水力压裂技术
- 格式:ppt
- 大小:3.10 MB
- 文档页数:83
第五章 水力压裂技术§5—1 水力压裂力学地层中形成水力裂缝的过程与液体流动特性及岩石的力学性质有关。
水力造缝的本质是岩石在液体压力作用下的破裂与变形问题,因此造缝特性与岩石的受力及力学性质有关。
一.地应力场1.地应力场概念:地应力是由于岩石变形引起的介质内部单位面积上的作用力。
地应力场:是指地应力大小和方向在地层空间位置的分布。
2.地应力剖面概念地应力剖面是指研究地应力大小在纵向上的变化。
二.地应力的类型(1)原地应力:开发之前地应力原始大小。
(2)扰动应力:开发引起的地应力改变。
(3)构造应力:由构造运动在岩体中引起的应力。
(4)残余应力:除去外力后尚残存在岩石中的应力。
(5)重力应力:由上覆岩层的质量引起的地应力。
(6)热应力:由于地层温度发生变化在其内部引起的内应力增量。
(7)分层地应力:按地层分层给出不同的地应力。
(8)古地应力和现今地应力:某地质时期或重要地质事件前的地应力称古地应力。
目前存在或正在活动的称现今地应力。
石油工程关心的是现今地应力。
3.地应力测试1)长源距声波与密度测井方法该方法通过测井取得剖面上变化的岩石的纵波速度P υ和横波速度S υ,然后求出岩石泊松比ν的纵向变化,利用下式求出最小水平主应力σh ,而取得地应力剖面。
σh ()1P P ννσααν=-+- 4—12222212P S P S υυνυυ-=- 4—2 式中:σv —上覆层压力,通过密度测井得到。
P —地层压力;α—孔隙弹性系数,通过实验测的。
2)测试压裂方法(现场常用)测试压裂:是将不含砂的压裂液注入地层,造缝后停泵侧压力降落曲线,待曲线上出现拐点后测试结束,出现拐点时相应的压力即裂缝闭合压力,其大小与岩层中垂直于裂缝面的应力值相等,也即就是地层最小主应力。
如图4—1 所示。
上图中,产生人工裂缝后停泵,裂缝停止扩展处于临界闭合状态,闭合压力为P s 。
图4—1 水力压裂测试典型压力曲线结论:可以认为,裂缝临界闭合时,裂缝内的流体压力等于裂缝闭合的最小地应力。
水力压裂技术
水力压裂技术是一种将深层油气藏岩石的裂缝或孔隙扩展的一种技术,用于提高储层
的孔隙度和渗透率,以提高油气产量。
水力压裂技术最初发展于 20 世纪 50 年代,其原
理是利用高压水在岩石中形成微米级岩石裂缝,从而使石油和天然气易于向外渗出和流动。
水力压裂技术通常用于地层测试或发现新的油田,也可以派生出油气勘探、开采、输送、
储存等一系列相关技术和工艺。
水力压裂技术一般包括三个基本步骤:一是在目标层位灌注高压水,从而在岩石中形
成裂缝;二是通过注入操作助剂,增大灌注压力,进而拓宽并扩大已有的裂缝;三是通过
注入填料、压裂液以及砂颗粒等助剂,保持裂缝扩大的状态,防止岩体被关闭,持续改善
储层的渗透性。
水力压裂技术具有丰富的应用前景,可以有效提高油气储层的渗透性,从而提高产量。
它相对于其他技术来说有着较高的稳定性,可以有效提高油气藏的利用率,改善储层的渗
透性。
同时,水力压裂技术安全可控,利用广泛,可作为一种全新的技术手段来提高储层
的发掘率,在现代油气开采中发挥着不可替代的作用。
水力压裂工艺技术汇报人:目录•水力压裂工艺技术概述•水力压裂工艺技术流程•水力压裂工艺技术要点与注意事项•水力压裂工艺技术案例与实践•水力压裂工艺技术前景与展望01水力压裂工艺技术概述定义及工作原理水力压裂工艺技术是一种利用高压水流将岩石层压裂,以释放天然气或石油等资源的开采技术。
工作原理通过在地表钻井,将高压水流注入地下岩层,使岩层产生裂缝。
随后,将砂子或其他支撑剂注入裂缝,防止裂缝闭合,从而提高岩层渗透性,便于油气资源流向井口,实现开采。
技术革新随着技术的不断发展,20世纪中后期,水力压裂工艺技术逐渐成熟,并引入了水平钻井技术,提高了开采效率。
初始阶段水力压裂工艺技术在20世纪初开始应用于石油工业,当时技术尚未成熟,应用范围有限。
现代化阶段进入21世纪,水力压裂工艺技术进一步完善,开始采用更精确的定向钻井技术和高性能支撑剂,降低了环境污染,并提高了资源开采率。
技术发展历程水力压裂工艺技术是石油工业中最重要的开采技术之一,尤其适用于低渗透油藏的开采。
石油工业水力压裂工艺技术也广泛应用于天然气领域,通过压裂岩层提高天然气产能。
天然气工业随着非常规油气资源(如页岩气、致密油等)的开采价值日益凸显,水力压裂工艺技术成为实现这些资源商业化开采的关键技术。
非常规资源开采技术应用领域02水力压裂工艺技术流程在施工前,需要对目标地层进行详细的地质评估,包括地层厚度、岩性、孔隙度、渗透率等参数,以确定最佳的水力压裂方案。
地质评估准备水力压裂所需的设备,包括压裂泵、高压管线、喷嘴、砂子输送系统等,确保设备完好、可靠。
设备准备对井口进行清理,确保井口无杂物、无阻碍,为水力压裂施工提供安全的作业环境。
井口准备施工前准备通过压裂泵将大量清水注入地层,使地层压力升高,为后续的压裂创造条件。
注水当地层压力达到一定程度时,通过喷嘴将携带有砂子的高压水射入地层,使地层产生裂缝。
压裂随着高压水的不断注入,砂子被携带进入裂缝,支撑裂缝保持开启状态,提高地层的渗透性。
水力压裂技术分类水力压裂技术,又称水力压裂法或液压压裂法,是一种用于增强油气井产能的技术。
它通过注入高压液体,使岩石裂缝扩大并连接,从而增加油气井的渗透性和产能。
本文将从水力压裂技术的原理、应用领域、优缺点以及环境影响等方面进行详细介绍。
一、水力压裂技术的原理水力压裂技术利用高压水将岩石裂缝扩大并连接起来,以增加油气井的渗透性和产能。
具体的操作步骤包括:首先,通过钻井将管道和注水设备安装到油气井中;然后,注入高压液体(通常为水和一些化学添加剂)到井中;随着注水压力的升高,岩石裂缝开始扩大,形成通道;最后,注入的液体通过这些通道进入油气层,将其中的油气释放出来。
二、水力压裂技术的应用领域水力压裂技术主要应用于以下几个领域:1. 油气开采:水力压裂技术可以提高油气井的产能,增加油气的开采量。
特别是对于低渗透性油气层,水力压裂技术可以显著改善渗透性,提高开采效率。
2. 地热能开发:水力压裂技术也可以应用于地热能开发领域。
通过在地下注入高压水,可以扩大裂缝,提高地热井的渗透性,增加地热能的采集量。
3. 存储库容增加:水力压裂技术还可以应用于水库、储气库等储存设施的建设中。
通过扩大岩石裂缝,可以增加储存设施的库容,提高储存效率。
三、水力压裂技术的优缺点水力压裂技术具有以下优点:1. 提高产能:水力压裂技术可以显著增加油气井的产能,提高油气的开采效率。
2. 适用性广泛:水力压裂技术适用于各种类型的油气层,包括低渗透性油气层和页岩气层等。
3. 可控性强:水力压裂过程中的注入压力和液体组成可以根据实际情况进行调整,以达到最佳效果。
然而,水力压裂技术也存在一些缺点:1. 环境影响:水力压裂过程中会产生大量的废水和废液,其中可能含有有害物质。
如果处理不当,可能对地下水和环境造成污染。
2. 能源消耗:水力压裂需要消耗大量的水和能源,特别是在水资源短缺的地区,会对水资源和能源供应造成压力。
3. 地震风险:一些研究表明,水力压裂过程中产生的地下应力改变可能会导致地震活动的增加,增加地震风险。