最新七年级数学(下册)第一次月考试卷(解析版答案) (13)
- 格式:docx
- 大小:274.04 KB
- 文档页数:15
七年级下第一次月考数学试卷含解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角2.下列各式中,是关于x,y的二元一次方程的是()A.2x﹣y B.xy+x﹣2=0 C.x﹣3y=﹣15 D.﹣y=03.如图,直线a∥b,∠1=120°,则∠2的度数是()A.120°B.80°C.60°D.50°4.若是关于x.y的方程2x﹣y+2a=0的一个解,则常数a为()A.1 B.2 C.3 D.45.如图所示,在下列四组条件中,能判定AB∥CD的是()A.∠1=∠2 B.∠ABD=∠BDCC.∠3=∠4 D.∠BAD+∠ABC=180°6.今有鸡兔若干,它们共有24个头和74只脚,则鸡兔各有()A.鸡10,兔14 B.鸡11,兔13 C.鸡12,兔12 D.鸡13,兔117.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.18cm C.20cm D.22cm8.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.9.下列说法正确的有()①不相交的两条直线是平行线;②经过直线外一点,有且只有一条直线与这条直线平行;③两条直线被第三条直线所截,同旁内角互补;④在同一平面内,若直线a⊥b,b⊥c,则直线a与c不相交.A.1个 B.2个 C.3个 D.4个10.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.4000cm2二、认真填一填(本题有6小题,每小题4分,共24分)11.如图所示,一条街道的两个拐角∠ABC和∠BCD,若∠ABC=150°,当街道AB和CD平行时,∠BCD=度,根据是.12.若方程的解中,x、y互为相反数,则x=,y=.13.已知,则x+y=.14.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于.15.如图,直线l1∥l2,∠α=∠β,∠1=35°,则∠2=°.16.若方程组的解为,则方程组的解是.三、全面答一答(本题有7小题,共66分).解答应写出文字说明或推演步骤.如果你觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.18.解方程组(1)(2).19.在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.20.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.21.已知关于x,y的方程组和的解相同,求(2a﹣b)2的值.22.如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.23.某服装点用6000购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?七年级(下)第一次月考数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角【考点】同位角、内错角、同旁内角.【分析】拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角.【解答】解:角在被截线的内部,又在截线的两侧,符合内错角的定义,故选B.2.下列各式中,是关于x,y的二元一次方程的是()A.2x﹣y B.xy+x﹣2=0 C.x﹣3y=﹣15 D.﹣y=0【考点】二元一次方程的定义.【分析】根据二元一次方程的定义,可得答案.【解答】解:A、是多项式,故A不符合题意;B、是二元二次方程,故B不符合题意;C、是二元一次方程,故C符合题意;D、是分式方程,故D不符合题意;故选:C.3.如图,直线a∥b,∠1=120°,则∠2的度数是()A.120°B.80°C.60°D.50°【考点】平行线的性质.【分析】如图根据平行线的性质可以∠2=∠3,根据邻补角的定义求出∠3即可.【解答】解:∵a∥b∴∠3=∠2,∵∠3=180°﹣∠1,∠1=120°,∴∠2=∠3=180°﹣120°=60°,故选C.4.若是关于x.y的方程2x﹣y+2a=0的一个解,则常数a为()A.1 B.2 C.3 D.4【考点】二元一次方程的解.【分析】将x=﹣1,y=2代入方程中计算,即可求出a的值.【解答】解:将x=﹣1,y=2代入方程2x﹣y+2a=0得:﹣2﹣2+2a=0,解得:a=2.故选B5.如图所示,在下列四组条件中,能判定AB∥CD的是()A.∠1=∠2 B.∠ABD=∠BDCC.∠3=∠4 D.∠BAD+∠ABC=180°【考点】平行线的判定.【分析】根据内错角相等两直线平行分别得出即可.【解答】解:A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故此选项错误;B、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故此选项正确;C、∵∠3=∠4,∴AD∥BC(内错角相等,两直线平行),故此选项错误;D、∵∠BAD+∠ABC=180°,∴AD∥BC(内错角相等,两直线平行),故此选项错误.故选:B.6.今有鸡兔若干,它们共有24个头和74只脚,则鸡兔各有()A.鸡10,兔14 B.鸡11,兔13 C.鸡12,兔12 D.鸡13,兔11【考点】二元一次方程组的应用.【分析】设鸡有x只,兔有y只,再由一只鸡2只脚,一只兔子4只脚,结合题意可得出方程组,解出即可得出答案.【解答】解:设鸡有x只,兔有y只,由题意得,,解得:.故选B.7.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.18cm C.20cm D.22cm【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【解答】解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选:C.8.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①甲2小时的路程+乙2小时的路程=18千米;②甲5小时的路程﹣乙4小时的路程=18千米,根据等量关系列出方程组即可.【解答】解:设甲的速度为x千米/小时,乙的速度为y千米/小时,由题意得:,故选:B.9.下列说法正确的有()①不相交的两条直线是平行线;②经过直线外一点,有且只有一条直线与这条直线平行;③两条直线被第三条直线所截,同旁内角互补;④在同一平面内,若直线a⊥b,b⊥c,则直线a与c不相交.A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】利用两直线的位置关系、平行线的性质等知识分别判断后即可确定正确的选项.【解答】解:①同一平面内不相交的两条直线是平行线,故错误;②经过直线外一点,有且只有一条直线与这条直线平行,正确;③两条平行直线被第三条直线所截,同旁内角互补,故错误;④在同一平面内,若直线a⊥b,b⊥c,则直线a与c不相交,正确,故选B.10.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.4000cm2【考点】二元一次方程组的应用.【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=50,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【解答】解:设一个小长方形的长为x(cm),宽为y(cm),由图形可知,,解之,得,∴一个小长方形的面积为40×10=400(cm2).故选:A.二、认真填一填(本题有6小题,每小题4分,共24分)11.如图所示,一条街道的两个拐角∠ABC和∠BCD,若∠ABC=150°,当街道AB和CD平行时,∠BCD=150度,根据是两直线平行,内错角相等.【考点】平行线的性质.【分析】由AB和CD平行,根据两直线平行,内错角相等,可得∠BCD的度数.【解答】解:∵AB∥CD,∠ABC=150°∴∠BCD=∠ABC=150(两直线平行,内错角相等).故答案为150°,两直线平行,内错角相等.12.若方程的解中,x、y互为相反数,则x=,y=﹣.【考点】二元一次方程的解.【分析】由x、y互为相反数可得y=﹣x,然后代入方程,求出x的值,进而求出y即可.【解答】解:∵x、y互为相反数,∴y=﹣x,将y=﹣x代入方程2x﹣y=,得2x+x=,解得x=,∴y=﹣,故答案为,﹣.13.已知,则x+y=.【考点】解二元一次方程组.【分析】方程组中两方程相加即可求出x+y的值.【解答】解:,①+②得:3x+3y=4,则x+y=.故答案为:.14.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于75°.【考点】平行线的性质;翻折变换(折叠问题).【分析】由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.【解答】解:∵AD∥BC,∴∠CBF=∠DEF=30°,∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+30°=180°,解得∠α=75°.故答案为:75°.15.如图,直线l1∥l2,∠α=∠β,∠1=35°,则∠2=145°.【考点】平行线的性质.【分析】先根据平行线的性质,由l1∥l2得∠3=∠1=35°,再根据平行线的判定,由∠α=∠β得AB∥CD,然后根据平行线的性质得∠2+∠3=180°,再把∠1=35°代入计算即可.【解答】解:如图,∵l1∥l2,∴∠3=∠1=35°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣135°=145°.故答案为145°.16.若方程组的解为,则方程组的解是.【考点】二元一次方程组的解.【分析】在此题中,两个方程组除未知数不同外其余都相同,所以可用换元法进行解答.【解答】解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,解得.故答案为:.三、全面答一答(本题有7小题,共66分).解答应写出文字说明或推演步骤.如果你觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.【考点】平行线的判定与性质.【分析】根据平行线的判定得出AB∥CD,从而得出∠3=∠4,即可得出答案.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠4=∠3=75°(两直线平行,内错角相等).18.解方程组(1)(2).【考点】解二元一次方程组.【分析】(1)根据代入消元法,可得方程组的解;(2)根据加减消元法,可得方程组的解.【解答】解:(1),把①代入②得:2y=6,即y=3,把y=3代入①得:x=3,则方程组的解为;(2)①+②得:6x=18,即x=3,①﹣②得:4y=8,即y=2,则方程组的解为.19.在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.【考点】作图﹣平移变换.【分析】(1)根据图形平移的性质画出△DEF即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)如图所示;=3×4﹣×2×4﹣×2×3﹣×2×1(2)由图可知,S△DEF=12﹣4﹣3﹣1=4.20.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠BAF,再根据角平分线的定义求出∠CAF,然后根据两直线平行,内错角相等解答.【解答】解:∵EF∥BC,∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.21.已知关于x,y的方程组和的解相同,求(2a﹣b)2的值.【考点】二元一次方程组的解.【分析】将两方程组中的第一个方程联立求出x与y的值,将第二个方程联立,把x与y的值代入求出a与b的值,进而求出所求式子的值.【解答】解:由题意得:,解得:,代入,解得:,则(2a﹣b)2=[2×﹣(﹣)]2=4.22.如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.【考点】平行线的判定与性质.【分析】(1)由DC∥FP知∠3=∠2=∠1,可得;(2)由(1)利用平行线的判定得到AB∥PF∥CD,根据平行线的性质得到∠AGF=∠GFP,∠DEF=∠EFP,然后利用已知条件即可求出∠PFH的度数.【解答】解:(1)∵DC∥FP,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴DC∥AB;(2)∵DC∥FP,DC∥AB,∠DEF=28°,∴∠DEF=∠EFP=28°,AB∥FP,又∵∠AGF=80°,∴∠AGF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+28°=108°,又∵FH平分∠EFG,∴∠GFH=∠GFE=54°,∴∠PFH=∠GFP ﹣∠GFH=80°﹣54°=26°.23.某服装点用6000购进A ,B 两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.(2)如果A 种服装按标价的8折出售,B 种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?【考点】二元一次方程组的应用.【分析】(1)设A 种服装购进x 件,B 种服装购进y 件,由总价=单价×数量,利润=售价﹣进价建立方程组求出其解即可;(2)分别求出打折后的价格,再根据少收入的利润=总利润﹣打折后A 种服装的利润﹣打折后B 中服装的利润,求出其解即可.【解答】解:(1)设A 种服装购进x 件,B 种服装购进y 件,由题意,得,解得:.答:A 种服装购进50件,B 种服装购进30件;(2)由题意,得:3800﹣50﹣30=3800﹣1000﹣360=2440(元).答:服装店比按标价售出少收入2440元.2017年3月27日。
七年级下学期第一次月考数学试卷范围:第一章~第二章满分:150分考试用时:120分钟题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列各式可以用平方差公式计算的是()A. (x−y)(x+y)B. (x−y)(y−x)C. (x−y)(−y+x)D. (x−y)(−x+y)2.下列运算正确的是()A. a2⋅a3=a5B. (−a)4=−a4C. (a2)3=a5D. a2+a3=a53.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)24.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“S”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A. 4a−8bB. 2a−3bC. 2a−46D. 4a−10b5.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列等式不正确的是A. a+b=12B. a−b=2C. ab=35D. a2+b2=846.下列多项式乘以多项式能用平方差公式计算的是()A. (−x+3y)(−x−3y)B. (x+3y)(−x−3y)C. (x−3y)(−x+3y)D. (−x−3y)(−x−3y).7.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A. 2017B. 2016C. 191D. 1908.计算(−8m4n+12m3n2−4m2n3)÷(−4m2n)的结果为()A. 2m2n−3mn+n2B. 2n2−3mn2+n2C. 2m2−3mn+n2D. 2m2−3mn+n9.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 邻补角10.下列说法不正确的是()A. 钝角没有余角,但一定有补角B. 若两个角相等且互补,则它们都是直角C. 锐角的补角比该锐角的余角大D. 一个锐角的余角一定比这个锐角大11.如图,过点P作直线l的垂线和斜线,叙述正确的是().A. 都能作且只能作一条B. 垂线能作且只能作一条,斜线可作无数条C. 垂线能作两条,斜线可作无数条D. 均可作无数条12.小明参加跳远比赛,他从地面踏板P处起跳落到沙坑中,两脚后跟与沙坑的接触点分别为A,B,小明未站稳,一只手撑到沙坑C点,则跳远成绩测量正确的图是()A. B. C. D.13.已知直角三角形ABC中,∠ACB=90°,AC=4,BC=3,AB=5,点D从点A到点B沿AB运动,CD=x,则x的取值范围是()≤x≤3A. 125≤x<4B. 125≤x≤4C. 125≤x≤5D. 12514.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B.C. D.15.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)9二、填空题(本大题共5小题,共25.0分)16.若单项式3x2y与−2x3y3的积为mx5y n,则m+n=.17.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为____.18.若a+2b+3c=10,且4a+3b+2c=15,则a+b+c=_________.19.如图所示,AD//EF//BC,AC//EN,则图中与∠1相等的角有个.20.如图,在平面直角坐标系xOy中,点A(0,6),点B(4,3),P是x轴上的一个动点.作OQ⊥AP,垂足为Q,则点Q到直线AB的距离的最大值为______.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(3+1)(32+1)(34+1)(38+1)(316+1)(332+1).22. (8分)先化简,再求值:(2x +3y)2−(2x +y)(2x −y),其中x =13,y =−12.23. (10分)某校八年级一班数学兴趣小组在探索末尾数字是5的两位数的平方时发现:252=100×2×(2+1)+25=625,452=100×4×(4+1)+25=2025,…即:末尾数字是5的两位数的平方,可以先写出它的十位数字与其下一个自然数的乘积,再在末尾接着写上25.例如:752=5625.请问:该结论正确吗?若两位数的十位数字为m ,请用代数式说明理由.24. (12分)补全下列推理过程:如图,已知AB//CE ,∠A =∠E ,试说明:∠CGD =∠FHB . 解:因为AB//CE( ),所以∠A=∠().因为∠A=∠E(已知),所以∠=∠().所以//().所以∠CGD=∠().因为∠FHB=∠GHE(),所以∠CGD=∠FHB().25.(12分)小红家有一块L型的菜地,如图所示,要把L型的菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a m,下底都是b m,高都是(b−a)m,请你帮小红家算一算这块菜地的面积共有多少,并求出当a=10,b=30时,L型菜地的总面积.26.(14分)已知∠AOC=40°,∠BOD=30°,∠AOC和∠BOD均可绕点O进行旋转,点M,O,N在同一条直线上,OP是∠COD的平分线.(1)如图1,当点A与点M重合,点B与点N重合,且射线OC和射线OD在直线MN的同侧时,求∠BOP的余角的度数;(2)在(1)的基础上,若∠BOD从ON处开始绕点O逆时针方向旋转,转速为5°/s,同时∠AOC从OM处开始绕点O逆时针方向旋转,转速为3°/s,如图2所示,当旋转6s时,求∠DOP的度数.27.(16分)如图所示,在一次军事演习中,红方侦察员发现:蓝方指挥部点P在A区内,且到铁路FG与公路CE的距离相等,到两通讯站C和D的距离也相等.如果你是红方的指挥员,请你在下图中标出蓝方指挥部点P的位置.(保留作图痕迹,不必写作法)答案1.A2.A3.A4.A5.D6.A7.D8.C9.A10.D11.B12.D13.C14.B15.C16.−217.1318.519.520.27521.解:设:S=(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)两边乘以(3−1)得(3−1)S=(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)2S=(32−1)(32+1)(34+1)(38+1)(316+1)(332+1)=(34−1)(34+1)(38+1)(316+1)(332+1)=364−1.∴S=364−12即原式=364−12.22.解:(2x+3y)2−(2x+y)(2x−y)=(4x2+12xy+9y2)−(4x2−y2)=4x 2+12xy +9y 2−4x 2+y 2=12xy +10y 2,当x =13,y =−12时,原式=12×13×(−12)+10×(−12)2=12.23.解:经计算可知该结论是正确,若两位数的十位数字为m ,依题意有(10m +5)2=100m 2+100m +25=100m(m +1)+25.24.已知 ADC 两直线平行,内错角相等 ADC E 等量代换 AD EF 同位角相等,两直线平行 GHE 两直线平行,同位角相等 对顶角相等 等量代换25.解:这块菜地的面积共有(b 2−a 2)m 2,当a =10,b =30时,L 型菜地的总面积为800m 2.26.解:(1)如图1,∵∠COD =180°−40°−30°=110°,OP 是∠COD 的平分线. ∴∠COP =∠DOP =12∠COD =55°,∴∠BOP =∠BOD +∠DOP =30°+55°=85°, ∴∠BOP 的余角为90°−85°=5°;(2)如图2,由(1)可知∠AOC =40°,∠BOD =30°, 由旋转可得,∠BON =5×6=30°,∠MOA =3×6=18°, ∴∠MOC =∠AOC −∠MOA =40°−18°=22°,∴∠COD =180°−∠MOC −∠BOD −∠BON =180°−22°−30°−30°=98°, ∵OP 平分∠COD ,∴∠DOP =∠COP =12∠COD =12×98°=49°,27.如图1所示11。
七年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7二、填空题(每小题3分,共30分)11.4是的算术平方根.12.的相反数是.13.已知,则.14.若x,y为实数,且+|y+2|=0,则xy的值为.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=度.19.如图,若AB∥CD,那么∥3=∥4,依据是.20.已知的整数部分是a,小数部分是b,则ab的值为.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF∥AB∥CD.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.甘肃省定西市安定区公园路中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣【考点】实数的性质.【分析】首先利用立方根的定义化简,然后利用绝对值的定义即可求解.【解答】解:=|﹣3|=3.故选A.2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移即可得到答案.【解答】解:根据平移的定义可得左图中的福娃“欢欢”通过平移可得到的图为C,故选:C.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°【考点】平行线的判定.【分析】根据平行线的判定定理逐一判断,排除错误答案.【解答】解:∥∥3=∥4,∥AD∥BC,故A错误;∥∥B=∥DCE,∥AB∥CD;故B正确;∥∥1=∥2,∥AB∥CD,故C正确;∥∥D+∥DAB=180°,∥AB∥CD,故D正确;故选A.4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.【考点】平方根.【分析】一个正数的平方根有两个,它们互为相反数,据此求出4的平方根是多少即可.【解答】解:∥±=±2,∥是4的平方根的是±2.故选:A.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等故选B.6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°【考点】对顶角、邻补角.【分析】因∥1和∥2是邻补角,且∥1=40°,由邻补角的定义可得∥2=180°﹣∥1=180°﹣40°=140°.【解答】解:∥∥1+∥2=180°又∥1=40°∥∥2=140°.故选C.7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个【考点】平行公理及推论;相交线;垂线.【分析】根据平行公理,垂线的定义,相交线的性质对各小题分析判断即可得解.【解答】解:①同位角相等,错误,只有两直线平行,才有同位角相等;②应为:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;③应为:过直线外一点有且只有一条直线与已知直线平行,故本小题错误;④三条直线两两相交,总有一个交点或三个交点,故本小题错误;⑤若a∥b,b∥c,则a∥c,正确.综上所述,正确的只有⑤共1个.故选A.8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:实数,π2,,,中,无理数有:π2,共2个.故选B.9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∥∥1=∥2=50°,∥若∥5=50°,则AB∥CD,故本选项正确;B、∥∥1=∥2=50°,∥若∥4=180°﹣50°=130°,则AB∥CD,故本选项正确;C、∥∥3=∥4=130°,∥若∥3=130°,则AB∥CD,故本选项正确;D、∥∥1=∥2=50°是确定的,∥若∥2=150°则不能判定AB∥CD,故本选项错误.故选D.10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7【考点】实数的运算.【分析】利用平方根,立方根定义计算即可得到结果.【解答】解:根据题意得:8的立方根是2,=9,9的平方根是±3,则8的立方根与的平方根之和为5或﹣1,故选C二、填空题(每小题3分,共30分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∥42=16,∥4是16的算术平方根.故答案为:16.12.的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:的相反数是﹣=.故答案为:.13.已知,则 1.01.【考点】算术平方根.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:∥,∥ 1.01;故答案为:1.01.14.若x,y为实数,且+|y+2|=0,则xy的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质可求出x、y的值,进而可求出xy的值.【解答】解:由题意,得:x﹣1=0,y+2=0;即x=1,y=﹣2;因此xy=1×(﹣2)=﹣2,故答案为:﹣2.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答即可.【解答】解:∥CD∥AB,∥CD<CA(垂线段最短),故答案为:垂线段最短.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=4.【考点】实数的运算.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:12∥4===4,故答案为:4【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=52度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义,可得∥AOE=90°,根据角的和差,可得∥AOD的度数,根据邻补角的定义,可得答案.【解答】解:∥OE∥AB,∥∥AOE=90°,∥∥AOD=∥AOE+∥EOD=90°+38°=128°,∥∥AOC=180°﹣∥AOD=180°﹣128°=52°,故答案为:52.19.如图,若AB∥CD,那么∥3=∥4,依据是两直线平行,内错角相等.【考点】平行线的性质.【分析】根据题意利用平行线的性质定理进而得出答案.【解答】解:两直线平行,内错角相等,故答案为:两直线平行,内错角相等.20.已知的整数部分是a,小数部分是b,则ab的值为.【考点】估算无理数的大小.【分析】只需首先对估算出大小,从而求出其整数部分a,再进一步表示出其小数部分即可解决问题.【解答】解:∥<<,∥2<<3;所以a=2,b=﹣2;故ab=2×(﹣2)=2﹣4.故答案为:2﹣4.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.【考点】实数的运算.【分析】(1)原式利用算术平方根、立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+=1;(2)原式=﹣+2=+.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.【考点】立方根;平方根.【分析】(1)先移项,系数化为1,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.【解答】解:(1)x2=4,x=±2 ;(2)x3=﹣,x=﹣.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.【考点】平方根.【分析】根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.【解答】解:∥一个数的两个平方根分别是3a+2和a+14,∥(a+3)+(2a﹣15)=0,a=4,a+3=4+37.7的平方是49.∥这个数是49.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.【考点】平行线的判定与性质.【分析】此题要首先根据∥1和∥2的特殊的位置关系以及数量关系证明c∥d,再根据平行线的性质求得∥4即可.【解答】解:∥∥1=72°,∥2=108°,∥∥1+∥2=72°+108°=180°;∥c∥d(同旁内角互补,两直线平行),∥∥4=∥3(两直线平行,内错角相等),∥∥3=69°,∥∥4=69°.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF内错角相等,两直线平行∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF内错角相等,两直线平行∥AB∥CD平行公理的推论.【考点】平行线的判定与性质.【分析】根据平行线的判定与性质进行填空即可.【解答】解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF(内错角相等,两直线平行)∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF(内错角相等,两直线平行)∥AB∥CD(平行公理的推论).故答案为:内错角相等,两直线平行;内错角相等,两直线平行;平行公理的推论.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∥2=∥3,求出∥1=∥3,根据平行线的判定得出即可.【解答】证明:∥EF∥AD,∥∥2=∥3,∥∥1=∥2,∥∥1=∥3,∥DG∥AB.第11页共11页。
七年级下学期第一次月考数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.计算6m6÷(−2m2)3的结果为()A. −mB. −1C. 34D. −342.如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为()A. xyB. −xyC. xD. −y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.如图,如果∠AOB=∠COD=90∘,那么∠1=∠2,这是根据()A. 直角都相等B. 等角的余角相等C. 同角的余角相等D. 同角的补角相等5.计算下列各式①(a3)2÷a5=1;②(−x4)2÷x4=x4;③(x−3)0=1(x≠3);④(−a3b)5÷12a5b2=2a4b,正确的有()A. 4个B. 3个C. 2个D. 1个6.要使(x2+ax+1)⋅(−6x3)的展开式中不含x4项,则a应等于()A. 6B. −1C. 16D. 07.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A. 9B. 10C. 11D. 129.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+2b)(a−b)=a2+ab−2b2D. a2−b2=(a+b)(a−b)10.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是().A. 2cmB. 4cmC. 5cmD. 不超过2cm二、填空题(本大题共5小题,共20.0分)11.若(2x3y2)⋅(−3x m y3)⋅(5x2y n)=−30x7y6,则m+n=.12.天平的左边挂重为(2m+3)(2m−3)+12m,右边挂重为(2m+3)2,请你猜一猜,天平倾斜.(填“会”或“不会”)13.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为__.14.如下图,直线AB,CD相交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为________.15.如图,直线AB,CD相交于点O,OE平分∠BOD,且∠AOE=140°,则∠AOC的度数为________________.三、解答题(本大题共10小题,共100.0分)16.(8分)计算:(1)2x⋅(3x2−x−5);ab2−4a2b)⋅(−4ab).(2)(1217.(10分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=70°,∠COF=90°,求:(1)∠BOD的度数;(2)写出图中互余的角;(3)∠EOF的度数.18.(10分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠1=100°,∠2=40°,|∠1−∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直角三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是____,与∠BOC互为友好角的是____,②当t=____时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC 与∠DOF互为友好角(自行画图分析).19.(10分)【注重实践探究】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出图2所表示的数学等式:;写出图3所表示的数学等式:;(2)利用上述结论,解决下列问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.20.(10分)爱动脑筋的丽丽和娜娜在做数学小游戏,两个人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为4xy(即A÷B=4xy).(1)若丽丽报的是x3y−6xy2,则娜娜应该报什么整式?(2)若娜娜也报x3y−6xy2,则丽丽应该报什么整式?21.(8分)一个棱长为103的正方体,在某种物体的作用下,其棱长以每秒扩大到原来的102倍的速度增长,求3秒后该正方体的棱长.22.(10分)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.23.(10分)如下图,直线AB,CD相交于点O.(1)若∠AOD比∠AOC大40°,求∠BOD的度数;(2)若∠AOD:∠AOC=3:2,求∠BOD的度数.24.(12分)在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.25.(12分)如图,,平分,反向延长射线至.(1)和是否互补?说明理由;射线是的平分线吗?说明理由;反向延长射线至点,射线将分成了的两个角,求.答案1.D2.B3.B4.C5.C6.D7.D8.C9.D10.D11.312.会13.30°或150°14.125°15.80°16.解:(1)原式=6x3−2x2−10x(2)原式=−2a2b3+16a3b2.17.解:(1)∵∠AOC=70°∴∠BOD=∠AOC=70°;(2)∠AOC和∠BOF,∠BOD和∠BOF,∠EOF和∠EOD,∠BOE和∠EOF;(3)因为OE平分∠BOD,∠BOD=70°所以∠BOE=35°,因为∠COF=90°,且A、O、B三点在一条直线AB上,所以∠BOF=180°−70°−90°=20°,所以∠EOF=∠BOE+∠BOF=35°+20°=55°.18.解:(1)①∠AOE;∠BOD或∠AOC;②15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120°−5t|∠BOC−∠DOF|=60°,表示为|120°−5t−3t|=60°即|120°−8t|=60°去绝对值得120°−8t=60°(如图1)或8t−120°=60°(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t−120°|∠BOC−∠DOF|=60°,表示为|5t−120°−3t|=60°即|2t−120°|=60°去绝对值得2t−120°=60°或120°−2t=60°(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.19.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a−b−c)2=a2+b2+c2+2bc−2ab−2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2−(2ab+2bc+2ac)=(a+b+c)2−2(ab+bc+ac)=112−2×38=45.20.解:(1)∵A=x3y−6xy2,∴B=(x3y−6xy2)÷4xy=14x2−32y,∴娜娜应该报的整式为14x2−32y;(2)A=(x3y−6xy2)×4xy=4x4y2−24x2y3;21.解:3秒后该正方体的棱长为109.22.解:(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9.因为x2−4x−1=0,所以x2−4x=1.所以原式=3(x2−4x)+9=3+9=12.23.解:(1)设∠AOC=x,则∠AOD=x+40°,∴x+x+40°=180°,∴∠BOD=x=70°.(2)设∠AOD=3x,∠AOC=2x,∴3x+2x=180°,x=36°,∴∠BOD=∠AOC=72°.24.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD−∠BOD=90°+90°−40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD−∠BOD=82°+110°−∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°−∠BOD,∴∠BOD=82°+110°=64°,3答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD−∠BOD=α+β−∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β−∠BOD,∴∠BOD=α+β,n+1答:∠BOD=α+β.n+125.解:(1)互补.理由:因为∠AOD+∠BOC=360°−∠AOB−∠DOC=360°−90°−90°=180°,所以∠AOD和∠BOC互补.(2)OF是∠BOC的平分线.理由:因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°−∠DOC−∠DOE=90°−∠DOE,∠BOF=180°−∠AOB−∠AOE=90°−∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180,所以90+7x+3x=180,解方程得:x=9,所以∠AOD=180−∠BOC=180−14x=54.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90+7x+4x=180,,解得:x=9011所以∠AOD=180−∠BOC=180−14x=720.11)°.综上所述,∠AOD的度数是54°或(72011。
七年级下学期第一次月考数学试卷范围:第一章~第二章满分:150分考试用时:120分钟题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列各式可以用平方差公式计算的是()A. (x−y)(x+y)B. (x−y)(y−x)C. (x−y)(−y+x)D. (x−y)(−x+y)2.下列运算正确的是()A. a2⋅a3=a5B. (−a)4=−a4C. (a2)3=a5D. a2+a3=a53.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)24.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“S”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A. 4a−8bB. 2a−3bC. 2a−46D. 4a−10b5.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列等式不正确的是A. a+b=12B. a−b=2C. ab=35D. a2+b2=846.下列多项式乘以多项式能用平方差公式计算的是()A. (−x+3y)(−x−3y)B. (x+3y)(−x−3y)C. (x−3y)(−x+3y)D. (−x−3y)(−x−3y).7.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A. 2017B. 2016C. 191D. 1908.计算(−8m4n+12m3n2−4m2n3)÷(−4m2n)的结果为()A. 2m2n−3mn+n2B. 2n2−3mn2+n2C. 2m2−3mn+n2D. 2m2−3mn+n9.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 邻补角10.下列说法不正确的是()A. 钝角没有余角,但一定有补角B. 若两个角相等且互补,则它们都是直角C. 锐角的补角比该锐角的余角大D. 一个锐角的余角一定比这个锐角大11.如图,过点P作直线l的垂线和斜线,叙述正确的是().A. 都能作且只能作一条B. 垂线能作且只能作一条,斜线可作无数条C. 垂线能作两条,斜线可作无数条D. 均可作无数条12.小明参加跳远比赛,他从地面踏板P处起跳落到沙坑中,两脚后跟与沙坑的接触点分别为A,B,小明未站稳,一只手撑到沙坑C点,则跳远成绩测量正确的图是()A. B. C. D.13.已知直角三角形ABC中,∠ACB=90°,AC=4,BC=3,AB=5,点D从点A到点B沿AB运动,CD=x,则x的取值范围是()≤x≤3A. 125≤x<4B. 125≤x≤4C. 125≤x≤5D. 12514.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B.C. D.15.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)9二、填空题(本大题共5小题,共25.0分)16.若单项式3x2y与−2x3y3的积为mx5y n,则m+n=.17.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为____.18.若a+2b+3c=10,且4a+3b+2c=15,则a+b+c=_________.19.如图所示,AD//EF//BC,AC//EN,则图中与∠1相等的角有个.20.如图,在平面直角坐标系xOy中,点A(0,6),点B(4,3),P是x轴上的一个动点.作OQ⊥AP,垂足为Q,则点Q到直线AB的距离的最大值为______.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(3+1)(32+1)(34+1)(38+1)(316+1)(332+1).22. (8分)先化简,再求值:(2x +3y)2−(2x +y)(2x −y),其中x =13,y =−12.23. (10分)某校八年级一班数学兴趣小组在探索末尾数字是5的两位数的平方时发现:252=100×2×(2+1)+25=625,452=100×4×(4+1)+25=2025,…即:末尾数字是5的两位数的平方,可以先写出它的十位数字与其下一个自然数的乘积,再在末尾接着写上25.例如:752=5625.请问:该结论正确吗?若两位数的十位数字为m ,请用代数式说明理由.24. (12分)补全下列推理过程:如图,已知AB//CE ,∠A =∠E ,试说明:∠CGD =∠FHB . 解:因为AB//CE( ),所以∠A=∠().因为∠A=∠E(已知),所以∠=∠().所以//().所以∠CGD=∠().因为∠FHB=∠GHE(),所以∠CGD=∠FHB().25.(12分)小红家有一块L型的菜地,如图所示,要把L型的菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a m,下底都是b m,高都是(b−a)m,请你帮小红家算一算这块菜地的面积共有多少,并求出当a=10,b=30时,L型菜地的总面积.26.(14分)已知∠AOC=40°,∠BOD=30°,∠AOC和∠BOD均可绕点O进行旋转,点M,O,N在同一条直线上,OP是∠COD的平分线.(1)如图1,当点A与点M重合,点B与点N重合,且射线OC和射线OD在直线MN的同侧时,求∠BOP的余角的度数;(2)在(1)的基础上,若∠BOD从ON处开始绕点O逆时针方向旋转,转速为5°/s,同时∠AOC从OM处开始绕点O逆时针方向旋转,转速为3°/s,如图2所示,当旋转6s时,求∠DOP的度数.27.(16分)如图所示,在一次军事演习中,红方侦察员发现:蓝方指挥部点P在A区内,且到铁路FG与公路CE的距离相等,到两通讯站C和D的距离也相等.如果你是红方的指挥员,请你在下图中标出蓝方指挥部点P的位置.(保留作图痕迹,不必写作法)答案1.A2.A3.A4.A5.D6.A7.D8.C9.A10.D11.B12.D13.C14.B15.C16.−217.1318.519.520.27521.解:设:S=(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)两边乘以(3−1)得(3−1)S=(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)2S=(32−1)(32+1)(34+1)(38+1)(316+1)(332+1)=(34−1)(34+1)(38+1)(316+1)(332+1)=364−1.∴S=364−12即原式=364−12.22.解:(2x+3y)2−(2x+y)(2x−y)=(4x2+12xy+9y2)−(4x2−y2)=4x 2+12xy +9y 2−4x 2+y 2=12xy +10y 2,当x =13,y =−12时,原式=12×13×(−12)+10×(−12)2=12.23.解:经计算可知该结论是正确,若两位数的十位数字为m ,依题意有(10m +5)2=100m 2+100m +25=100m(m +1)+25.24.已知 ADC 两直线平行,内错角相等 ADC E 等量代换 AD EF 同位角相等,两直线平行 GHE 两直线平行,同位角相等 对顶角相等 等量代换25.解:这块菜地的面积共有(b 2−a 2)m 2,当a =10,b =30时,L 型菜地的总面积为800m 2.26.解:(1)如图1,∵∠COD =180°−40°−30°=110°,OP 是∠COD 的平分线. ∴∠COP =∠DOP =12∠COD =55°,∴∠BOP =∠BOD +∠DOP =30°+55°=85°, ∴∠BOP 的余角为90°−85°=5°;(2)如图2,由(1)可知∠AOC =40°,∠BOD =30°, 由旋转可得,∠BON =5×6=30°,∠MOA =3×6=18°, ∴∠MOC =∠AOC −∠MOA =40°−18°=22°,∴∠COD =180°−∠MOC −∠BOD −∠BON =180°−22°−30°−30°=98°, ∵OP 平分∠COD ,∴∠DOP =∠COP =12∠COD =12×98°=49°,27.如图1所示11。
七年级(下)第一次月考数学试卷一、细心填一填(每题2分、计24分)1.计算:a3•a=;(a2)3÷a2=.2.计算:(﹣3.14 )0=;(﹣2)﹣3=.3.若am=3,an=5,则am+n=;(﹣2x2y)2=.4.在△ABC中,∠A+∠B=88°,则∠C=,这个三角形是三角形.5.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.6.如图,如果希望直线c∥d,那么需要添加的条件是:或.7.若等腰三角形的两边的长分别是5cm、7cm,则它的周长为cm.8.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠B=50°,则∠BDF=°.9.0.1252016×(﹣8)2017=.10.如图,在△ABC中,AD是高,AE是角平分线,∠B=28°,∠C=60°,则∠DAE=°.11.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC 的面积为36cm2,则△BEF的面积=.12.若10m=0.2,10n=4,9m÷3n的值是.二、精心选一选(每题只有一个符合要求的答案,每题3分,计24分).13.∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定14.DNA是每一个生物携带自身基因的载体,它是遗传物质脱氧核糖核酸的英文简称,DNA 分子的直径只有0.0000007cm,则这个数用科学记数法表示是()A.7×10﹣6cm B.0.7×108cm C.0.7×10﹣8cm D.7×10﹣7cm15.画△ABC中BC边上的高,下面的画法中,正确的是()A.B. C.D.16.下面是一名学生所做的4道练习题:①(﹣3)0=1;②a3+a3=a6;③4m﹣4=;④(xy2)3=x3y6,他做对的个数是()A.0 B.1 C.2 D.317.如图所示,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判断a∥b的是()A.①②③④B.①③④C.①③D.②④18.某花园内有一块五边形的空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2m长为半径的扇形区域(阴影部分)种上花草,那么种上花草的扇形区域总面积是()A.6πm2B.5πm2C.4πm2D.3πm219.如图,一个正方形和两个等边三角形的位置如图所示,若∠2=50°,则∠1+∠3=()A.90°B.100°C.130°D.180°20.任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2017,则m的值是()A.46 B.45 C.44 D.43三、耐心解一解(用你所学的知识解答下面各题,写出必要的解题过程)(共72分)21.计算:(1)(﹣)﹣1+(﹣2)2×50﹣()﹣2(2)(x2)3÷(x•x2)2(3)(x﹣y)3(y﹣x)2(x﹣y)+2(x﹣y)6(4)(﹣2a3)2﹣3a2•a4+a8÷a2(5)a2•a6+a3•(﹣a3)2+(﹣a4)2(6)(﹣3a3)2•a3+(﹣4a)2•a7+(﹣5a3)3.22.根据题意结合图形填空:已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由答:是,理由如下:∵AD⊥BC,EG⊥BC()∴∠4=∠5=90°()∴AD∥EG()∴∠1=∠E()∠2=∠3()∵∠E=∠3()∴(等量代换)∴AD是∠BAC的平分线()23.如图,∠B=62°,∠1=62°,∠D=36°.(1)试说明AB∥CD;(2)求∠A的度数.24.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A对应点A′,点B、C分别对应点B′、C′.(1)画出平移后的△A′B′C′;(2)△A′B′C′的面积是;(3)连接AA′,CC′,则这两条线段之间的关系是.25.小明学习了“第八章幂的运算”后做这样一道题:若(2x﹣1)2x+2=1,求x的值,他解出来的结果为x=1,老师说小明考虑问题不全面,聪明的你能帮助小明解决这个问题吗?小明解答过程如下:解:因为1的任何次幂为1,所以2x﹣1=1.即x=1.故(2x﹣1)2x+2=14=1,所以x=1.你的解答是:.26.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.27.在△ABC中,∠A=50°,点D,E分别是边AC,AB上的点(不与A,B,C重合),点P 是平面内一动点(P与D,E不在同一直线上),设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示,则∠1+∠2=(用α的代数式表示);(2)若点P在ABC的外部,如图(2)所示,则∠α,∠1,∠2之间有何关系?写出你的结论,并说明理由.(3)当点P在边CB的延长线上运动时,试画出相应图形,标注有关字母与数字,并写出对应的∠α,∠1,∠2之间的关系式.(不需要证明)2016-2017学年江苏省镇江市句容市华阳片七年级(下)第一次月考数学试卷参考答案与试题解析一、细心填一填(每题2分、计24分)1.计算:a3•a=a4;(a2)3÷a2=a4.【考点】4H:整式的除法;46:同底数幂的乘法.【分析】原式利用同底数幂的乘法法则计算即可;原式利用幂的乘方运算法则及同底数幂的除法法则计算即可.【解答】解:原式=a4;原式=a6÷a2=a4,故答案为:a4;a42.计算:(﹣3.14 )0=1;(﹣2)﹣3=﹣.【考点】6F:负整数指数幂;6E:零指数幂.【分析】根据零次幂,负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:(﹣3.14 )0=1;(﹣2)﹣3=﹣,故答案为:1,﹣.3.若am=3,an=5,则am+n=15;(﹣2x2y)2=4x4y2.【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法.【分析】根据同底数幂的运算法则可得am+n=am•an=15,由幂的运算法则可得(﹣2x2y)2=4x4y2.【解答】解:∵am=3,an=5,∴am+n=am•an=15,(﹣2x2y)2=4x4y2,故答案为:15,4x4y2.4.在△ABC中,∠A+∠B=88°,则∠C=92°,这个三角形是钝角三角形.【考点】K7:三角形内角和定理.【分析】先根据三角形内角和定理求出∠C的度数,进而可得出结论.【解答】解:∵在△ABC中,∠A+∠B=88°,∴∠C=180°﹣88°=92°,∴△ABC是钝角三角形.故答案为:92°,钝角.5.八边形的内角和为1080°;一个多边形的每个内角都是120°,则它是六边形.【考点】L3:多边形内角与外角.【分析】首先设这个正多边形的边数为n,根据多边形内角和公式:180°(n﹣2),列出方程进行计算即可.【解答】解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.设这个正多边形的边数为n,由题意得:(n﹣2)×180=120n解得:n=6.故答案为:六.6.如图,如果希望直线c∥d,那么需要添加的条件是:∠3=∠5或∠4=∠6.【考点】J9:平行线的判定.【分析】此题可根据内错角相等、两直线平行,或同位角相等、两直线平行添加条件.【解答】解:∵∠3=∠5,∴c∥d,或∵∠4=∠6,∴c∥d,故答案为:∠3=∠5或∠4=∠6.7.若等腰三角形的两边的长分别是5cm、7cm,则它的周长为17或19cm.【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】根据等腰三角形的性质,分两种情况:①当腰长为5cm时,②当腰长为7cm时,分别进行求解即可.【解答】解:①当腰长为5cm时,三角形的三边分别为5cm,5cm,7cm,符合三角形的三关系,则三角形的周长=5+5+7=17(cm);②当腰长为7cm时,三角形的三边分别为5cm,7cm,7cm,符合三角形的三关系,则三角形的周长=5+7+7=19(cm);故答案为:17或19.8.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠B=50°,则∠BDF=80°.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【分析】首先利用平行线的性质得出∠ADE=50°,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵BC∥DE,若∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故答案为:80.9.0.1252016×(﹣8)2017=﹣8.【考点】47:幂的乘方与积的乘方.【分析】根据积的乘方以及幂的乘方即可求出答案.【解答】解:原式=()2016×(﹣8)2016×(﹣8)=1×(﹣8)=﹣8故答案为:﹣810.如图,在△ABC中,AD是高,AE是角平分线,∠B=28°,∠C=60°,则∠DAE=16°.【考点】K7:三角形内角和定理.【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠CAE,根据直角三角形两锐角互余求出∠DAC,然后根据∠DAE=∠EAC﹣∠DAC代入数据计算即可得解.【解答】解:在△ABC中,∵∠B=28°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣28°﹣60°=92°,∵AE是的角平分线,∴∠EAC=∠BAC=46°,∵AD是高,∴∠ADC=90°,∴在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣60°=30°,∴∠DAE=∠EAC﹣∠DAC=46°﹣30°=16°.故答案为16.11.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC 的面积为36cm2,则△BEF的面积=9cm2.【考点】K3:三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵AE=DE,∴S△BDE=S△ABE,S△CDE=S△ACE,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BCE=S△ABC=×36=18(cm2);∵EF=CF,∴S△BEF=S△BCF,∴S△BEF=S△BCE=×18=9(cm2),即△BEF的面积是9cm2,故答案为:9cm2.12.若10m=0.2,10n=4,9m÷3n的值是.【考点】48:同底数幂的除法.【分析】由9m÷3n=32m÷3n=32m﹣n,可由10m=0.2、10n=4根据幂的运算得出10m+1=2、10n=(10m+1)2,即n=2m+2,从而得出答案.【解答】解:∵10m=0.2,10n=4,∴10×10m=2,10n=22,∴10m+1=2,10n=(10m+1)2,∴10n=102m+2,则n=2m+2,即2m﹣n=﹣2,∴9m÷3n=32m÷3n=32m﹣n=3﹣2=,故答案为:.二、精心选一选(每题只有一个符合要求的答案,每题3分,计24分).13.∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定【考点】J6:同位角、内错角、同旁内角.【分析】根据同位角的定义,平行线的性质,两直线平行,同位角相等,可求∠2的度数.【解答】解:∵∠1与∠2是两条直线被第三条直线所截的同位角,两条直线不一定平行,∴∠2不能确定.故选:D.14.DNA是每一个生物携带自身基因的载体,它是遗传物质脱氧核糖核酸的英文简称,DNA 分子的直径只有0.0000007cm,则这个数用科学记数法表示是()A.7×10﹣6cm B.0.7×108cm C.0.7×10﹣8cm D.7×10﹣7cm【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000007=7×10﹣7,故选:D.15.画△ABC中BC边上的高,下面的画法中,正确的是()A.B. C.D.【考点】K2:三角形的角平分线、中线和高.【分析】过三角形的顶点向对边作垂线,顶点与垂足之间的线段叫做三角形的高,据此判断即可.【解答】解:由题可得,过点A作BC的垂线段,垂足为D,则AD是BC边上的高,∴表示△ABC中BC边上的高的是D选项.故选:D.16.下面是一名学生所做的4道练习题:①(﹣3)0=1;②a3+a3=a6;③4m﹣4=;④(xy2)3=x3y6,他做对的个数是()A.0 B.1 C.2 D.3【考点】6E:零指数幂;35:合并同类项;47:幂的乘方与积的乘方;49:单项式乘单项式.【分析】分别根据零指数幂,合并同类项的法则,负指数幂的运算法则,幂的乘方法则进行分析计算.【解答】解:①根据零指数幂的性质,得(﹣3)0=1,故正确;②根据同底数的幂运算法则,得a3+a3=2a3,故错误;③根据负指数幂的运算法则,得4m﹣4=,故错误;④根据幂的乘方法则,得(xy2)3=x3y6,故正确.故选C.17.如图所示,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判断a∥b的是()A.①②③④B.①③④C.①③D.②④【考点】J9:平行线的判定.【分析】根据平行线的判定定理,结合所给条件进行判断即可.【解答】解:①∠1=∠2能判断a∥b(同位角相等,两直线平行);②∠3=∠6不能判断a∥b;③∠4+∠7=180°能判断a∥b(同旁内角互补,两直线平行);④∠5+∠3=180°能判断a∥b(同旁内角互补,两直线平行);综上可得①③④可判断a∥b.故选B.18.某花园内有一块五边形的空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2m长为半径的扇形区域(阴影部分)种上花草,那么种上花草的扇形区域总面积是()A.6πm2B.5πm2C.4πm2D.3πm2【考点】MO:扇形面积的计算;L3:多边形内角与外角.【分析】因为5个扇形的半径相等,所以5个扇形的面积和即为圆心角是540°,半径是2m 的扇形的面积.【解答】解:根据题意,得扇形的总面积==6π(m2).故选A.19.如图,一个正方形和两个等边三角形的位置如图所示,若∠2=50°,则∠1+∠3=()A.90°B.100°C.130°D.180°【考点】LE:正方形的性质;KK:等边三角形的性质.【分析】根据三角形的外角和为360°列出方程即可解决问题.【解答】解:∵正方形的内角为90°,等边三角形的内角为60°,又∵△ABC的外角和为360°,∴(∠1+90°)+(∠2+60°)+(60°+∠3)=360°,∵∠2=50°,∴∠1+∠3=100°,故选B.20.任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2017,则m的值是()A.46 B.45 C.44 D.43【考点】37:规律型:数字的变化类;1G:有理数的混合运算.【分析】根据题意可知2的立方等于2个连续的奇数相加,3的立方等于三个连续的奇数相加,4的立方等于4个连续的奇数相加,由此可以推测哪个数的立方就是多少个连续的奇数相加,从而可以的m的值.【解答】解:∵23=3+5,33=7+9+11,43=13+15+17+19,…,2017=2×1009﹣1,1009=(2+3+4+…+45)﹣50,∴若m3分裂后其中有一个奇数是2017,则m=45,故选B.三、耐心解一解(用你所学的知识解答下面各题,写出必要的解题过程)(共72分)21.计算:(1)(﹣)﹣1+(﹣2)2×50﹣()﹣2(2)(x2)3÷(x•x2)2(3)(x﹣y)3(y﹣x)2(x﹣y)+2(x﹣y)6(4)(﹣2a3)2﹣3a2•a4+a8÷a2(5)a2•a6+a3•(﹣a3)2+(﹣a4)2(6)(﹣3a3)2•a3+(﹣4a)2•a7+(﹣5a3)3.【考点】4I:整式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式利用积的乘方与幂的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果;(3)原式变形后,利用同底数幂的乘法法则计算,合并即可得到结果;(4)原式利用幂的乘方与积的乘方运算法则计算,再利用同底数幂的乘法法则计算,合并即可得到结果;(5)原式利用幂的乘方与积的乘方运算法则计算,再利用同底数幂的乘法法则计算,合并即可得到结果;(6)原式利用幂的乘方与积的乘方运算法则计算,再利用同底数幂的乘法法则计算,合并即可得到结果.【解答】解:(1)原式=﹣4+4﹣4=﹣4;(2)原式=x6÷x6=1;(3)原式=(x﹣y)6+2(x﹣y)6=3(x﹣y)6;(4)原式=4a6﹣3a6+a6=2a6;(5)原式=a8+a9+a8=2a8+a9;(6)原式=9a9+16a9﹣125a9=﹣100a9.22.根据题意结合图形填空:已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由答:是,理由如下:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直定义)∴AD∥EG(同位角相等,两条直线平行)∴∠1=∠E(两条直线平行,同位角相等)∠2=∠3(两条直线平行,内错角相等)∵∠E=∠3(已知)∴∠1=∠2(等量代换)∴AD是∠BAC的平分线(角平分线定义)【考点】JB:平行线的判定与性质.【分析】首先要根据平行线的判定证明两条直线平行,再根据平行线的性质证明有关的角相等,运用等量代换的方法证明AD所分的两个角相等,即可证明.【解答】解:是,理由如下:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直定义)∴AD∥EG(同位角相等,两条直线平行)∴∠1=∠E(两条直线平行,同位角相等)∠2=∠3(两条直线平行,内错角相等)∵∠E=∠3(已知)∴∠1=∠2 (等量代换)∴AD是∠BAC的平分线(角平分线定义)故答案为:已知;垂直定义;同位角相等,两条直线平行;两条直线平行,同位角相等;两条直线平行,内错角相等;已知;∠1=∠2;角平分线定义.23.如图,∠B=62°,∠1=62°,∠D=36°.(1)试说明AB∥CD;(2)求∠A的度数.【考点】J9:平行线的判定.【分析】(1)根据∠1=∠B可得出结论;(2)根据AB∥CD可得出∠A+∠D=180°,据此可得出结论.【解答】解:(1)∵∠B=62°,∠1=62°,∴∠B=∠1,∴AB∥CD;(2)∵AB∥CD,∴∠D+∠A=180°.又∵∠D=36°,∴∠A═144°.24.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A对应点A′,点B、C分别对应点B′、C′.(1)画出平移后的△A′B′C′;(2)△A′B′C′的面积是 3.5;(3)连接AA′,CC′,则这两条线段之间的关系是平行且相等.【考点】Q4:作图﹣平移变换.【分析】(1)利用A点平移规律得出对应点位置即可;(2)利用三角形面积公式求出即可;(3)利用平移规律得出两条线段之间的关系是平行且相等【解答】解:(1)如图所示:画出平移后的△A′B′C′;(2)△A′B′C′的面积是:3×3﹣×1×2﹣×1×3﹣×2×3=3.5;故答案为:3.5;(3)两条线段之间的关系是平行且相等.故答案为:平行且相等.25.小明学习了“第八章幂的运算”后做这样一道题:若(2x﹣1)2x+2=1,求x的值,他解出来的结果为x=1,老师说小明考虑问题不全面,聪明的你能帮助小明解决这个问题吗?小明解答过程如下:解:因为1的任何次幂为1,所以2x﹣1=1.即x=1.故(2x﹣1)2x+2=14=1,所以x=1.你的解答是:∵(2x﹣1)2x+2=1,∴当①2x﹣1=1,解得:x=1,此时(2x﹣1)2x+2=14=1,故x=1;②当2x+2=0,解得:x=﹣1,则(2x﹣1)2x+2=(﹣2)0=1;③当x=0时,原式=(﹣1)2=1,故x=0;综上所述:x=﹣1或x=0或x=1..【考点】6E:零指数幂;1E:有理数的乘方.【分析】分别利用零指数幂的性质和有理数的乘方分别讨论得出答案.【解答】解:∵(2x﹣1)2x+2=1,∴当①2x﹣1=1,解得:x=1,此时(2x﹣1)2x+2=14=1,故x=1;②当2x+2=0,解得:x=﹣1,则(2x﹣1)2x+2=(﹣2)0=1;③当x=0时,原式=(﹣1)2=1,故x=0;综上所述:x=﹣1或x=0或x=1.26.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【考点】JB:平行线的判定与性质.【分析】(1)根据垂直于同一条直线的两条直线互相平行即可得出答案;(2)先根据已知条件判断出DG∥BC,再根据两直线平行,同位角相等即可得出结论.【解答】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∵垂直于同一直线的两直线互相平行,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.27.在△ABC中,∠A=50°,点D,E分别是边AC,AB上的点(不与A,B,C重合),点P 是平面内一动点(P与D,E不在同一直线上),设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示,则∠1+∠2=50°+∠α(用α的代数式表示);(2)若点P在ABC的外部,如图(2)所示,则∠α,∠1,∠2之间有何关系?写出你的结论,并说明理由.(3)当点P在边CB的延长线上运动时,试画出相应图形,标注有关字母与数字,并写出对应的∠α,∠1,∠2之间的关系式.(不需要证明)【考点】K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)根据∠AEP=180°﹣∠2,∠ADP=180°﹣∠1和四边形AEPD的内角和为360°,表示出∠α,∠1,∠2之间的关系;(2)根据三角形外角的性质,∠2﹣∠α=∠1﹣50°,求出∠α,∠1,∠2之间的关系;(3)画出符号条件的图形,根据图形和(2)的结论解答即可.【解答】解:(1)∵∠AEP=180°﹣∠2,∠ADP=180°﹣∠1,∴180°﹣∠2+180°﹣∠1+∠α+50°=360°,即∠1+∠2=50°+∠α;(2)根据三角形外角的性质可知,∠2﹣∠α=∠1﹣50°,则∠2﹣∠1=∠α﹣50°;(3)如图,①∠2﹣∠α=∠1﹣50°,则∠2﹣∠1=∠α﹣50°;如图,②∠1=50°+∠α+∠2,∠1﹣∠2=50°+∠α.。
七年级下学期第一次月考数学试题(时间:80分钟 满分:120分)一、选择题:(每小题3分,共计42分)1、面积为5的正方形的边长在 ( )A 0和1之间B 1和2之间C 2和3之间D 3和4之间2、下列命题正确的是 ( )A 一个角的补角是钝角B 两条直线和第三条直线相交,同位角相等C 连接两点的线段叫两点的距离D 对顶角相等3、如图,直线AB ,CD 相交于点O ,OE AB ⊥于O ,55COE ︒∠=,则BOD ∠的度数是( ) A 40︒ B 45︒ C 30︒ D 35︒4、如图,将ABC V 沿AB 方向平移至DEF V ,且5AB =,2DB =,则CF 的长度为( )A 5B 3C 2D 15、如图,下列推理及所注明的理由都正确的是 ( )A 因为DE //BC ,所以1C ∠=∠ (同位角相等,两直线平行)B 因为23∠=∠,所以 DE //BC (两直线平行,内错角相等)C 因为DE //BC ,所以 23∠=∠ (两直线平行,内错角相等)D 因为1C ∠=∠,所以DE //BC (两直线平行,同位角相等)6、同一平面内的四条直线满足a b ⊥,b c ⊥,c d ⊥,则下列式子成立的是 ( )A a //dB a d ⊥C b d ⊥D a c ⊥7、若225a =,3b =,则a b +等于 ( )A 8-B 8±C 2±D 8±或 2±8、给出下列实数:3,3.14 ,364,5,2- ,5π,4 ,13 ,3.102100210002L L ,其中无理数有 ( ) A 2个 B 3个 C 4个 D 5个9、如图,不能判断直线AB CD //的条件的是 ( )A 13∠=∠B 24180∠+∠=dC 45∠=∠D 23∠=∠10、如图,与B ∠是同旁内角的有 ( )A 1个B 2个C 3个D 4个11、如图,AB CD // ,EF BD ⊥,垂足为E ,150∠=d,则2∠的度数为 ( )A 50dB 40dC 30dD 20d12、已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 0ab > B 0a b +< C a b < D 0a b -> 13、已知一个正方体的表面积为12 2dm ,则 这个正方体的棱长为 ( )A 1 dm B2dm C 6dm D 3 dm 14、关于()2a 与 2a ,下列结论中正确的是 ( )A a 为任意实数时,都有()2a =2a 成立。
七年级(下)第一次月考数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.a4+a5=a9 B.a3•a3•a3=3a3 C.2a4×3a5=6a9D.(﹣a3)4=a72.×的值为()A.﹣1 B.1 C.0 D.20123.设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab4.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣195.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣66.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①②B.③④C.①②③D.①②③④7.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b28.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.19.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b810.已知a=255,b=344,c=433,则a、b、c的大小关系为()A.a>b>c B.a>c>b C.b>c>a D.b>a>c二、填空题(共6小题,每小题3分,共18分)11.计算(2﹣3)0是.12.设x2+mx+100是一个完全平方式,则m=.13.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是.14.若m2﹣n2=6,且m﹣n=3,则m+n=.15.若x,y为正整数,且2x•2y=32,则x,y的值共有对.16.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.三、解答题(共8题,共52分)17.运用乘法公式计算:20162.18.计算:(1)(﹣1)2012+(﹣)﹣2﹣(3.14﹣π)0(2)122﹣123×121.(3)4×105×5×106(4)(6m2n﹣6m2n2﹣3m2)÷(﹣3m2)19.用方程解决问题:王老师把一个正方形的边长增加了4cm得到的新正方形的面积比原来正方形的面积增加了64cm2,求原来正方形的面积.20.说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.21.先化简,再求值:(a+1+b)(a+1﹣b)﹣(a+1)2,其中a=,b=﹣2.22.(1)对于算式2(3+1)(32+1)(34+1)(38+1)+1不用计算器,你能计算出来吗?(2)你知道它的计算结果的个位是几吗?(3)根据(1)推测(a+1)(a2+1)(a4+1)(a8+1)(a16+1)…(a1024+1)=.2015-2016学年陕西省西安七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.a4+a5=a9 B.a3•a3•a3=3a3 C.2a4×3a5=6a9D.(﹣a3)4=a7【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】①同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加;②幂的乘方法则,幂的乘方底数不变指数相乘;③合并同类项法则,把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.【解答】解:A、a4+a5=a4+a5,不是同类项不能相加;B、a3•a3•a3=a9,底数不变,指数相加;C、正确;D、(﹣a3)4=a12.底数取正值,指数相乘.故选C.2.×的值为()A.﹣1 B.1 C.0 D.2012【考点】幂的乘方与积的乘方.【分析】根据积的乘方得出)×(﹣)]2012,求出即可.【解答】解:原式=[(﹣)×(﹣)]2012=12012=1,故选B.3.设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab【考点】完全平方公式.【分析】已知等式两边利用完全平方公式展开,移项合并即可确定出A.【解答】解:∵(5a+3b)2=(5a﹣3b)2+A∴A=(5a+3b)2﹣(5a﹣3b)2=(5a+3b+5a﹣3b)(5a+3b﹣5a+3b)=60ab.故选B4.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19【考点】完全平方公式.【分析】把x2+y2利用完全平方公式变形后,代入x+y=﹣5,xy=3求值.【解答】解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.5.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:D.6.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①②B.③④C.①②③D.①②③④【考点】多项式乘多项式.【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.7.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b2【考点】完全平方公式.【分析】根据两数的符号相同,所以利用完全平方和公式计算即可.【解答】解:(﹣a﹣b)2=a2+2ab+b2.故选C.8.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【考点】多项式乘多项式.【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.9.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b8【考点】平方差公式;完全平方公式.【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2﹣b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4﹣b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选B.10.已知a=255,b=344,c=433,则a、b、c的大小关系为()A.a>b>c B.a>c>b C.b>c>a D.b>a>c【考点】幂的乘方与积的乘方.【分析】先得到a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,从而可得出a、b、c的大小关系.【解答】解:∵a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,∴b>c>a.故选C.二、填空题(共6小题,每小题3分,共18分)11.计算(2﹣3)0是1.【考点】零指数幂.【分析】根据任何不为0的数的零次幂为1计算即可.【解答】解:∵2﹣3≠0,∴(2﹣3)0=1,故答案为:1.12.设x2+mx+100是一个完全平方式,则m=±20.【考点】完全平方式.【分析】原式利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+100是一个完全平方式,∴m=±20,故答案为:±2013.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是a+b=c.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a、b、c之间的关系.【解答】解:∵2a=5,2b=10,∴2a×2b=2a+b=5×10=50,∵2c=50,∴a+b=c.故答案为:a+b=c.14.若m2﹣n2=6,且m﹣n=3,则m+n=2.【考点】平方差公式.【分析】将m2﹣n2按平方差公式展开,再将m﹣n的值整体代入,即可求出m+n 的值.【解答】解:m2﹣n2=(m+n)(m﹣n)=3(m+n)=6;故m+n=2.15.若x,y为正整数,且2x•2y=32,则x,y的值共有4对.【考点】解二元一次方程;同底数幂的乘法.【分析】由2x•2y=32,可得x+y=5,又由x,y为正整数,即可求得答案.【解答】解:∵2x•2y=2x+y,32=25,且2x•2y=32∴x+y=5,∵x,y为正整数,∴x=1,y=4或x=2,y=3或x=3,y=2或x=4,y=1;∴x,y的值共有4对.故答案为:4.16.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【考点】平方差公式的几何背景.【分析】左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a ﹣b)=(a+b)(a﹣b),根据面积相等即可解答.【解答】解:a2﹣b2=(a+b)(a﹣b).三、解答题(共8题,共52分)17.运用乘法公式计算:20162.【考点】完全平方公式.【分析】直接利用完全平方公式计算得出答案.【解答】解:20162=2=4000000+256+64000=4064256.18.计算:(1)(﹣1)2012+(﹣)﹣2﹣(3.14﹣π)0(2)122﹣123×121.(3)4×105×5×106(4)(6m2n﹣6m2n2﹣3m2)÷(﹣3m2)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)原式利用单项式乘以单项式法则计算即可得到结果;(4)原式利用多项式除以单项式法则计算即可得到结果.【解答】解:(1)原式=1+4﹣1=4;(2)原式=122﹣×=122﹣1222+1=﹣14761;(3)原式=20×1011=2×1012;(4)原式=﹣2n+2n2+1.19.用方程解决问题:王老师把一个正方形的边长增加了4cm得到的新正方形的面积比原来正方形的面积增加了64cm2,求原来正方形的面积.【考点】完全平方公式的几何背景;一元一次方程的应用.【分析】设这个正方形的边长为x厘米,根据等量关系:新正方形的面积=原正方形的面积+64,得出方程,解答即可.【解答】解:设这个正方形的边长为x厘米,根据题意得:(x+4)2=x2+64x2+8x+16=x2+648x+16=648x+16﹣16=64﹣168x=488x÷8=48÷8x=6这个正方形的边长为6cm,这个正方形的面积为36cm2.20.说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.【考点】整式的混合运算.【分析】原式中括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算,合并得到结果,即可做出判断.【解答】解:原式=(x2﹣2xy+y2﹣x+y2)÷(﹣2y)+y=x﹣y+y=x,则代数式的值与y无关.21.先化简,再求值:(a+1+b)(a+1﹣b)﹣(a+1)2,其中a=,b=﹣2.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2+2a+1﹣b2﹣a2﹣2a﹣1=﹣b2,当b=﹣2时,原式=﹣4.22.(1)对于算式2(3+1)(32+1)(34+1)(38+1)+1不用计算器,你能计算出来吗?(2)你知道它的计算结果的个位是几吗?(3)根据(1)推测(a+1)(a2+1)(a4+1)(a8+1)(a16+1)…(a1024+1)=或211.【考点】平方差公式.【分析】(1)原式中的2变形为(3﹣1),利用平方差公式计算即可得到结果;(2)归纳总结得到一般性规律,即可确定出结果的个位;(3)分a≠1与a=1两种情况,求出原式的值即可.【解答】解:(1)原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)+1=(32﹣1)(32+1)(34+1)(38+1)+1=(34﹣1)(34+1)(38+1)+1=(38﹣1)(38+1)+1=+1=+1=364﹣1+1=364;(2)31=3,32=9,33=27,34=81,35=243,依次以3,9,7,1循环,∵64÷4=16,∴364的个位数字是1;(3)当a≠1时,原式=(a﹣1)(a+1)(a2+1)(a4+1)(a8+1)(a16+1)…(a1024+1)=(a2﹣1)(a2+1)(a4+1)(a8+1)(a16+1)…(a1024+1)=(a4﹣1)(a4+1)(a8+1)(a16+1)…(a1024+1)=(a8﹣1)(a8+1)(a16+1)…(a1024+1)=(a16﹣1)(a16+1)…(a1024+1)=(a2048﹣1)=;当a=1时,原式=211.2017年3月4日。
七年级(下)第一次月考数学试卷一、选择题(共计40分)1.下列现象是数学中的平移的是()A.秋天的树叶从树上随风飘落B.碟片在光驱中运行C.电梯由一楼升到顶楼D.“神舟”七号宇宙飞船绕地球运动2.∠1与∠2是两条平行直线被第三条直线所截的同旁内角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定3.(a4)2的计算结果为()A.2a6B.a6C.a8D.a164.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个5.如图,直线a∥b,∠1=60°,那么∠2等于()A.30°B.60°C.100°D.120°6.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定7.在下列各图的△ABC中,正确画出AC边上的高的图形是()A. B. C.D.8.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;129.如图,一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为()A.2πR2 B.4πR2 C.πR2D.不能确定10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠2二、填空题(每题4分,共40分)11.等腰三角形的两边长为5cm,10cm,则它的周长等于cm.12.一个多边形的内角和等于它的外角和,这个多边形是边形.13.若x、y是正整数,且a x=4,a y=8,则a x+y=.14.如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=48°.则∠B=度.15.一个承重架的结构如图所示,如果∠1=155°,那么∠2=度.16.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于度.17.如图是中国共产主义青年团团旗上的图案(图案本身没有字母),5个角的顶点A,B,C,D,E把外面的圆5等分,则∠A+∠B+∠C+∠D+∠E=度.18.如图小王从A点出发前进10米,向右转30°,再前进10米,又向右转30°,…这样一直走下去,他第一次回到出发点A时,一共走了米.19.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,则∠G=°.20.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是°.三、解答题:(共70分)21.计算(1)34×36(2)x•x7(3)a2•a4+(a3)2(4)(﹣2ab3c2)4.22.已知a m=2,a n=5,求a2m+n的值.23.小明家有一块三角形菜地,要种面积相等的四种蔬菜,请你设计两种方案,把这块地分成四块面积相等的三角形地块分别种植这四种蔬菜.24.如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,试判断DG与BC的位置关系,并说明理由.25.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=40°;(1)求∠BAE的度数;(2)求∠DAE的度数;(3)如果只知道∠B﹣∠C=40°,而不知道∠B∠C的具体度数,你能得出∠DAE的度数吗?如果能求出∠DAE的度数.26.已知,在△ABC中,∠ABC和∠ACD的平分线相交于点O,(1)若∠A=70°,则∠BOC=;(2)若∠A=80°,则∠BOC=;(3)试探索:∠BOC和∠A的关系,证明你的结论.2015-2016学年江苏省连云港市灌云县四队中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共计40分)1.下列现象是数学中的平移的是()A.秋天的树叶从树上随风飘落B.碟片在光驱中运行C.电梯由一楼升到顶楼D.“神舟”七号宇宙飞船绕地球运动【考点】生活中的平移现象.【分析】根据平移的定义,结合选项一一分析,排除错误答案.【解答】解:A、秋天的树叶从树上随风飘落不是沿直线运动,不符合平移定义,故错误;B、碟片在光驱中运行属于旋转,故错误;C、电梯由一楼升到顶楼沿直线运动,符合平移定义,故正确;D、“神舟”七号宇宙飞船绕地球运动不是沿直线运动,故错误.故选C.2.∠1与∠2是两条平行直线被第三条直线所截的同旁内角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定【考点】同位角、内错角、同旁内角.【分析】根据平行线的性质,两直线平行,同旁内角互补,求∠2的度数.【解答】解:∵∠1与∠2是两条平行直线被第三条直线所截的同旁内角,∴∠1+∠2=180°,∴∠2=180°﹣∠1=180°﹣50°=130°.故选:B.3.(a4)2的计算结果为()A.2a6B.a6C.a8D.a16【考点】幂的乘方与积的乘方.【分析】根据幂的乘方性质计算后即可判定选项.【解答】解:(a4)2=a4×2=a8.故选C.4.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;只有3,7,9和4,7,9能组成三角形.故选:B.5.如图,直线a∥b,∠1=60°,那么∠2等于()A.30°B.60°C.100°D.120°【考点】平行线的性质.【分析】由图知∠1与∠2的邻补角是内错角,因为a∥b,所以∠2=180°﹣∠1=120°.【解答】解:如图,∵∠2=∠3,又∵a∥b,∴∠3=∠1∴∠2=180°﹣∠1=120°.故选D.6.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【考点】三角形的外角性质.【分析】三角形的一个外角<与它相邻的内角,故内角>相邻外角;根据三角形外角与相邻的内角互补,故内角>90°,为钝角三角形.【解答】解:如图,∵∠1<∠B,∠1=180°﹣∠B,∴∠B>90°.∴△ABC是钝角三角形.故选:C.7.在下列各图的△ABC中,正确画出AC边上的高的图形是()A. B. C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形的高的概念判断.【解答】解:AC边上的高就是过B作垂线垂直AC交AC于某点,因此只有C符合条件,故选C.8.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;12【考点】幂的乘方与积的乘方.【分析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n即可.【解答】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.9.如图,一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为()A.2πR2 B.4πR2 C.πR2D.不能确定【考点】多边形内角与外角.【分析】依题意,因为图中的圆形喷水池形成的内角和度数为360°,为一个圆,易求出圆形喷水池的面积.【解答】解:圆形喷水池形成四边形,故(4﹣2)×180°=360°,为一个圆,故圆形喷水池的面积为πR2.故选C.10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠2 【考点】翻折变换(折叠问题).【分析】根据翻折的性质可得∠3=∠A′DE,∠AED=∠A′ED,再利用三角形的内角和定理和三角形的外角性质分别表示出∠AED和∠A′ED,然后整理即可得解.【解答】解:如图,由翻折的性质得,∠3=∠A′DE,∠AED=∠A′ED,∴∠3=,在△ADE中,∠AED=180°﹣∠3﹣∠A,∠CED=∠3+∠A,∴∠A′ED=∠CED+∠2=∠3+∠A+∠2,∴180°﹣∠3﹣∠A=∠3+∠A+∠2,整理得,2∠3+2∠A+∠2=180°,∴2×+2∠A+∠2=180°,∴2∠A=∠1﹣∠2.故选A.二、填空题(每题4分,共40分)11.等腰三角形的两边长为5cm,10cm,则它的周长等于25cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为5cm和10cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)当5cm是腰长,10cm是底边时,5+5=10,不能组成三角形;(2)当10cm是腰长,5cm是底边时,能够组成三角形,周长等于10+10+5=25cm.所以三角形的周长为25cm.故填25cm.12.一个多边形的内角和等于它的外角和,这个多边形是四边形.【考点】多边形内角与外角.【分析】利用多边形的外角和以及四边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故答案为四.13.若x、y是正整数,且a x=4,a y=8,则a x+y=32.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则,底数不变,指数相加,把已知的两等式左右两边相乘即可得到所求式子的值.【解答】解:由a x=4,a y=8,两边相乘得:a x•a y=4×8,即a x+y=32.故答案为:3214.如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=48°.则∠B=42度.【考点】直角三角形的性质;平行线的性质.【分析】先根据两直线平行,同位角相等求出∠A,再根据直角三角形两锐角互余即可求出.【解答】解:∵CD∥AB,∠ECD=48°,∴∠A=∠ECD=48°,∵BC⊥AE,∴∠B=90°﹣∠A=42°.15.一个承重架的结构如图所示,如果∠1=155°,那么∠2=65度.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和解答.【解答】解:∵∠1=155°,∠2+90°=∠1,∴∠2=155°﹣90°=65°.故答案为:65.16.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于90度.【考点】方向角;平行线的性质;三角形内角和定理.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.【解答】解:∵C岛在A岛的北偏东50°方向,∴∠DAC=50°,∵C岛在B岛的北偏西40°方向,∴∠CBE=40°,∵DA∥EB,∴∠DAB+∠EBA=180°,∴∠CAB+∠CBA=90°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°.故答案为:90.17.如图是中国共产主义青年团团旗上的图案(图案本身没有字母),5个角的顶点A,B,C,D,E把外面的圆5等分,则∠A+∠B+∠C+∠D+∠E=180度.【考点】圆周角定理.【分析】连接CD,根据圆周角定理可证∠B=∠DCE,∠E=∠BDC,要求∠A+∠B+∠C+∠D+∠E的值,即可转化为求,∠A+∠BDC+∠DCE+∠ACE+∠ADB的值,也就是求∠A+∠ADC+∠ACD的值,根据三角形的内角和即可求得.【解答】解:连接CD,由圆周角定理知,∠B=∠DCE,∠E=∠BDC,∴∠A+∠B+∠C+∠D+∠E=∠A+∠BDC+∠DCE+∠ACE+∠ADB=∠A+∠ADC+∠ACD=1 80°.18.如图小王从A点出发前进10米,向右转30°,再前进10米,又向右转30°,…这样一直走下去,他第一次回到出发点A时,一共走了120米.【考点】多边形内角与外角.【分析】小王从A点出发,前进10米后向右转30°,再前进10米后又向右转30°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【解答】解:∵小王从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为360÷30=12,则一共走了12×10=120米.故答案为:120.19.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,则∠G=90°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠BMN+∠DNM=180°,再由角平分线的性质得出∠GMN+∠GNM=90°,根据三角形内角和定理即可得出结论.【解答】解:∵AB∥CD,∴∠BMN+∠DNM=180°.∵∠BMN与∠DNM的平分线相交于点G,∴∠GMN+∠GNM=(∠BMN+∠DNM)=90°,∴∠G=180°﹣90°=90°.故答案为:90.20.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是105°.【考点】翻折变换(折叠问题).【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=25°,根据平角定义,则∠EFC=155°(图a),进一步求得∠BFC=155°﹣25°=130°(图b),进而求得∠CFE=130°﹣25°=105°(图c).【解答】解:∵AD∥BC,∠DEF=25°,∴∠BFE=∠DEF=25°,∴∠EFC=155°(图a),∴∠BFC=155°﹣25°=130°(图b),∴∠CFE=130°﹣25°=105°(图c).故答案为:105.三、解答题:(共70分)21.计算(1)34×36(2)x•x7(3)a2•a4+(a3)2(4)(﹣2ab3c2)4.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】(1)、(2)根据同底数幂的乘法法则进行计算即可;(3)分别根据同底数幂的乘法法则及幂的乘方法则计算出各数,再合并同类项即可;(4)根据幂的乘方与积的乘方法则进行计算即可.【解答】解:(1)原式=310.(2)原式=x8;(3)原式=a6+a6=2a6;(4)原式=16a4b12c8.22.已知a m=2,a n=5,求a2m+n的值.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数的幂的乘方法则以及幂的乘方把所求的式子化成a2m+n=(a m)2•a n的形式,然后代入求解即可.【解答】解:a2m+n=(a m)2•a n=22×5=20.23.小明家有一块三角形菜地,要种面积相等的四种蔬菜,请你设计两种方案,把这块地分成四块面积相等的三角形地块分别种植这四种蔬菜.【考点】作图—应用与设计作图;三角形的面积.【分析】根据三角形的面积公式,只要是同一个高的情况下,底边相等即可,所以可以把三个边4等分;中位线构成的4个三角形;中线以及中线的中点构成的4个三角形.【解答】解:如图,①分别四等分三条边即可②中位线构成的4个三角形③中线以及中线的中点够成的4个三角形24.如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,试判断DG与BC的位置关系,并说明理由.【考点】平行线的判定与性质.【分析】根据垂直于同一条直线的两直线平行,先判定EF∥CD,根据两直线平行同位角相等,得∠1=∠DCB,结合已知,根据等量代换可得∠DCB=∠2,从而根据内错角相等两直线平行得证.【解答】解:DG∥BC.证明:∵CD⊥AB,EF⊥AB,∴EF∥CD;∴∠1=∠DCB,∵∠1=∠2,∴∠DCB=∠2,∴DG∥BC.25.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=40°;(1)求∠BAE的度数;(2)求∠DAE的度数;(3)如果只知道∠B﹣∠C=40°,而不知道∠B∠C的具体度数,你能得出∠DAE的度数吗?如果能求出∠DAE的度数.【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠A,根据角平分线定义求出即可;(2)求出∠BAD的度数,代入∠DAE=∠BAE﹣∠BAD求出即可;(3)根据∠BAE=、∠BAD=90°﹣∠B和已知求出即可.【解答】解:(1)∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE平分∠BAC,∴∠BAE=∠BAC=30°;(2)∵AD⊥BC,∴∠ADB=90°,∵∠B=80°,∴∠BAD=90°﹣80°=10°,∴∠DAE=∠BAE﹣∠BAD=30°﹣10°=20°;(3)能求出∠DAE的度数,理由是:∵由(1)和(2)可知:∠BAE=∠A=,∠BAD=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=(90°﹣∠B﹣∠C)﹣(90°﹣∠B)=∠B﹣∠C,∵∠B﹣∠C=40°,∴∠B=40°+∠C,∴∠DAE=(40°+∠C)﹣∠C=20°.26.已知,在△ABC中,∠ABC和∠ACD的平分线相交于点O,(1)若∠A=70°,则∠BOC=35°;(2)若∠A=80°,则∠BOC=40°;(3)试探索:∠BOC和∠A的关系,证明你的结论.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACD和∠OCD,再根据角平分线的定义表示出∠OBC和∠OCD,然后整理得到∠BOC=∠A,代入数据进行计算即可得解;(2)代入∠BOC=∠A求出即可;(3)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACD和∠OCD,再根据角平分线的定义表示出∠OBC和∠OCD,然后整理得到∠BOC=∠A,代入数据进行计算即可得解.【解答】解:(1)由三角形外角性质,∠ACD=∠A+∠ABC,∠OCD=∠OBC+∠BOC,∵BO、CO分别平分∠ABC和∠ACD,∴∠OBC=∠ABC,∠OCD=∠ACD,∴∠A+∠ABC=∠ABC+∠BOC,∴∠BOC=∠A,∵∠A=70°,∴∠BOC=35°,故答案为:35°;(2)由(1)知:∠BOC=∠A,∵∠A=80°,∴∠BOC=40°,故答案为:40°;(3)∠BOC=∠A;理由是:由三角形外角性质,∠ACD=∠A+∠ABC,∠OCD=∠OBC+∠BOC,∵BO、CO分别平分∠ABC和∠ACD,∴∠OBC=∠ABC,∠OCD=∠ACD,∴∠A+∠ABC=∠ABC+∠BOC,∴∠BOC=∠A.2016年4月21日。
七年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第五章《相交线与平行线》~第六章《实数》班级姓名得分一、选择题(本大题共10小题,共40.0分)1.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A. 65°B. 60°C. 55°D. 75°2.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°3.下列语句正确的是()A. 4是16的算术平方根,即±√16=4B. −3是27的立方根C. √64的立方根是2D. 1的立方根是−14.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. −a>b5.如图,在下列给出的条件中,不能判定AB//DF的是()A. ∠A=∠3B. ∠A+∠2=180°C. ∠1=∠4D. ∠1=∠A6. 如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF//BC 时,∠EGB 的度数是( )A. 135°B. 120°C. 115°D. 105°7. 若a 2=4,b 2=9,且ab <0,则a −b 的值为( )A. −2B. ±5C. 5D. 58. 下列结论正确的是( )A. 数轴上任意一点都表示唯一的有理数B. 数轴上任意一点都表示唯一的无理数C. 两个无理数之和一定是无理数D. 数轴上任意两点之间还有无数个点9. 下列说法中,不正确的有( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π−4)2的算术平方根是π−4;⑤算术平方根不可能是负数,A. 2个B. 3个C. 4个D. 5个10. 如图,AF//CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC//BE ;③∠CBE +∠D =90°;④∠DEB =2∠ABC ,其中结论正确的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共30.0分)11. 若√3a −23与√2−b 3为相反数,且b ≠0,则ab 的值为________. 12. 已知y =√x −3+√3−x +1,则x +y 的算术平方根是________. 13. 如图,有下列3个结论:①能与∠DEF 构成内错角的角的个数是2;②能与∠EFB 构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是______.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足为点O,∠COE:∠BOD=2:3,则∠AOD=______.15.若√2a−2与|b+2|互为相反数,则(a−b)2的平方根=______.16.一个正数x的两个不同的平方根是2a−3和5−a,则x的值是________.17.如图所示,AB//CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为______.18.已知直线a//b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是______.19.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC//DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为_____.20.已知一个数的平方根是3a+1和a+11,求这个数的立方根是______.三、解答题(本大题共6小题,共80.0分)21.(12分)计算:3;(1)(−1)3+|1−√2|+√8(2)(−3)2+2×(√2−1)−|−2√2|.22.(12分)阅读下列材料∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).规定实数m的整数部分记为[m],小数部分记为{m).如:[√7]=2,{7}=√7−2.解答以下问题:(1)[√10]=________,{√5}=________;(2)求{√5}+{5−√5}的值.23.(12分)工人师傅准备从一块面积为16平方分米的正方形工料上裁剪出一块面积为12平方分米的长方形的工件。
七年级(下)第一次月考数学试卷一、选择题(共12个小题,每小题3分,共36分,每小题的四个选项中,只有一个是正确的)1.(3分)图中是对顶角的是()A. B.C.D.2.(3分)如图,∠1和∠2是同位角的是()A. B.C.D.3.(3分)下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A.B.C.D.4.(3分)下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.5.(3分)下列实数中,无理数是()A.3.14 B.C.D.6.(3分)下列说法中,正确的是()A.同位角相等B.实数和数轴上的点一一对应C.负数没有立方根D.过一点有且只有一条直线与已知直线平行7.(3分)的平方根是()A.4 B.﹣4 C.±4 D.±28.(3分)如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°9.(3分)下图中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.10.(3分)下列各式中,正确的是()A.=±5 B.±=4 C.=﹣3 D.=﹣411.(3分)在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格12.(3分)如图,数轴上点P表示的数可能是()A.B.C.D.二、填空题(共6个小题,每小题3分,共18分)13.(3分)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=.14.(3分)4的算术平方根是,5的平方根是,﹣27的立方根是.15.(3分)如图,三条直线相交于一点,则∠1+∠2+∠3=度.16.(3分)2的相反数是,|﹣2|=,比较大小:8.17.(3分)如图,这个图形的周长为多少.18.(3分)如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=38°,则∠2=°.三、解答题(共46分)19.(6分)计算(1)+﹣(2)2+3﹣5﹣3.20.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A对应点A′,点B,C分别对应点B′,C′.(1)画出平移后的△A′B′C′.(2)△A′B′C′的面积是;(3)连接AA′,CC′,则这两条线段之间的关系是.21.(8分)如图,直线AB、CD、EF相交于点O.(1)分别写出∠BOC的邻补角和对顶角;(2)如果∠AOC=60°,AB⊥EF,求∠DOF的度数.22.(16分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.解:∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥()∴∠BAC+ =180°()∵∠BAC=70°(已知)∴∠AGD=.23.(10分)如图,先填空后证明.已知:∠1+∠2=180°,求证:a∥b.证明:∵∠1=∠3,∠1+∠2=180°∴∠3+∠2=180°∴a∥b请你再写出另一种证明方法.参考答案与试题解析一、选择题(共12个小题,每小题3分,共36分,每小题的四个选项中,只有一个是正确的)1.(3分)图中是对顶角的是()A. B.C.D.【解答】解:A、正确;B、∠1和∠2没有公共的顶点,不是对顶角,选项错误;C、不是两条直线相交所成的角,不是对顶角,选项错误;D、不是两条直线相交所成的角,不是对顶角,选项错误.故选:A.2.(3分)如图,∠1和∠2是同位角的是()A. B.C.D.【解答】解:根据同位角的定义可得:D中的∠1和∠2是同位角,故选:D.3.(3分)下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A.B.C.D.【解答】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形的大小发生变化,不符合平移的性质,不属于平移得到;C、图形的方向发生变化,不符合平移的性质,不属于平移得到;D、图形由轴对称得到,不属于平移得到.故选:A.4.(3分)下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.【解答】解:根据命题的定义:只有答案D、两直线平行,内错角相等.对事情做出正确或不正确的判断,故此选项正确;故选:D.5.(3分)下列实数中,无理数是()A.3.14 B.C.D.【解答】解:是无理数,故选:C.6.(3分)下列说法中,正确的是()A.同位角相等B.实数和数轴上的点一一对应C.负数没有立方根D.过一点有且只有一条直线与已知直线平行【解答】解:A、同位角不一定相等,故本选项错误;B、正确;C、负数有立方根,故本选项错误;D,过直线外一点有且只有一条直线与已知直线平行,故本选项错误;故选:B.7.(3分)的平方根是()A.4 B.﹣4 C.±4 D.±2【解答】解:=4,4的平方根是±2.故选:D.8.(3分)如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°【解答】解:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),所以正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC ∥BD,故A错误.故选:A.9.(3分)下图中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【解答】解:A、∵AB∥CD,又∵∠1=∠2是同旁内角,∴不能判断∠1=∠2,故本选项错误;B、如图,∵AB∥CD,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2,故本选项正确;C、不能得到∠1=∠2,故本选项错误;D、不能得到∠1=∠2,故本选项错误.故选:B.10.(3分)下列各式中,正确的是()A.=±5 B.±=4 C.=﹣3 D.=﹣4【解答】解:A、=5,故A错误;B、±=±4,故B错误;C、=﹣3,故C正确;D、==4,故D正确.故选:C.11.(3分)在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格【解答】解:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有C符合.故选:C.12.(3分)如图,数轴上点P表示的数可能是()A.B.C.D.【解答】解:由图象可知,2<p<3,∵≈2.236,∴数轴上点P表示的数可能是.故选:B.二、填空题(共6个小题,每小题3分,共18分)13.(3分)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.14.(3分)4的算术平方根是2,5的平方根是±,﹣27的立方根是﹣3.【解答】解:4的算术平方根是2,5的平方根是±,﹣27的立方根是﹣3.故答案为:2,±,﹣3.15.(3分)如图,三条直线相交于一点,则∠1+∠2+∠3=180度.【解答】解:根据对顶角相等,可得∠2=∠4,由平角的定义,可得∠1+∠4+∠3=180°,∴∠1+∠2+∠3=180°.16.(3分)2的相反数是﹣2,|﹣2|=2﹣,比较大小:>8.【解答】解:由题意可知:2的相反数是﹣2,|﹣2|=2﹣>8故答案为:﹣2;2﹣;>17.(3分)如图,这个图形的周长为多少20cm.【解答】解:如图,图形的周长=2(6+4)=20cm.故答案为:20cm.18.(3分)如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=38°,则∠2=52°.【解答】解:∵a∥b,∴∠3=∠1=38°,∴∠4=90°﹣∠3=90°﹣38°=52°.∵b∥c,∴∠2=∠4=52°.故答案是:52.三、解答题(共46分)19.(6分)计算(1)+﹣(2)2+3﹣5﹣3.【解答】解:(1)+﹣=﹣3+4﹣2=﹣1(2)2+3﹣5﹣3=(2﹣5)+(3﹣3)=﹣3+0=﹣320.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A对应点A′,点B,C分别对应点B′,C′.(1)画出平移后的△A′B′C′.(2)△A′B′C′的面积是;(3)连接AA′,CC′,则这两条线段之间的关系是平行且相等.【解答】解:(1)平移后的△A′B′C′如图所示;=3×3﹣×3×2﹣×1×2﹣×1×3=,(2)S△A′B′C′故答案为.(3)根据平移变换的性质可知,AA′∥CC′,AA′=CC′,故答案为平行且相等.21.(8分)如图,直线AB、CD、EF相交于点O.(1)分别写出∠BOC的邻补角和对顶角;(2)如果∠AOC=60°,AB⊥EF,求∠DOF的度数.【解答】解:(1)∠BOC的邻补角为:∠AOC,∠DOB,∠BOC的对顶角为:∠AOD;(2)∵∠AOC=60°,AB⊥EF,∴∠COE=∠DOF=90°﹣60°=30°.22.(16分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.解:∵EF∥AD(已知)∴∠2=∠3()又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥DG()∴∠BAC+ ∠AGD=180°()∵∠BAC=70°(已知)∴∠AGD=110°.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°(已知),∴∠AGD=110°.故答案为:∠3;两直线平行,同位角相等;等量代换;DG,内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°.23.(10分)如图,先填空后证明.已知:∠1+∠2=180°,求证:a∥b.证明:∵∠1=∠3对顶角相等,∠1+∠2=180°已知∴∠3+∠2=180°等量代换∴a∥b同旁内角互补,两直线平行请你再写出另一种证明方法.【解答】证明:∵∠1=∠3 对顶角相等,∠1+∠2=180°已知,∴∠3+∠2=180°等量代换,∴a∥b 同旁内角互补,两直线平行.故答案为:对顶角相等;已知;等量代换;同旁内角互补,两直线平行.另一种证法:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴a∥b.。