小学奥数思维训练-分数计算与比较大小通用版
- 格式:docx
- 大小:415.82 KB
- 文档页数:20
第四章分数大小的比较知识要点分数大小的比较方法有很多,主要有通分、倒数比较、相减比较、相除比较、交叉相乘等。
通分:(1)统一分母,比较分子,分子越大分数越大。
(2)统一分子,比较分母,分母越小分数越大.倒数比较:倒数大的分数小于倒数小的分数。
相减比较:有两个分数ba与dc,若ba-dc>0,则ba>dc;若ba-dc<0,则ba<dc。
相除比较:分数ba与dc,若ba÷dc的商为真分数,则ba<dc;若商为假分数,则ba>dc。
交叉相乘:分数ba与dc,若bc>ad,则ba>dc。
除了以上几种方法,还有用“1”减法、公式法、化小数比较等等。
典例巧解例1 有五个分数23,58,1523,1017,1219,请按从小到大的顺序排列。
点拨此题若统一分母比较麻烦,而分子的最小公倍数很容易找出为60,故统一分子。
解23=6090,58=6096,1523=6092,1017=60102,1219=6095,因为60102<6096<6095<6092<6090,所以1017<58<1219<1523<23.例2 比较99999959999997和66666616666663的大小。
点拨一可利用求倒数的方法比较。
解99999959999997的倒数是99999979999995=1+29999995,66666616666663的倒数是66666636666661=1+26666661比较倒数右边的结果知1+26666661>1+29999995,所以66666636666661>99999979999995,即99999959999997>66666616666663。
点拨二由于这两个分数的分子和分母都很接近,且都相差2,可以找到一个标准数。
这两个分数的大小都比1略小,则可用“1”做减法.解99999959999997=1-29999997,66666616666663=1-26666663。
由于29999997<26666663,在被减数相同的情况下,减数越小,说明差越大,所以99999959999997>66666616666663。
1.8分数大小比较1.8.1母同看子法分母相同,分子大的分数比较大。
例如:1.8.2子同看母法分子相同,分母大的分数比较小。
例如:1.8.3与1比较法1.8.4半比法1.8.5等差比较法如果两个分数的分子分别比各自的分母小相同的数,分子、分母稍大的那个分数比较大。
例如:如果两个分数是假分数,而且分子、分母的差分别相同,那么,分母大的那个分数比较小。
1.8.6相减比较法如果一个分数的分子和分母都比另一个分数的分子和分母大,可把分子的差做分子、分母的差做分母,得到一个新的分数。
若新分数比原来分数中的任意一个分数大,则原来的两个分数中分母大的那个分数较大。
例如:1.8.7同加比较法如果一个真分数的分子和分母同时加上一个数(0除外),正好和另一个分数相等,那么,另一个分数比较小。
例如:如果一个假分数的分子和分母同时加上一个数(0除外),正好和另一个分数相等,那么,另一个分数比较小。
例如:1.8.8同减比较法如果一个真分数的分子和分母同时减去一个数(0除外),正好和另一个分数相等,那么,另一个分数比较小。
例如:如果一个假分数的分子和分母同时减去一个数(0除外),正好和另一个分数相等,那么另一个分数比较大。
例如:1.8.9化成整数比较用两个分母分别去乘两个分数,将分数化成整数,整数大的原分数较大。
例如:1.8.10化成小数比较1.8.11化一个分数为整数比较1.8.12两数相减比较法两个分数直接相减,所得之差大于0,则被减数大于减数。
例如:1.8.13两数相除比较法1.8.14倒数比较法倒数小的分数大。
例如:1.8.15化为百分数比较1.8.16分别除以一个数比较1.8.17分别加上一个数比较1.8.18分别减去一个数比较1.8.19由规律比较1.8.20十字相乘法一个分数的分子乘另一个分数的分母,用所乘的积比较分数的大小。
十字相乘法法则:如果对箭头所指的十字相乘积进行比较,那么靠近较大的积的分数较大。
∵ 13×7=91<5×19=95,由于221-13×17,209=11×19,学生对于分母的质因数分解就感到困难,所以通分法就显得很不方便,如果用十字相乘法显然是比较简便了。
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小.⑵通分子:分母小的分数大.⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数)⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大;②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大.⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果.(2)变换结构:将原来算式或问题变形为便于估算的形式.模块一、两个数的大小比较【例 1】如果a=20052006,b=20062007,那么a,b中较大的数是【考点】两个数的大小比较【难度】2星【题型】填空【关键词】希望杯,五年级,一试【解析】方法一:<与1相减比较法>1-20052006=12006;1-20062007=12007.因为12006>12007,所以b较大;例题精讲知识点拨教学目标比较与估算方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b<;方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b大【答案】b【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是 .【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】 试比较1111111和111111111的大小 【考点】两个数的大小比较 【难度】3星 【题型】填空 【解析】 方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷ 1111111= 110111 ,111111111的倒数是1÷ 11111111110=11111,我们很容易看出10 1111>10 11111,所以1111111< 111111111; 方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111<【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
专题13-分数除法应用题(知识梳理+专项训练)1、分数除法。
求一个数是另一个数的几分之几(或百分之几)是多少。
2、特征。
已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。
“一个数”是比较量,“另一个数”是标准量。
求分率或百分率,也就是求他们的倍数关系。
3、解题关键。
从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。
关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。
已知一个数的几分之几(或百分之几 ) ,求这个数。
一.选择题(共7小题,满分14分,每小题2分)1.(2分)1316千克的油菜籽可榨出38千克油,求榨1千克油需要多少千克油菜籽,正确列式是()A.133168⨯B.133168÷C.313816⨯D.313816÷2.(2分)育才小学五年级有学生500人,比六年级少19,六年级有多少人?正确的列式是()A.1500(1)9⨯-B.1500(1)9÷-C.1500(1)9⨯+D.1500(1)9÷+3.(2分)学校买回20个篮球,篮球的个数比排球少13,学校买回多少个排球?下面列式正确的是()A.120(1)3÷-B.120(1)3÷+C.120(1)3⨯-D.1203-4.(2分)一辆汽车行驶78km要用汽油112L。
照这样计算,这辆汽车行驶1千米要用汽油()升。
A.78B.221C.796D.2125.(2分)59千克黄豆可做豆腐32千克。
照这样计算,做一千克豆腐需黄豆()千克?A.1027B.2710C.56D.656.(2分)六(1)班的同学参观科技馆,其中体验陶泥课程的同学有15人,是体验3D打印课程人数的34,体验机器人课程人数是体验3D打印课程人数的45。
奥数比较分数大小的方法奥数,即奥林匹克数学竞赛,是一项旨在培养学生数学能力和解题思维的竞赛活动。
在奥数比较分数大小时,我们可以采用以下几种方法。
一、绝对大小法绝对大小法是最常用的比较分数大小的方法之一。
它通过比较分数的分子和分母的大小关系来判断分数的大小。
当分母相同时,分子较大的分数较大;当分母不同时,可通过找到最小公倍数,将分数通分后再比较分子的大小。
例如,比较分数1/3和2/5的大小。
由于分母相同,我们只需比较分子。
1/3的分子为1,2/5的分子为2,因此2/5大于1/3。
二、通分比较法通分比较法是通过将分数的分子和分母通分后再比较大小。
具体步骤为:找到两个分数的最小公倍数,然后将分数的分子和分母分别乘以相应的倍数,使得两个分数的分母相等,最后比较分子的大小。
例如,比较分数3/4和5/6的大小。
首先找到两个分数的最小公倍数为12,然后将3/4通分为9/12,将5/6通分为10/12,最后比较分子的大小,可得10/12大于9/12。
三、化成小数比较法化成小数比较法是将分数转化为小数形式,然后比较小数的大小。
可以通过手算或使用计算器将分数转化为小数,然后比较小数的大小。
例如,比较分数2/3和4/5的大小。
将2/3转化为小数为0.6667,将4/5转化为小数为0.8,因此4/5大于2/3。
四、等价比较法等价比较法是将分数化为相同的分数形式,然后比较分子的大小。
可以通过找到两个分数的最大公约数,然后将分子和分母同时除以最大公约数,得到等价的分数形式,最后比较分子的大小。
例如,比较分数3/8和9/12的大小。
首先找到两个分数的最大公约数为3,然后将3/8化简为1/8,将9/12化简为3/4,最后比较分子的大小,可得3/4大于1/8。
五、综合运用法在实际比较分数大小的过程中,可以综合运用以上的方法来判断分数的大小。
根据具体情况选择合适的方法进行比较,以便更准确地判断分数的大小。
总结起来,奥数比较分数大小的方法主要有绝对大小法、通分比较法、化成小数比较法、等价比较法和综合运用法。
奥数思维训练题库---计算【分组】【2】计算:1-2+3-4+5-……-1994+1995=【答案】998【分组】【2】计算:1-2+3-4+5-……-2014+2015=【答案】1008【分组】【2】计算:(2+4+6+…+1996)-(1+3+5+…+1995)=【答案】998【分组】【2】计算:(2+4+6+…+2014)-(1+3+5+…+2013)=【答案】1007【分组】【2】3-5+7-9+11-13+…+2011-2013+2015=【答案】1009【提取公因数】【2】计算:222+333+444+555+666=【答案】2220444×5=2220【提取公因数】【2】计算:111+222+333+444+555+666=【答案】2331【位值原理】【2】(123456+234561+345612+456123+561234+612345)÷111111= 【答案】21【提取公因数】【2】计算:1÷2015+2÷2015+3÷2015+…+2014 ÷2015+2015÷2015= 【答案】1008【提取公因数】【乘法凑整】【2】计算:3.6×31.4+(31.4+12.5)×6.4=【答案】394【提取公因数】【乘法凑整】【2】计算:3.6×30.4+(30.4+12.5)×6.4=【答案】384【提取公因数】【分拆】【3】计算:161.8×6.18+2618×0.382=【答案】2000【提取公因数】【3】计算:(4.16×84-2.08×54-0.15×832)÷0.32【答案】1248【分拆】【凑整】【2】计算:0.75+9.75+99.75+999.75+1=【答案】1111【分拆】【提取公因数】【3】7210810846(118142118134)⨯+⨯-⨯-⨯【答案】11800【提取公因数】【2】计算:0.9999×0.7+0.1111×2.7=【答案】0.9999【提取公因数】【2】1994.5×81+0.24×800+2.4+8.1×31=【答案】162000【凑整】【1】计算:98+998+9998+99998=【答案】111092【凑整】【1】计算:8+998+9998+99998=【答案】111002【提取公因数】【凑整】【2】计算:(8.88+8.88+8.88+8.88)×1.25= 【答案】44.4【提取公因数】【2】20.14×37-201.4×1.9+2.014×820=【答案】2014【提取公因数】【2】计算:17.48×37-174.8×1.9+1.748×820=【答案】1748【提取公因数】【2】计算:2098-5.5×7.5-0.25×55-45=【答案】19982098-5.5×7.5-0.25×55-45=2098-55×(0.75+0.25)-45=2098-(55+45)=1998【提取公因数】【2】8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=【答案】10【提取公因数】【2】999.99×222.22+333.33×333.34 =【答案】333330【提取公因数】【2】51.2×32.5+512×6.74+5.12=【答案】5120【分拆】【2】325.24+425.24+625.24+925.24+525.24=【答案】2826.2【分拆】【提取公因数】【3】计算:333×332332333-332×333333332【答案】665【分拆】【重码数】【3】19501950×2010-20112011×1949=【答案】61061【提取公因数】【2】计算:9.99×0.13-0.111×2.7【答案】0.999【定义新运算】【3】对于任意两个自然数A 和B 、规定一种新运算“※”:A ※B=A (A +1)(A +2)……(A +B -1)。
2014年五年级数学思维训练:分数计算与比较大小1.计算:(1)++;(2)1﹣﹣﹣.2.计算:13﹣(3+2)﹣.3.计算:(﹣÷4)×+1÷1.4.计算:×54﹣16×+27×+×3.5.计算:9+99+999+9999.6.计算:(1)403×;(2)155×.7.计算:.8.将下列分数由小到大排列起来:,,,,.9.比较下列分数的大小:(1)与;(2)与.10.比较下列分数的大小:(1)与;(2)与.11.计算:(3+6+1+8)×(2﹣).12..13.要使算式2﹣(0.7﹣□)×=2成立,方框内应填入的数是多少?14.计算:124×+18×.15.计算:(1﹣×3)+(3﹣×5)+(5﹣×7)+(7﹣×9)+(9﹣×11)+(11﹣×13).16.计算:= .17.比较2006×与2005×的大小,并计算它们的差.18.计算:(1)238÷238;(2)(9+7)÷(+).19.比较下列分数的大小:(1)与;(2)与;(3)与;(4)与.20.比较大小:(1)把3个数,,由小到大排列起来;(2)把5个数,,,,由小到大排列起来.21.比较下列分数的大小:(1)与;(2)与.22.比较下列分数的大小:(1)与;(2)与;(3)与.23.计算:8×+19×13.24.计算:×.25.计算:[(+++)﹣(+++)]÷[(+++)﹣(+++)].26..27.已知A=+,B=+.试比较A、B的大小.28.A=(+)×1001,B=(+)×1003,C=(+)×1005,请将A、B、C按从大到小的顺序排列起来.29.计算:(﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣).30.计算:(1×2+2×3)×(+)+(2×3+3×4)×(+)+…+(19×20+20×21)×(+).参考答案1.6;.【解析】试题分析:(1)同分母的分数相加减,分母不变,分子相加减.(2)通过观察,此题通分计算比较简便.因此,把每个分数化为分母为200的分数,然后再计算.解:(1)++===6(2)1﹣﹣﹣=﹣﹣﹣=点评:对于此类问题,注意分析,采取灵活的方法解答.2.7【解析】试题分析:通过观察,运用减法的运算性质以及加法交换律和结合律简算.解:13﹣(3+2)﹣=13﹣3﹣2﹣=(13﹣2)﹣(3+)=11﹣4=7点评:仔细观察数据,选择合适的方法简算.3.1.【解析】试题分析:先算括号内的除法,再算括号内的减法,再算括号外的乘法和除法,最后算加法.解:(﹣÷4)×+1÷1=(﹣)×+1÷=×+=+=1点评:此题主要考查分数的四则混合运算的运算顺序和运算法则.4.45.【解析】试题分析:通过数字转化,运用加法交换律与结合律以及乘法分配律简算.解:×54﹣16×+27×+×3=×4+×3﹣(16×﹣)=×(4+3)﹣×(16﹣1)=×7﹣×15=54﹣9=45点评:此题主要考查分数四则混合运算,注意数字转化,应用运算定律进行简便计算.5.11109【解析】试题分析:通过观察,可把每个分数拆成“整数+分数”的形式,然后整部与分数分别相加,进而解决问题.解:9+99+999+9999=(9+99+999+9999)+(+++)=(10﹣1+100﹣1+1000﹣1+10000﹣1)+(++)=11110﹣4+×4=11110﹣4×(1﹣)=11110﹣4×=11110﹣=11109点评:此题通过数字拆分,使计算变得简单化.6.399;112.【解析】试题分析:(1)把123看作124﹣1,运用乘法分配律简算.(2)把155看作156﹣1,运用乘法分配律简算.,解:(1)403×=403×=403×(1﹣)=403﹣=403﹣3=399(2)155×=(156﹣1)×=156×﹣=113﹣=112点评:仔细观察数据,根据数据特点,运用运算定律进行简算.7.【解析】试题分析:通过观察,可把原式分为两部分,即﹣,约分计算.解:=﹣=1﹣=点评:仔细分析数据,采取灵活的方法,进行简算.8.>【解析】试题分析:按照分母相同的,分子大的就大,分子相同的分母大的就小去比较,不用去通分.解:因为:>>>而>答:>点评:本题考查分数的大小比较:同分母分子大的就大,同分子的,分母大的就小.9.(1)>;(2).【解析】试题分析:(1)因为,所以>;(2)因为,,所以.解:(1)因为,所以>;(2)因为,,所以.点评:此题主要考查了分数比较大小的方法,注意观察各个数的特点,找出期中的规律.10.(1)<;(2)<.【解析】试题分析:(1)分子分母相乘1,所以=1﹣,=1﹣,而分子相同时,分母越大的分数就越小,那么比较大小时用减法即可;(2)先把两个分数都扩大2倍变为(1)中的同类题型,比较出大小后,再利用等式的性质,两边同时除以2即可.解:(1)﹣=1﹣﹣(1﹣)=1﹣1+﹣=﹣因为分子相同时,分母大的分数就小,所以:<所以:﹣<0故<;(2)由(1)可知:<两边同时除以2,即为:<点评:本题考查分数的大小比较,最终得到结论为:<11.33.【解析】试题分析:利用加法交换律、结合律计算即可.解:(3+6+1+8)×(2﹣)=[(3+1)+(6+8)]×(2﹣)=20×=33.点评:此题考查了运用简便方法简算的能力.12..【解析】试题分析:先算括号内的乘法,再算括号内的加法,然后算括号外的除法,最后算减法.解:(2+1×5)÷3﹣1,=(2+6)÷3﹣1,=×﹣1,=2﹣1,=.点评:此题考查了分数的四则混合运算,注意运算顺序和运算法则.13..【解析】试题分析:把括号里的式子看作一个整体,根据被减数﹣差=减数,求出(0.7﹣□)×的积,进而根据:积÷一个因数=另一个数因数,求出(0.7﹣□)的差,进而根据:减数=被减数﹣差,即可求出减数.解:0.7﹣(2﹣2)÷=0.7﹣×=0.7﹣=答:方框内应填入的数是.点评:此题应根据被减数、减数、差之间的关系及因数、因数和积之间的关系进行解答.14.52.【解析】试题分析:可将124变为125﹣1、变为1﹣后,再根据乘法分配律计算.解:124×+18×=(125﹣1)×+18×(1﹣)=125×﹣1×+18×1﹣18×=35+18﹣(+)=53﹣1=52.点评:完成本题要注意分析式中数据的特点及内在联系,然后运用合适的方法计算.15.21【解析】试题分析:先把括号去掉,把整数和整数分在一组计算,分数和分数分在一组且利用乘法分配律即可.解:(1﹣×3)+(3﹣×5)+(5﹣×7)+(7﹣×9)+(9﹣×11)+(11﹣×13)=1+3+5+7+9+11﹣×(3+5+7+9+11+13)=36﹣×48=36﹣=21点评:本题考查巧算,注意把整数和整数分在一组计算,分数和分数分在一组计算即可.16.1.【解析】试题分析:本题先用乘法分配律展开,再重新用加法结合律重新组合,同分母的分数放在一起,再用乘法分配律简算.解:=76×﹣76×+23×+23×﹣53×+53×=76×﹣53×﹣76×+23×+23×+53×═1﹣1+1=1.故答案为:1.点评:本题是对乘法分配律和加法加法交换律与结合律的应用.17.2006×>2005×,差是1.【解析】试题分析:把2006拆成2005+1,2005拆成2004+1,利用乘法分配律即可计算,根据差与0的关系即可判断大小.解:2006×﹣2005×=(2005+1)×﹣(2004+1)×=2004+﹣2003﹣=1+=1+1﹣﹣1+=1=1=1所以,2006×>2005×,差是1.点评:本题考查大小比较及其计算:巧妙的计算,并且得出:<.18.(1);(2)13.【解析】试题分析:(1)先把带分数化成假分数,分子不必算出来,因为在计算过程中能够月份.(2)原式变为[16+(+)]÷(+),运用除法的运算性质计算.解:(1)238÷238=238÷=238×=(2)(9+7)÷(+)=(9++7+)÷(+)=[16+(+)]÷(+)=16÷(+)+(+)÷(+)=16÷+=+=13点评:仔细分析数据,根据数据特点,运用合适的简便方法计算.19.(1)>;(2)>;(3)>;(4)<.【解析】试题分析:通过观察,这几道题都是异分母分数的大小比较,先通分化成同分母分数,然后比较即可.解:(1)与=,=因为>所以>(2)与=,=因为>所以>(3)与=,=因为>所以>(4)与=,=因为<所以<点评:完成此题,主要掌握异分母分数大小比较的方法.20.(1);(2).【解析】试题分析:(1)首先把3个数同时减去,然后比较差的大小,差越大,则原来的分数就越大;(2)首先把5个数,,,,化成分子相同的分数,然后比较大小即可.解:(1)﹣==,﹣=,﹣=,因为,所以;(2)因为=,=,=,=,=,,所以.点评:此题主要考查了分数大小比较的方法的应用,要熟练掌握.21.(1)<;(2)>.【解析】试题分析:(1)用减去,根据值的正、负情况,判断出它们的大小关系即可;(2)=,=,然后比较出的大小,进而比较出与的大小即可.解:(1)因为﹣====﹣<0,所以<;(2)=,=,因为=﹣<0,所以,1﹣,即>.点评:此题主要考查了分数大小比较的方法的应用,要熟练掌握.22.(1)=;(2)>;(3)>.【解析】试题分析:(1)第一个分数的分子、分母同时除以11111,第二个分数的分子、分母同时除以111,然后比较大小即可;(2)两个分数,分母相同时,分子越大,分数越大,据此判断即可;(3)因为22222×99999=22222×(100000﹣1)=2222199999,2222×999999=2222×(1000000﹣1)=2221999999,2222199999>2221999999,所以22222×99999>2222×999999,因此>.解:(1)因为=,=,所以=;(2)因为与的分母相同,222222>22222,所以>;(3)因为22222×99999=22222×(100000﹣1)=2222199999,2222×999999=2222×(1000000﹣1)=2221999999,2222199999>2221999999,所以22222×99999>2222×999999,因此>.点评:此题主要考查了分数大小比较的方法的应用,要熟练掌握.23.【解析】试题分析:先把带分数化为假分数,通过数字变形,运用乘法分配律简算.解:8×+19×13=×+×=×2×+×=(+)×=4768×=点评:此题主要考查学生能否根据数字特点,通过转化的数学思想,进行简算.24.【解析】试题分析:此题数字很接近,用有关定律与性质进行恒等变形,使分子分母部分相同,据此解答.解:×=×==点评:仔细观察数字特点,通过数字拆分,运用运算定律,使计算简便.25.【解析】试题分析:因为每个括号内分数的分母都较小,可以用通分的方法计算出每个括号内各算式的结果,然后写成分数的形式,便于约分.解:[(+++)﹣(+++)]÷[(+++)﹣(+++)]=[﹣]÷[﹣]====点评:对于算式较长的题目,应采取灵活的方法进行简算.26.22.5.【解析】试题分析:此题算式较长,若按常规来做,会很麻烦.通过观察,此题采取“金蝉脱壳”的办法,从前往后逐步脱去算式,缩小范围,最终得出结果.解:(++…+)+(++…+)+…+(+)+,=(++…+)+2×(++…+)+…+(+)+,=+3×(++…+)+(++…+)+…+(+)+,=+3×+3×(+…+)+3×(+…+)+…+(+)+,=+1+6×(+…+)+(++…+)+…+(+)+,=+1+6×+6×(+…+)+4×(+…+)+…+(+)+,=+1++10×(+…+)+(++…+)+…+(+)+,=3+10×+10×(+…+)+5×(+…+)+…+(+)+,=5+15×(+…+)+(+++)+…+(+)+,=5+15×+15×(+…+)+6×(+…+)+…+(+)+,=5++21×(+…+)+(++)+(+)+,=5++21×+21×(++)+7×(++)+(+)+,=8++28×(++)+8×(+)+,=8++28×+36×(+)+,=14+36×+36×+9×,=14+4+45×,=18+4.5,=22.5.点评:此题计算量较大,应认真仔细,一步步进行,逐步向结果靠拢.27.A<B.【解析】试题分析:两个分数分母进行通分数字太大,不利于比较;那么通过观察发现,A=+可以变形为2+,B=+可以变形为2+,所以只要比较和的大小即可,分子相同时分母越大,这个分数越小,显然2007×2008大于2005×2006,所以小于,所以A小于B,据此可解.解:因为A=+=1++1﹣=2+(﹣)=2+,B=+=1++1﹣=2+(﹣)=2+,因为<,所以2+<2+,即A<B.答:A<B.点评:解答此题的关键是把这两个分数大小比较转化成比较它们的差的大小,从而利用分子相同,分母越大,分数越小的方法进行比较即可.28.A>B>C;【解析】试题分析:将A、B、C按从大到小的顺序排列起来,实际上就是比较A、B、C的大小;本题既有分数,又有乘法,可将他们转化成具有一定规律的一组数,这样便于比较大小;通过观察发现A可转划为1+,B可转化为1+,C可转化为1+,据此比较大小即可.解:A=(+)×1001=(+)×2002÷2=(+)÷2=(1++1﹣)÷2=(2+﹣)÷2=(2+)÷2=(2+)÷2=1+,同理,B=1+,C=1+,因为>>(分子相同,分母越大,分数越小.),所以A>B>C;答:A、B、C按从大到小的顺序排列为:A>B>C.点评:解答此题的关键是把这两个分数大小比较转化成比较它们的差的大小,从而利用分子相同,分母越大,分数越小的方法进行比较即可.29.6.【解析】试题分析:把原式进行变形,然后根据乘法分配律提取公因数3和2,然后根据乘一个数,再除以一个相同的数(0除外),相互抵消,即可得出结论.解:(﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=(﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=3×(﹣+…+)÷(1﹣+﹣+…+﹣)=3×[(1+2)﹣(1+)+(1+)﹣(1+)+…+(1+)﹣(1+)]÷(1﹣+﹣+…+﹣)=3×(2﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=3×2×(1﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=6点评:灵活掌握分数乘法中的运算定律,并结合数字特点,进行解答即可.30.77【解析】试题分析:根据数字特点,运用乘法分配律变为[2×(1+3)×]+[3×(2+4)×]+…+[20×(19+21)×]=4×+6×+…+40×,进一步计算即可.解:(1×2+2×3)×(+)+(2×3+3×4)×(+)+…+(19×20+20×21)×(+)=[2×(1+3)×]+[3×(2+4)×]+...+[20×(19+21)×] =4×+6×+ (40)=22×+22×+22×+ (22)=4×(+++…+)=4×(1++1++1++…+1+)=4×(19++++…+)=4×[19+×(1﹣+﹣+﹣+…+﹣)]=4×[19+×(1﹣)]=4×[19+×]=4×[19+]=4×19+4×=76+1=77点评:此题属于较难的分数计算,仔细观察数据,运用运算定律或运算技巧,灵活拆分,进行简便计算.。
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果.(2)变换结构:将原来算式或问题变形为便于估算的形式.知识点拨教学目标比较与估算模块一、两个数的大小比较【例 1】如果a=20052006,b=20062007,那么a,b中较大的数是【考点】两个数的大小比较【难度】2星【题型】填空【关键词】希望杯,五年级,一试【解析】方法一:<与1相减比较法>1-20052006=12006;1-20062007=12007.因为12006>12007,所以b较大;方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b<;方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b大【答案】b【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<例题精讲【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是 .【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】试比较1111111和111111111的大小【考点】两个数的大小比较【难度】3星【题型】填空【解析】方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷1111111=110111,111111111的倒数是1÷11111111110=11111,我们很容易看出101111>1011111,所以1111111<1111 11111;方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111<【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
第1讲:分数计算与比较大小内容概述:理解分数的概念,熟练掌握分数四则运算中的通分、约分等技巧,了解分数运算中的一些速算方法;学会比较分数大小的各种方法,包括通分母、通分子、交叉相乘、倒数比较法、间接比较法等等。
典型问题:兴趣篇1.计算:(1)220200373737++;(2)1111220200---。
2.计算:8153 1332114114⎛⎫-+-⎪⎝⎭。
3.计算:1151411 451312⎛⎫-÷⨯+÷⎪⎝⎭。
4.计算:43615416273 7575⨯-⨯+⨯+⨯。
5.计算:8888888888 9999999999 9999999999+++。
6.计算:(1)123403124⨯;(2)113155156⨯。
7.计算:567891234556789⨯⨯⨯⨯-⨯⨯⨯⨯⨯⨯⨯⨯。
8.将下列分数由小到大排列起来:1419,1324,1423,1519,1323。
9.比较下列分数的大小:(1)313与940;(2)79320与2079。
10.比较下列分数的大小:(1)9899与19941995;(2)1111022221与4444388887。
拓展篇:1.计算:12317 36182434320⎛⎫⎛⎫+++⨯-⎪ ⎪⎝⎭⎝⎭。
2.计算:2121 215315353⎛⎫+⨯÷-⎪⎝⎭。
3.要使算式1512(0.7)2467--⨯=成立,方框内应填入的数是多少?4.计算:724 124182525⨯+⨯。
5.计算:111111111111 133557799111113 363636363636⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+-⨯+-⨯+-⨯⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭。
6.计算:111111 762353235353762376⎛⎫⎛⎫⎛⎫⨯-+⨯+-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
7.比较:200420062005⨯与200320052004⨯的大小,并计算它们的差。
2014年五年级数学思维训练:分数计算与比较大小1.计算:(1)++;(2)1﹣﹣﹣.2.计算:13﹣(3+2)﹣.3.计算:(﹣÷4)×+1÷1.4.计算:×54﹣16×+27×+×3.5.计算:9+99+999+9999.6.计算:(1)403×;(2)155×.7.计算:.8.将下列分数由小到大排列起来:,,,,.9.比较下列分数的大小:(1)与;(2)与.10.比较下列分数的大小:(1)与;(2)与.11.计算:(3+6+1+8)×(2﹣).12..13.要使算式2﹣(0.7﹣□)×=2成立,方框内应填入的数是多少?14.计算:124×+18×.15.计算:(1﹣×3)+(3﹣×5)+(5﹣×7)+(7﹣×9)+(9﹣×11)+(11﹣×13).16.计算:= .17.比较2006×与2005×的大小,并计算它们的差.18.计算:(1)238÷238;(2)(9+7)÷(+).19.比较下列分数的大小:(1)与;(2)与;(3)与;(4)与.20.比较大小:(1)把3个数,,由小到大排列起来;(2)把5个数,,,,由小到大排列起来.21.比较下列分数的大小:(1)与;(2)与.22.比较下列分数的大小:(1)与;(2)与;(3)与.23.计算:8×+19×13.24.计算:×.25.计算:[(+++)﹣(+++)]÷[(+++)﹣(+++)].26..27.已知A=+,B=+.试比较A、B的大小.28.A=(+)×1001,B=(+)×1003,C=(+)×1005,请将A、B、C按从大到小的顺序排列起来.29.计算:(﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣).30.计算:(1×2+2×3)×(+)+(2×3+3×4)×(+)+…+(19×20+20×21)×(+).参考答案1.6;.【解析】试题分析:(1)同分母的分数相加减,分母不变,分子相加减.(2)通过观察,此题通分计算比较简便.因此,把每个分数化为分母为200的分数,然后再计算.解:(1)++===6(2)1﹣﹣﹣=﹣﹣﹣=点评:对于此类问题,注意分析,采取灵活的方法解答.2.7【解析】试题分析:通过观察,运用减法的运算性质以及加法交换律和结合律简算.解:13﹣(3+2)﹣=13﹣3﹣2﹣=(13﹣2)﹣(3+)=11﹣4=7点评:仔细观察数据,选择合适的方法简算.3.1.【解析】试题分析:先算括号内的除法,再算括号内的减法,再算括号外的乘法和除法,最后算加法.解:(﹣÷4)×+1÷1=(﹣)×+1÷=×+=+=1点评:此题主要考查分数的四则混合运算的运算顺序和运算法则.4.45.【解析】试题分析:通过数字转化,运用加法交换律与结合律以及乘法分配律简算.解:×54﹣16×+27×+×3=×4+×3﹣(16×﹣)=×(4+3)﹣×(16﹣1)=×7﹣×15=54﹣9=45点评:此题主要考查分数四则混合运算,注意数字转化,应用运算定律进行简便计算.5.11109【解析】试题分析:通过观察,可把每个分数拆成“整数+分数”的形式,然后整部与分数分别相加,进而解决问题.解:9+99+999+9999=(9+99+999+9999)+(+++)=(10﹣1+100﹣1+1000﹣1+10000﹣1)+(++)=11110﹣4+×4=11110﹣4×(1﹣)=11110﹣4×=11110﹣=11109点评:此题通过数字拆分,使计算变得简单化.6.399;112.【解析】试题分析:(1)把123看作124﹣1,运用乘法分配律简算.(2)把155看作156﹣1,运用乘法分配律简算.,解:(1)403×=403×=403×(1﹣)=403﹣=403﹣3=399(2)155×=(156﹣1)×=156×﹣=113﹣=112点评:仔细观察数据,根据数据特点,运用运算定律进行简算.7.【解析】试题分析:通过观察,可把原式分为两部分,即﹣,约分计算.解:=﹣=1﹣=点评:仔细分析数据,采取灵活的方法,进行简算.8.>【解析】试题分析:按照分母相同的,分子大的就大,分子相同的分母大的就小去比较,不用去通分.解:因为:>>>而>答:>点评:本题考查分数的大小比较:同分母分子大的就大,同分子的,分母大的就小.9.(1)>;(2).【解析】试题分析:(1)因为,所以>;(2)因为,,所以.解:(1)因为,所以>;(2)因为,,所以.点评:此题主要考查了分数比较大小的方法,注意观察各个数的特点,找出期中的规律.10.(1)<;(2)<.【解析】试题分析:(1)分子分母相乘1,所以=1﹣,=1﹣,而分子相同时,分母越大的分数就越小,那么比较大小时用减法即可;(2)先把两个分数都扩大2倍变为(1)中的同类题型,比较出大小后,再利用等式的性质,两边同时除以2即可.解:(1)﹣=1﹣﹣(1﹣)=1﹣1+﹣=﹣因为分子相同时,分母大的分数就小,所以:<所以:﹣<0故<;(2)由(1)可知:<两边同时除以2,即为:<点评:本题考查分数的大小比较,最终得到结论为:<11.33.【解析】试题分析:利用加法交换律、结合律计算即可.解:(3+6+1+8)×(2﹣)=[(3+1)+(6+8)]×(2﹣)=20×=33.点评:此题考查了运用简便方法简算的能力.12..【解析】试题分析:先算括号内的乘法,再算括号内的加法,然后算括号外的除法,最后算减法.解:(2+1×5)÷3﹣1,=(2+6)÷3﹣1,=×﹣1,=2﹣1,=.点评:此题考查了分数的四则混合运算,注意运算顺序和运算法则.13..【解析】试题分析:把括号里的式子看作一个整体,根据被减数﹣差=减数,求出(0.7﹣□)×的积,进而根据:积÷一个因数=另一个数因数,求出(0.7﹣□)的差,进而根据:减数=被减数﹣差,即可求出减数.解:0.7﹣(2﹣2)÷=0.7﹣×=0.7﹣=答:方框内应填入的数是.点评:此题应根据被减数、减数、差之间的关系及因数、因数和积之间的关系进行解答.14.52.【解析】试题分析:可将124变为125﹣1、变为1﹣后,再根据乘法分配律计算.解:124×+18×=(125﹣1)×+18×(1﹣)=125×﹣1×+18×1﹣18×=35+18﹣(+)=53﹣1=52.点评:完成本题要注意分析式中数据的特点及内在联系,然后运用合适的方法计算.15.21【解析】试题分析:先把括号去掉,把整数和整数分在一组计算,分数和分数分在一组且利用乘法分配律即可.解:(1﹣×3)+(3﹣×5)+(5﹣×7)+(7﹣×9)+(9﹣×11)+(11﹣×13)=1+3+5+7+9+11﹣×(3+5+7+9+11+13)=36﹣×48=36﹣=21点评:本题考查巧算,注意把整数和整数分在一组计算,分数和分数分在一组计算即可.16.1.【解析】试题分析:本题先用乘法分配律展开,再重新用加法结合律重新组合,同分母的分数放在一起,再用乘法分配律简算.解:=76×﹣76×+23×+23×﹣53×+53×=76×﹣53×﹣76×+23×+23×+53×═1﹣1+1=1.故答案为:1.点评:本题是对乘法分配律和加法加法交换律与结合律的应用.17.2006×>2005×,差是1.【解析】试题分析:把2006拆成2005+1,2005拆成2004+1,利用乘法分配律即可计算,根据差与0的关系即可判断大小.解:2006×﹣2005×=(2005+1)×﹣(2004+1)×=2004+﹣2003﹣=1+=1+1﹣﹣1+=1=1=1所以,2006×>2005×,差是1.点评:本题考查大小比较及其计算:巧妙的计算,并且得出:<.18.(1);(2)13.【解析】试题分析:(1)先把带分数化成假分数,分子不必算出来,因为在计算过程中能够月份.(2)原式变为[16+(+)]÷(+),运用除法的运算性质计算.解:(1)238÷238=238÷=238×=(2)(9+7)÷(+)=(9++7+)÷(+)=[16+(+)]÷(+)=16÷(+)+(+)÷(+)=16÷+=+=13点评:仔细分析数据,根据数据特点,运用合适的简便方法计算.19.(1)>;(2)>;(3)>;(4)<.【解析】试题分析:通过观察,这几道题都是异分母分数的大小比较,先通分化成同分母分数,然后比较即可.解:(1)与=,=因为>所以>(2)与=,=因为>所以>(3)与=,=因为>所以>(4)与=,=因为<所以<点评:完成此题,主要掌握异分母分数大小比较的方法.20.(1);(2).【解析】试题分析:(1)首先把3个数同时减去,然后比较差的大小,差越大,则原来的分数就越大;(2)首先把5个数,,,,化成分子相同的分数,然后比较大小即可.解:(1)﹣==,﹣=,﹣=,因为,所以;(2)因为=,=,=,=,=,,所以.点评:此题主要考查了分数大小比较的方法的应用,要熟练掌握.21.(1)<;(2)>.【解析】试题分析:(1)用减去,根据值的正、负情况,判断出它们的大小关系即可;(2)=,=,然后比较出的大小,进而比较出与的大小即可.解:(1)因为﹣====﹣<0,所以<;(2)=,=,因为=﹣<0,所以,1﹣,即>.点评:此题主要考查了分数大小比较的方法的应用,要熟练掌握.22.(1)=;(2)>;(3)>.【解析】试题分析:(1)第一个分数的分子、分母同时除以11111,第二个分数的分子、分母同时除以111,然后比较大小即可;(2)两个分数,分母相同时,分子越大,分数越大,据此判断即可;(3)因为22222×99999=22222×(100000﹣1)=2222199999,2222×999999=2222×(1000000﹣1)=2221999999,2222199999>2221999999,所以22222×99999>2222×999999,因此>.解:(1)因为=,=,所以=;(2)因为与的分母相同,222222>22222,所以>;(3)因为22222×99999=22222×(100000﹣1)=2222199999,2222×999999=2222×(1000000﹣1)=2221999999,2222199999>2221999999,所以22222×99999>2222×999999,因此>.点评:此题主要考查了分数大小比较的方法的应用,要熟练掌握.23.【解析】试题分析:先把带分数化为假分数,通过数字变形,运用乘法分配律简算.解:8×+19×13=×+×=×2×+×=(+)×=4768×=点评:此题主要考查学生能否根据数字特点,通过转化的数学思想,进行简算.24.【解析】试题分析:此题数字很接近,用有关定律与性质进行恒等变形,使分子分母部分相同,据此解答.解:×=×==点评:仔细观察数字特点,通过数字拆分,运用运算定律,使计算简便.25.【解析】试题分析:因为每个括号内分数的分母都较小,可以用通分的方法计算出每个括号内各算式的结果,然后写成分数的形式,便于约分.解:[(+++)﹣(+++)]÷[(+++)﹣(+++)]=[﹣]÷[﹣]====点评:对于算式较长的题目,应采取灵活的方法进行简算.26.22.5.【解析】试题分析:此题算式较长,若按常规来做,会很麻烦.通过观察,此题采取“金蝉脱壳”的办法,从前往后逐步脱去算式,缩小范围,最终得出结果.解:(++…+)+(++…+)+…+(+)+,=(++…+)+2×(++…+)+…+(+)+,=+3×(++…+)+(++…+)+…+(+)+,=+3×+3×(+…+)+3×(+…+)+…+(+)+,=+1+6×(+…+)+(++…+)+…+(+)+,=+1+6×+6×(+…+)+4×(+…+)+…+(+)+,=+1++10×(+…+)+(++…+)+…+(+)+,=3+10×+10×(+…+)+5×(+…+)+…+(+)+,=5+15×(+…+)+(+++)+…+(+)+,=5+15×+15×(+…+)+6×(+…+)+…+(+)+,=5++21×(+…+)+(++)+(+)+,=5++21×+21×(++)+7×(++)+(+)+,=8++28×(++)+8×(+)+,=8++28×+36×(+)+,=14+36×+36×+9×,=14+4+45×,=18+4.5,=22.5.点评:此题计算量较大,应认真仔细,一步步进行,逐步向结果靠拢.27.A<B.【解析】试题分析:两个分数分母进行通分数字太大,不利于比较;那么通过观察发现,A=+可以变形为2+,B=+可以变形为2+,所以只要比较和的大小即可,分子相同时分母越大,这个分数越小,显然2007×2008大于2005×2006,所以小于,所以A小于B,据此可解.解:因为A=+=1++1﹣=2+(﹣)=2+,B=+=1++1﹣=2+(﹣)=2+,因为<,所以2+<2+,即A<B.答:A<B.点评:解答此题的关键是把这两个分数大小比较转化成比较它们的差的大小,从而利用分子相同,分母越大,分数越小的方法进行比较即可.28.A>B>C;【解析】试题分析:将A、B、C按从大到小的顺序排列起来,实际上就是比较A、B、C的大小;本题既有分数,又有乘法,可将他们转化成具有一定规律的一组数,这样便于比较大小;通过观察发现A可转划为1+,B可转化为1+,C可转化为1+,据此比较大小即可.解:A=(+)×1001=(+)×2002÷2=(+)÷2=(1++1﹣)÷2=(2+﹣)÷2=(2+)÷2=(2+)÷2=1+,同理,B=1+,C=1+,因为>>(分子相同,分母越大,分数越小.),所以A>B>C;答:A、B、C按从大到小的顺序排列为:A>B>C.点评:解答此题的关键是把这两个分数大小比较转化成比较它们的差的大小,从而利用分子相同,分母越大,分数越小的方法进行比较即可.29.6.【解析】试题分析:把原式进行变形,然后根据乘法分配律提取公因数3和2,然后根据乘一个数,再除以一个相同的数(0除外),相互抵消,即可得出结论.解:(﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=(﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=3×(﹣+…+)÷(1﹣+﹣+…+﹣)=3×[(1+2)﹣(1+)+(1+)﹣(1+)+…+(1+)﹣(1+)]÷(1﹣+﹣+…+﹣)=3×(2﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=3×2×(1﹣+﹣+…+﹣)÷(1﹣+﹣+…+﹣)=6点评:灵活掌握分数乘法中的运算定律,并结合数字特点,进行解答即可.30.77【解析】试题分析:根据数字特点,运用乘法分配律变为[2×(1+3)×]+[3×(2+4)×]+…+[20×(19+21)×]=4×+6×+…+40×,进一步计算即可.解:(1×2+2×3)×(+)+(2×3+3×4)×(+)+…+(19×20+20×21)×(+)=[2×(1+3)×]+[3×(2+4)×]+...+[20×(19+21)×] =4×+6×+ (40)=22×+22×+22×+ (22)=4×(+++…+)=4×(1++1++1++…+1+)=4×(19++++…+)=4×[19+×(1﹣+﹣+﹣+…+﹣)]=4×[19+×(1﹣)]=4×[19+×]=4×[19+]=4×19+4×=76+1=77点评:此题属于较难的分数计算,仔细观察数据,运用运算定律或运算技巧,灵活拆分,进行简便计算.。