简易波形采集、储存与回放系统设计(硬件方案)
- 格式:pptx
- 大小:963.68 KB
- 文档页数:7
波形采集、存储与回放系统的设计作者:钟秀娟来源:《软件工程师》2013年第10期摘要:本系统利用MSP430F149单片机控制,可以同时采集单极性和双极性两路周期信号,并存储到FLASH存储器,系统断电重启后,能连续回放已采集的信号,同时测量信号周期和电平并显示。
本设计主要有输入电路模块、信号放大处理模块、单片机控制电路模块、D/A转换模块和输出模块等组成。
本系统特点是功耗低,高输入阻抗,低输出阻抗,回放信号与原信号误差小,能显示信号周期和高低电平。
关键词:MSP430F149单片机;A/D转换器;D/A7524转换器中图分类号:TP274.2 文献标识码:A1 总体方案设计及框图本系统主要由输入电路(集成运放和整形电路)部分、A/D转换电路模块、单片机及显示电路模块、D/A转换(DA7524转换电路)和输出电路模块[1]。
输入信号经电平移位电路,经A/D转换后存入储存器并实时显示,回放时经D/A转换,显示在示波器上。
具体框图如图1所示。
2 电路的设计与流程图设计(1)采样信号处理通过电阻分压方式实现电压的零点偏置,将电压整体抬高。
电阻分压方式具有结构简单,成本低的优点,且允许幅值较大的双极性模拟信号在板内传输,在外界干扰一定的时候,提高了信噪比[2]。
对于MSP430F149内部的积分型ADC而言,电阻分压方式的输入阻抗较大,为保证片内电容的充电时间,以达到应有的测量精度,需相应延长采样的时间。
(2)输入电路的设计由于MSP430F149内置的模数转换器(ADC)只能对低于3.3V的电压采样,而系统要求能完成对A通道高电平约4V,低电平接近0V信号的采样,所以系统在输入部分设计了一个同相比例运放电路,将输入信号衰减一倍,使之达到单片机对电压的采样要求。
(3)整形电路频率测量时,利用MSP430F149单片机捕获输入信号上升沿,计算两个上升沿之间的时间差,即信号的周期。
但设计的电路是正弦信号,有上升沿,不能达到电路的测量要求,所以本系统设计了一个整形电路,将正弦波信号转换为同频率的方波信号输出,以使单片机能准确捕捉到每一个上升沿信号。
梧州学院课程论文(2012 -2013学年第一学期)课程论文题目:数据采集电路和简易存储示波器设计学生姓名:石凯摘要:设计中采用了模块化设计方法,并使用了多种EDA工具,提高了设计效率。
整个设计实现了存储示波器的所有功能要求,达到较高的性能指标。
本设计分为四个模块分别是:数据采集模块,控制模块和数据存储模块和数据输出模块。
数据采集模块采用A/D(ADC0809)对不同频率的输入信号分别以相应的采样速度予以采样,并将采样数据存在FPGA内部的RAM中。
数据输出模块采用D/A(DAC0832)输出采样信号,在示波器上以X-Y的方式显示波形。
控块以采用EDA中的状态机控制A/D的采样和数字信号的输出。
关键词: 数字存储示波器,状态机, AD,DA, EDA,LPM RAM一、设计内容:数据采集电路和简易存储示波器设计二、设计目的与要求:用ADC0809采集外部一个信号(从IN1输入),转换为8位的二进制数据存储到存储器中,采样一个周期后,把存储器里面的数据重新读出来,通过DAC0832输出,用示波器观察比较被采集的信号和重新输出的信号。
三、设计原理本设计利用FPGA直接控制ADC0809对模拟信号进行采样,然后将转换好的8位二进制数迅速存储到FPGA内部RAM存储器中,在完成对模拟信号一个或数个周期的采样后,由外部按键电路系统将存储器中的采样数据读出处理。
包括如下模块:对ADC0809的采样控制电路、8位地址计数器、存储器、D触发器和按键电路模块。
为使电路设计更加简单快捷,且方便阅读与理解,本电路使采用模块化的设计思想,先由VHDL源程序对各个模块进行独立编写(对各个模块进行硬件描述)、测试,然后生成原理图封装,再用原理图方式进行连接、整合。
A/D采样控制电路可以分为三个部分来分别实现:ADC0809的控制部分、地址计数器部分、数据存储器部分。
系统框图:在设计整个系统的过程中,可以把设计分成信号采样、存储、信号输出等几部分。
波形采集、存储与回放系统的设计钟秀娟【期刊名称】《软件工程师》【年(卷),期】2013(000)010【摘要】This system uses MSP430F149 MCU control, can simultaneously capture two unipolar and bipolar periodic signal, and stored in FLASH memory, the system is rebooted, continuous playback of the acquired signal, the signal cycle and level measurement and display. This design has an input circuit module, a signal amplification processing module, the MCU control circuit module, D/A converter and output modules and other components. The system is characterized by low power consumption, high input impedance, low output impedance, the playback signal with the original signal error is small, can display signal cycles and high and low.%本系统利用MSP430F149单片机控制,可以同时采集单极性和双极性两路周期信号,并存储到FLASH存储器,系统断电重启后,能连续回放已采集的信号,同时测量信号周期和电平并显示。
本设计主要有输入电路模块、信号放大处理模块、单片机控制电路模块、D/A转换模块和输出模块等组成。
怀化学院本科毕业论文(设计)任务书论文题目波形采集、存储与回放系统(硬件设计)学生姓名黄津毅系别物理与信息工程系专业电子信息科学与技术指导老师姓名张仁民职称讲师题目来源1.科学技术□ 2.生产实践□ 3.社会经济□4.自拟□ 5.其他√毕业论文(设计)内容要求:设计并制作一个波形采集、存储与回放系统,示意图如图1所示。
该系统能同时采集两周期信号波形,要求系统断电恢复后,能连续回放已采集的信号,显示在示波器上。
图1 系统示意图主要参考资料:[1] 马明建,周长城.数据采集于处理技术.第二版.西安:西安电子科技大学出版社,2005.[2] 周浩敏.信号处理技术基础.第一版.北京:北京航空航天大学出版社,2001.[3] PICMG 2.0 R3.0 CompactPCI Specification October 1,1999.[4] 杨跃江.3U_导冷VPX信号采集、处理系统解决方案.深圳:研祥智能科技股份有限公司,2011.[5] Xilinx 7 Series FPGAS : Breakthrough Power and Performance, Dramatically Reduceddevelopment Time毕业论文(设计)工作计划:进度安排工作内容2011年10月15日-2011年11月25日文献资料查阅2011年11月26日-2012年01月15日方案论证与系统方案仿真2012年01月16日-2012年02月16日硬件电路的设计2012年02月17日-2012年03月20日单元模块电路调试2012年03月21日-2012年05月10日联调与毕业论文的撰写接收任务日期2012 年10月15日要求完成任务日期2012 年05 月10日学生(签名)年月日指导教师(签名)年月日系主任(签名)年月日说明:本表为学生毕业论文(设计)指导性文件,由指导教师填写,一式两份,一份交系(部)存档备查,一份发给学生。
基于单片机的语音存储与回放系统毕业设计基于单片机的语音存储与回放系统是一种能够实现语音录制、存储和回放功能的设备。
它可以用于各种应用场景,如语音备忘录、语音留言板、语音识别系统等。
该系统的设计需要完成以下关键功能:1. 语音录制:通过麦克风或其他输入设备采集语音信号,并将其转换为数字信号。
可以使用ADC模块将模拟信号转换为数字信号。
2. 存储功能:设计合适的存储器,如EEPROM或Flash存储器,用于存储采集到的语音信号。
存储器的容量应根据实际需求确定,并能够支持快速的读写操作。
3. 控制功能:设计合适的控制电路,通过按键或其他输入设备实现对语音录制和回放功能的控制。
可以使用GPIO口或外部中断等方式实现按键输入的响应。
4. 回放功能:设计合适的音频输出电路,将存储的语音信号转换为模拟信号,并通过扬声器或耳机输出。
可以使用DAC模块将数字信号转换为模拟信号。
5. 用户界面:设计合适的显示屏幕和操作界面,用于显示当前状态和操作指令。
可以使用LCD显示屏和按键等设备实现用户交互。
在设计过程中,需要考虑系统的实时性、容错性和稳定性。
同时,还需要进行适当的电路布局和信号处理,以减少噪音和干扰对语音信号的影响。
在编程方面,可以使用C语言或汇编语言编写程序,实现语音录制、存储和回放的功能。
需要考虑存储器的管理和控制、按键输入的处理、音频数据的处理等方面。
最后,还需要进行系统的测试和调试,确保系统的稳定性和功能完整性。
可以通过模拟语音信号进行录制和回放测试,检查系统的录制和回放效果是否符合要求。
综上所述,基于单片机的语音存储与回放系统的毕业设计需要涉及硬件电路设计、嵌入式软件编程和系统测试等多个方面的知识和技能。
需要深入理解语音信号处理、存储器管理和控制、电路设计和嵌入式系统等知识,并具备一定的创新能力和解决问题的能力。
基于单片机的波形采集、存储与回放系统设计作者:梁丽来源:《中国教育技术装备》2016年第18期摘要系统以单片机为核心,以低功耗运放构成输入输出电路,选用外部低功耗存储芯片作存储,软件系统控制外部A/D转换器实现对输入信号的采集、数据存储,并通过外部D/A 转换器实现对已采集信号的回放,系统的各种信息及采集波形信息由液晶显示输出。
关键词单片机;接口电路;波形采集中图分类号:G642 文献标识码:B文章编号:1671-489X(2016)18-0032-021 前言采用AT89C52单片机作为整个控制核心,通过软件编程实现对模拟信号的采集、存储数据的输出以及各种测量、逻辑控制的功能。
现从系统单元电路设计、单片机与外部设备的接口电路设计和系统软件设计的角度,阐述基于单片机的波形采集、存储与回放系统的设计思想。
2 单元电路设计通道调理电路将ADC0809转换器的基准电压输入端接至+5 V电源,它可对0~5 V的模拟信号进行转换。
A通道输入信号是单极性的,输入电压范围为0~4 V,符合A/D转换器对输入信号的要求。
A通道的输入、输出电路均选用电压跟随器,电压跟随器具有输出电压跟随输入电压、输入阻抗高、输出阻抗低的特点,使得整个通道的放大倍数为1。
B通道输入信号是双极性的,输入电压范围为-50~+50 mV。
为此,在B通道输入端需将信号电压由双极性转换为单极性,并调理为0~4 V 电压输出,以匹配A/D转换器的输入电压范围;在B通道输出端则需将信号电压的极性和幅度范围进行还原。
B通道输入电路如图1所示,它由三级运放构成:第一级运放构成电压跟随器;第二级运放构成反相比例电路,其交流放大倍数为-40,作用是将信号电压由-50~+50 mV 调理到+2~-2 V范围内;第三级运放构成反相求和电路,其交流放大倍数为-1,调节电位器给信号电压+2 V的电平平移,将双极性信号转换为单极性,即将信号电压由+2~-2 V调理到0~4 V范围内。
波形采集、存储与回放系统设计摘要本设计是基于数字示波器的原理,以STM32-cortex-m3作为控制芯片,把波形采集分为A、B两个通道,对A通道的输入信号进行衰减,对B通道的输入信号进行放大,然后采用内部集成的高速AD对信号进行实时采样,方式为上升沿内触发,可以实现波形的单次和多次触发存储和回放显示,以及频率、周期、峰-峰值的测量和显示,并具有掉电存储功能。
由信号采集、数据处理、波形显示,控制面板等功能模块组成,整个系统分成A/D转换部分、D/A转换部分、波形存储部分、键盘输入控制四大部分,系统操作简便,输出波形可以在示波器输出显示,此存储示波器即具有一般示波器实时采样实时显示的功能,又可以对某段波形进行即时存储和连续回放显示,且界面友好,达到了较好的性能指标。
具体设计原理以及过程在下面章节中详细说明。
关键字:STM32、波形采集、波形存储、波形回放AbstractThe design is based on the principle of digital oscilloscope, with STM32-cortex-m3 as the control chip, the waveform acquisition is divided into A, B two channel, the A channel input signal attenuation on B channel, the input signal is amplified, then using the internal integration of high-speed AD on real time data sampling, as rising edge trigger, can achieve waveform of single and multiple triggers the storage and playback and display, frequency, cycle, peak to peak value measurement and display, and power failure memory function. The signal acquisition, data processing, waveform display, the control panel and other functional modules, the system is divided into A/D transformation, D/A converting part, waveform storage, keyboard input control system four parts, simple operation, the output waveform can be output in the oscilloscope display, this storage oscilloscope namely has the common oscilloscope real-time sampling real time display function, can be a real-time storage and continuous playback waveform display, and friendly interface, has achieved good performance. The design principle and process are described in detail in the following sections.Keywords: STM32, waveform acquisition, storage, waveform waveform playback模拟路灯控制系统设计目录一、总体方案思路及其设计41.1、采样方式41.2、双踪示波器显示方式51.3、控制部分方案的设计51.4、显示方式5二、系统理论分析与功能模块设计52.1 、最小系统及A/D,D/A电路52. 2、单元电路6三、软件设计103.1、软件流程103.2:软件子程序11四、测试方案与测试结果12五、结束语14附件1:系统程序14一、总体方案思路及其设计1、根据题目要求进行相关指标分析根据题目要求A通道只是对单极性(高电平为4V,低电平为0V,频率为1KHZ)的信号进行采集、存储和连续回放;B通道需要对双极性(电压峰峰值为 100mV、频率为 10Hz~10kHz)的信号进行处理。
波形的采集存储与回放系统摘要随着电子信息技术的迅猛发展,医疗、卫星、雷达、现代航空等众多领域都需要实现对数据进行存储,回放等要求,信号的采集、存储在信息技术行业中应用的也越来越广泛。
本设计采用单片机作为总控制芯片,分别用A/D转换器和D/A转换器进行模数和数模转换,并将采集到的波形数据存储到Flash存储器中。
按下采集键后,该系统对0~+5v 变化的波形进行采样并将采样的数据存储起来;按下回放键后,该系统将采样波形进行循环回放;在采集时可改变幅值,并且采集到的数据也会同时在回放的时候变化;在回放时,若按下存储键,将停止波形的回放,显示一条直线;若按下回放键,将终止当前波形,并采集新的波形。
关键词:采集,存储,回放,单片机,波形Waveform Acquisition Storaging and Playbacking SystemABSTRACTWith the rapid development of electronic information technology, many fields such as Medical treatment, satellite, radar, Advanced Flight needs to implement the data storage, playback, Signal acquisition, storage in the applications of information technology industry is becoming more and more widely.This design uses the microcontrolle as the control chip, Respectively with the A/D converter and D/A converter as the digital analogy converter. And will be collected waveform data Stored in the Flash memory. After press the acquisition button, The system will be Sampling waveform that conversion from 0~4V and storing in the Flash memory. After press the playback button, The system will cycle sampling waveform playback. At the time of acquisition can change amplitude, And the collected data will be change when playback at the same time, During playback, If you press the store button, Will stop the playback waveform, according to a straight line, If press the playback button, will end the current waveform, and new waveform acquisition.KEY WORDS:Acquisition,storage,playback,microcontroller,waveformIII目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 选题的意义 (1)1.2 研究现状与发展趋势 (2)2波形采集存储与回放系统的设计原理与功能 (3)2.1 波形采集存储与回放系统的设计原理 (3)2.2 波形采集存储与回放系统的功能 (3)2.3 总体开发计划和课题所达到的功能目标和技术指标 (3)2.3.1 达到的功能目标 (3)2.3.2 技术指标 (4)2.4 本章小结 (4)3 方案论证选择与硬件设计 (5)3.1 采样方式选择 (5)3.2 A/D与D/A转换选择 (5)3.3 触发方式选择 (5)3.4 输入模块 (6)3.4.1 A路输入电路 (6)3.4.2 B路输入 (6)3.5 A/D转换器 (7)3.5.1 ADC0809引脚图以及接口 (7)3.5.2 ADC0809使用要求及应用说明 (8)3.6 主控模块 (8)3.6.1 AT89S52芯片主要特点及性能 (8)3.6.2 AT89S52芯片的最小电路系统以及接口 (9)3.7 D/A转换器 (11)3.7.1 DAC0832的引脚图以及接口 (11)3.7.2 DAC0832的工作方式 (11)3.7.3 实现D/A转换时,主要涉及的参数 (12)3.8 输出模块 (12)3.9 显示模块 (13)3.10 存储模块 (13)IV3.11 本章小结 (14)4 软件设计 (15)4.1 软件设计目标 (15)4.2 Keil2简介 (16)4.3 软件功能模块分类 (16)4.3.1 主程序流程 (16)4.3.2 LCD子程序流程 (18)4.3.3 按键处理子程序流程 (18)4.3.4 回放子程序流程 (19)4.3.5 采集并存储子程序流程 (20)4.3.6 存储处理子程序流程 (21)4.4 本章小结 (21)5 系统测试及结果分析 (22)5.1 测试使用仪器与设备 (22)5.2 测试方案与测试结果 (22)5.2.1 测试方法 (22)5.2.2 测试结果与分析 (22)5.2.3 误差产生原因 (25)5.3 设计和调试中遇到的问题 (25)6 小结 (26)致谢 (28)参考文献 (29)附录 (30)附录ⅠAT89S52与LCD1602的接口程序 (30)附录ⅡAT89S52与ADC0809的连接程序 (31)波形的采集存储与回放系统 11 绪论1.1 选题的意义电子信息技术的迅猛发展,现代航空、雷达、卫星、医疗等众多领域常常需要对波形进行采集、存储和回放,波形信号的采集、存储在信息技术行业应用的越来越广泛。