f (x )-kx , 则F ′(x )=f ′(x )-k >0,∴函数F (x )在R 上为单调递增函数.∵1k -1>0,∴F ⎝⎛⎭⎫1k -1>F (0). ∵F (0)=f (0)=-1,∴f ⎝⎛⎭⎫1k -1-kk -1>-1, 即f ⎝⎛⎭⎫1k -1>k k -1-1=1k -1,∴f ⎝⎛⎭⎫1k -1>1k -1,故C 错误.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.解析:由曲线在点(1,a )处的切线平行于x 轴得切线的斜率为0,由y ′=2ax -1x 及导数的几何意义得y ′|x =1=2a -1=0,解得a =12.答案:1214.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t (v 单位:m/s ,t 单位:s),则列车刹车后至停车时的位移为________.解析:停车时v (t )=0,则27-0.9t =0,∴t =30 s ,s =∫300v (t )d t =∫300(27-0.9t )d t=(27t -0.45t 2)|300=405(m).答案:405 m15.已知a <0,函数f (x )=ax 3+12aln x ,且f ′(1)的最小值是-12,则实数a 的值为________.解析:f ′(x )=3ax 2+12ax ,则f ′(1)=3a +12a .∵a <0,∴f ′(1)=-⎣⎡⎦⎤(-3a )+21-a≤-2(-3a )×12-a=-12. 当且仅当-3a =12-a,即a =-2时,取“=”.答案:-216.函数y =x 3+ax 2+bx +a 2在x =1处有极值10,则a =________. 解析:∵y ′=3x 2+2ax +b ,∴⎩⎪⎨⎪⎧ 1+a +b +a 2=10,3+2a +b =0⇒⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,y ′=3x 2-6x +3=3(x -1)2≥0,函数无极值,故a =4,b =-11. 答案:4三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)设定义在(0,+∞)上的函数f (x )=ax +1ax +b (a >0).(1)求f (x )的最小值;(2)若曲线y =f (x )在点(1,f (1))处的切线方程为y =32x ,求a ,b 的值.解:(1)法一:由题设和均值不等式可知,f (x )=ax +1ax +b ≥2+b ,当且仅当ax =1时等号成立, 即当x =1a时,f (x )取最小值为2+b .法二:f (x )的导数f ′(x )=a -1ax 2=a 2x 2-1ax 2,当x >1a 时,f ′(x )>0,f (x )在⎝⎛⎭⎫1a ,+∞上单调递增; 当0<x <1a 时,f ′(x )<0,f (x )在⎝⎛⎭⎫0,1a 上单调递减. 所以当x =1a时,f (x )取最小值为2+b .(2)由题设知,f ′(x )=a -1ax 2,f ′(1)=a -1a =32,解得a =2或a =-12(不合题意,舍去).将a =2代入f (1)=a +1a +b =32,解得b =-1.所以a =2,b =-1.18.(本小题12分)已知a ∈R ,函数f (x )=(-x 2+ax )e x . (1)当a =2时,求函数f (x )的单调区间;(2)若函数f (x )在(-1,1)上单调递增,求实数a 的取值范围. 解:(1)当a =2时,f (x )=(-x 2+2x )e x ,f ′(x )=(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,注意到e x >0,所以-x 2+2>0,解得-2<x < 2. 所以,函数f (x )的单调递增区间为(-2,2).同理可得,函数f (x )的单调递减区间为(-∞,-2)和(2,+∞).(2)因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0在(-1,1)上恒成立.又f ′(x )=[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0,注意到e x >0,因此-x 2+(a -2)x +a ≥0在(-1,1)上恒成立,也就是a ≥x 2+2x x +1=x +1-1x +1在(-1,1)上恒成立.设y =x +1-1x +1,则y ′=1+1(x +1)2>0,即y =x +1-1x +1在(-1,1)上单调递增,则y <1+1-11+1=32,故a ≥32.即实数a 的取值范围为⎣⎡⎭⎫32,+∞. 19.(本小题12分)若函数f (x )=ax 2+2x -43ln x 在x =1处取得极值.(1)求a 的值;(2)求函数f (x )的单调区间及极值. 解:(1)f ′(x )=2ax +2-43x ,由f ′(1)=2a +23=0,得a =-13.(2)f (x )=-13x 2+2x -43ln x (x >0).f ′(x )=-23x +2-43x =-2(x -1)(x -2)3x .由f ′(x )=0,得x =1或x =2.①当f ′(x )>0时,1<x <2;②当f ′(x )<0时,0<x <1或x >2.因此f (x )的单调递增区间是(1,2),单调递减区间是(0,1),(2,+∞). 函数的极小值为f (1)=53,极大值为f (2)=83-43ln 2.20.(本小题12分)已知函数f (x )=ln xx .(1)判断函数f (x )的单调性;(2)若y =xf (x )+1x 的图象总在直线y =a 的上方,求实数a 的取值范围.解:(1)f ′(x )=1-ln xx 2.当0<x <e 时,f ′(x )>0,f (x )为增函数; 当x >e 时,f ′(x )<0,f (x )为减函数.(2)依题意得,不等式a <ln x +1x 对于x >0恒成立.令g (x )=ln x +1x ,则g ′(x )=1x -1x 2=1x ⎝⎛⎭⎫1-1x . 当x ∈(1,+∞)时,g ′(x )=1x ⎝⎛⎭⎫1-1x >0,则g (x )是(1,+∞)上的增函数; 当x ∈(0,1)时,g ′(x )<0,则g (x )是(0,1)上的减函数.所以g (x )的最小值是g (1)=1,从而a 的取值范围是(-∞,1).21.(本小题12分)已知函数f (x )=ln x -ax.(1)若f (x )存在最小值且最小值为2,求a 的值;(2)设g (x )=ln x -a ,若g (x )<x 2在(0,e]上恒成立,求a 的取值范围. 解:(1)f ′(x )=1x +a x 2=x +ax2(x >0),当a ≥0时,f ′(x )>0,f (x )在(0,+∞)上是增函数,f (x )不存在最小值;当a <0时,由f ′(x )=0得x =-a , 且0<x <-a 时,f ′(x )<0,x >-a 时,f ′(x )>0.所以x =-a 时,f (x )取得最小值, f (-a )=ln(-a )+1=2,解得a =-e. (2)g (x )<x 2即ln x -a <x 2,即a >ln x -x 2,故g (x )<x 2在(0,e]上恒成立,也就是a >ln x -x 2在(0,e]上恒成立. 设h (x )=ln x -x 2,则h ′(x )=1x -2x =1-2x 2x,由h ′(x )=0及0<x ≤e 得x =22. 当0<x <22时,h ′(x )>0,当22<x ≤e 时,h ′(x )<0,即h (x )在⎝⎛⎭⎫0,22上为增函数,在⎝⎛⎦⎤22,e 上为减函数,所以当x =22时,h (x )取得最大值为h ⎝⎛⎭⎫22=ln 22-12. 所以g (x )<x 2在(0,e]上恒成立时,a 的取值范围为⎝⎛⎭⎫ln22-12,+∞.22.(本小题12分)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x 33;(3)设实数k 使得f (x )>k ⎝⎛⎭⎫x +x33对x ∈(0,1)恒成立,求k 的最大值. 解:(1)因为f (x )=ln(1+x )-ln(1-x ), 所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明:令g (x )=f (x )-2⎝⎛⎭⎫x +x33, 则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1), 即当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x 33. (3)由(2)知,当k ≤2时,f (x )>k ⎝⎛⎭⎫x +x33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝⎛⎭⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-k +21-x 2.所以当0<x < 4k -2k 时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0, 4k -2k 上单调递减. 故当0<x < 4k -2k时,h (x )<h (0)=0, 即f (x )<k ⎝⎛⎭⎫x +x 33.所以当k >2时,f (x )>k ⎝⎛⎭⎫x +x 33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.。
课下能力提升(四)[学业水平达标练] 题组1 简单复合函数求导问题1.设函数f (x )=(1-2x 3)10,则f ′(1)等于( )A .0 B .60 C .-1 D .-602.函数f (x )=3x +cos 2x +a 2的导数为( )A .3x -2sin 2x +2a B .3x ln 3-sin 2x C .3x -2sin 2x D .3x ln 3-2sin 2x 3.求下列函数的导数.(1)y =ln(e x +x 2);(2)y =102x +3;(3)y =sin 4x +cos 4x .题组2 复合函数与导数运算法则的综合应用4.函数y =x 2cos 2x 的导数为( )A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2x D .y ′=2x cos 2x +2x 2sin 2x5.函数y =x ln(2x +5)的导数为( )A .ln(2x +5)-B .ln(2x +5)+x 2x +52x 2x +5C .2x ln(2x +5) D.x 2x +56.函数y =sin 2x cos 3x 的导数是________.7.已知f (x )=e πx sin πx ,求f ′(x )及f ′.(12)题组3 复合函数导数的综合问题8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( )A. B .2 C .3 D .05559.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-,其中M 0为t =0时铯137的含量.已知t 30t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克[能力提升综合练]1.函数y =(2 016-8x )3的导数y ′=( )A .3(2 016-8x )2 B .-24x C .-24(2 016-8x )2 D .24(2 016-8x 2)2.函数y =(e x +e -x )的导数是( )12A.(e x -e -x ) B.(e x +e -x )1212C .e x -e -x D .e x +e -x3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1 B .2 C .-1 D .-24.函数y =ln 在x =0处的导数为________.e x1+e x 5.设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________.6.f (x )=且f ′(1)=2,则a 的值为________.ax 2-17.求函数y =a sin +b cos 22x (a ,b 是实常数)的导数.x 38.求曲线y =e 2x ·cos 3x 在点(0,1)处的切线方程.答案题组1 简单复合函数求导问题1.解析:选B ∵f ′(x )=10·(1-2x 3)9·(-6x 2),∴f ′(1)=60.2.解析:选D f ′(x )=(3x )′+(cos 2x )′+(a 2)′=3x ln 3-2sin 2x +0=3x ln 3-2sin 2x .3.解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =·(e x +x 2)′=·(e x +2x )=.1u 1e x +x 2e x +2xe x +x 2(2)令u =2x +3,则y =10u ,∴y ′x =y ′u ·u ′x =10u ·ln 10·(2x +3)′=2×102x +3ln 10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-sin 22x =1-(1-cos 4x )1214=+cos 4x .3414所以y ′=′=-sin 4x .(34+14cos 4x)题组2 复合函数与导数运算法则的综合应用4.解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .5.解析:选B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ··(2x +5)′=ln(2x +5)+.12x +52x2x +56.解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x .答案:2cos 2x cos 3x -3sin 2x sin 3x 7.解:∵f (x )=e πx sin πx ,∴f ′(x )=πe πx sin πx +πe πx cos πx=πe πx (sin πx +cos πx ).f ′=πe =πe .(12)π2(sin π2+cos π2)π2题组3 复合函数导数的综合问题8.解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行.∵y ′=,22x -1∴y ′x =x 0==2,解得x 0=1,|22x 0-1∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d ==,|2-0+3|4+15即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是.59. 解析:选D M ′(t )=-ln 2×M 02-,130t30由M ′(30)=-ln 2×M 02-=-10 ln 2,1303030解得M 0=600,所以M (t )=600×2-,t30所以t =60时,铯137的含量为M (60)=600×2-=600×=150(太贝克).603014[能力提升综合练]1.解析:选C y ′=3(2 016-8x )2×(2 016-8x )′=3(2 016-8x )2×(-8)=-24(2 016-8x )2.2.解析:选A y ′=(e x +e -x )′=(e x -e -x ).12123.解析:选B 设切点坐标是(x 0,x 0+1),依题意有Error!由此得x 0+1=0,x 0=-1,a =2.4.解析:y =ln =ln e x -ln(1+e x )=x -ln(1+e x ),e x1+e x 则y ′=1-.当x =0时,y ′=1-=.e x 1+e x 11+112答案:125.解析:令y =f (x ),则曲线y =e ax 在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax ,所以f ′(0)=a e 0=a ,故a =2.答案:26.解析:∵f (x )=(ax 2-1),12∴f ′(x )=(ax 2-1)-(ax 2-1)′= .1212axax 2-1又f ′(1)=2,∴=2,a a -1∴a =2.答案:27.解:∵′=a cos ·′=cos ,(a sinx 3)x 3(x 3)a 3x3又(cos 22x )′=′(12+12cos 4x)=(-sin 4x )×4=-2sin 4x ,12∴y =a sin +b cos 22x 的导数为x3y ′=′+b (cos 22x )′=cos -2b sin 4x .(a sinx 3)a 3x 38.解:∵y ′=(e 2x ·cos 3x )′=(e 2x )′cos 3x +e 2x ·(cos 3x )′=e 2x ·(2x )′·cos 3x +e 2x (-sin 3x )·(3x )′=2e 2x ·cos 3x -3e 2x ·sin 3x ,∴y′x=0=2e0·cos 0-3e0·sin 0=2,|∴切线方程为y-1=2(x-0),即2x-y+1=0.。
课下能力提升(七)
[学业水平达标练]
题组1 求函数的最值
1.函数f (x )=2x -cos x 在(-∞,+∞)上( )
A .无最值
B .有极值
C .有最大值
D .有最小值
2.函数f (x )=x 2e x 在区间(-3,-1)上的最大值为( )
A .9e -3
B .4e -2
C .e -
1 D .4e
2 3.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.
4.已知函数f (x )=ln x x
. (1)求f (x )在点(1,0)处的切线方程;
(2)求函数f (x )在[1,t ]上的最大值.
题组2 由函数的最值确定参数的值
5.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92
,则m 等于( ) A .0 B .1
C .2 D.52
6.设f (x )=-13x 3+12x 2+2ax .当0<a <2时,f (x )在[1,4]上的最小值为-163
,求f (x )在该区间上的最大值.
题组3 与最值有关的恒成立问题
7.若对任意的x >0,恒有ln x ≤px -1(p >0),则p 的取值范围是( )
A .(0,1]
B .(1,+∞)
C .(0,1)
D .[1,+∞)
8.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ).
(1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值;
(2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围.
[能力提升综合练]
1.函数f (x )=13x 3-2x 2在区间[-1,5]上( )
A .有最大值0,无最小值
B .有最大值0,最小值-323
C .有最小值-323,无最大值
D .既无最大值也无最小值
2.函数f (x )=x ·2x ,则下列结论正确的是( )
A .当x =1ln 2时,f (x )取最大值
B .当x =1ln 2时,f (x )取最小值
C .当x =-1ln 2时,f (x )取最大值
D .当x =-1ln 2时,f (x )取最小值
3.对于R 上可导的任意函数f (x ),若满足x ≠1时(x -1)·f ′(x )>0,则必有(
) A .f (0)+f (2)>2f (1)
B .f (0)+f (2)<2f (1)
C .f (0)+f (2)≥2f (1)
D .f (0)+f (2)≤2f (1)
4.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小值时t 的值为( )
A .1 B.12
C.52
D.22
5.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________.
6.已知函数f (x )=2ln x +a x
2(a >0).若当x ∈(0,+∞)时,f (x )≥2恒成立,则实数a 的取值范围是________.
7.已知函数f (x )=(x -k )e x .
(1)求f (x )的单调区间;
(2)求f (x )在区间[0,1]上的最小值.
8.设函数f (x )=2ax -b x +ln x ,若f (x )在x =1,x =12
处取得极值, (1)求a 、b 的值;
(2)在⎣⎡⎦⎤14,1上存在x 0使得不等式f (x 0)-c ≤0成立,求c 的取值范围.
答案
题组1 求函数的最值
1. 解析:选A f ′(x )=2+sin x >0,∴f (x )在(-∞,+∞)上是增函数,∴f (x )在(-∞,+∞)上无最值.
2.解析:选B ∵f ′(x )=e x (x 2+2x ),令f ′(x )=0得x =-2或x =0(舍).
∴f (x )在(-3,-2)上递增;在(-2,-1)上递减.
∴f (x )在(-3,-1)上的最大值为f (-2)=4e -
2. 3.解析:令f ′(x )=3x 2-12=0,解得x =±2.
计算得f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,
所以M =24,m =-8,所以M -m =32.
答案:32
4. 解:f (x )的定义域为(0,+∞),
f (x )的导数f ′(x )=1-ln x x 2
. (1)f ′(1)=1,所以切线方程为y =x -1.
(2)令f ′(x )=1-ln x x 2
=0,解得x =e. 当x ∈(0,e)时,f ′(x )>0,f (x )单调递增,
当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减,
当1<t <e 时,f (x )在[1,t ]上单调递增,
f (x )max =f (t )=ln t t
, 当t ≥e 时,f (x )在[1,e]上单调递增,
在[e ,t ]上单调递减,f (x )max =f (e)=1e
, 综上,f (x )max =⎩
⎨⎧ln t t ,1<t <e ,1e ,t ≥e. 题组2 由函数的最值确定参数的值
5.解析:选C y ′=3x 2+3x =3x (x +1),
令y ′=0,得x =0或x =-1.
因为f (0)=m ,f (-1)=m +12
, 又f (1)=m +52,f (-2)=m -2,。