2018年浙江高考数学二轮复习练习:专题限时集训10 立体几何中的向量方法 Word版含答案
- 格式:doc
- 大小:311.50 KB
- 文档页数:8
专题能力训练15 立体几何中的向量方法一、能力突破训练1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.2.(2018北京,理16)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.5.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.二、思维提升训练7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.(1)求证:PB∥平面EFG.(2)求异面直线EG与BD所成的角的余弦值.(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.专题能力训练15立体几何中的向量方法一、能力突破训练1.解依题意,OF⊥平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明:依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG⊄平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则不妨设x=1,可得n2=(1,-1,1).因此有cos<,n2>==-,于是sin<,n2>=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以,进而有H,从而,因此cos<,n2>==-所以,直线BH和平面CEF所成角的正弦值为2.(1)证明在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC,∴AC⊥BE,∴AC⊥平面BEF.(2)解由(1)知AC⊥EF,AC⊥BE,EF∥CC1.∵CC1⊥平面ABC,∴EF⊥平面ABC.∵BE⊂平面ABC,∴EF⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).=(2,0,1),=(1,2,0).设平面BCD的法向量为n=(a,b,c),则令a=2,则b=-1,c=-4,∴平面BCD的法向量n=(2,-1,-4).又平面CDC1的法向量为=(0,2,0),∴cos<n,>==-由图可得二面角B-CD-C1为钝角,∴二面角B-CD-C1的余弦值为-(3)证明平面BCD的法向量为n=(2,-1,-4),∵G(0,2,1),F(0,0,2),=(0,-2,1),∴n=-2,∴n与不垂直,∴FG与平面BCD不平行且不在平面BCD内,∴FG与平面BCD相交.3.解 (1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>=因此所求的角为60°.4.解以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=(a,0,1),(1)证明:=-0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n,n,得取x=1,得平面B1AE的一个法向量n=要使DP∥平面B1AE,只要n,有-az0=0,解得z0=又DP⊄平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=5.(1)证明设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)解取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则令x=1,则y=1,z=于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos<n,p>=由题知二面角B-PD-A为锐角,所以它的大小为(3)解由题意知M,C(2,4,0),设直线MC与平面BDP所成角为α,则sin α=|cos<n,>|=所以直线MC与平面BDP所成角的正弦值为6.(1)证明因为AB是直径,所以BC⊥AC.因为CD⊥平面ABC,所以CD⊥BC.因为CD∩AC=C,所以BC⊥平面ACD.因为CD∥BE,CD=BE,所以四边形BCDE是平行四边形,所以BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ADE⊥平面ACD.(2)解依题意,EB=AB×tan∠EAB=4=1.由(1)知V C-ADE=V E-ACD=S△ACD×DE=AC×CD×DE=AC×BC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则取n1=(1,0,2).设平面ABE的法向量为n2=(x,y,z),则取n2=(1,1,0),所以cos<n1,n2>=可以判断<n1,n2>与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-二、思维提升训练7.解如题图甲所示,因为BO是梯形ABCD的高,∠BAD=45°,所以AO=OB.因为BC=1,OD=3OA,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有OP2+OC2=PC2.所以OP⊥OC.而OB⊥OP,OB⊥OD,即OB,OD,OP两两垂直,故以O为原点,建立空间直角坐标系(如图),则P(0,0,1),C(1,1,0),D(0,3,0),(1)证明:设E(x,0,1-x),其中0≤x≤1,所以=(x,-3,1-x),=(1,1,-1).假设DE和PC垂直,则=0,有x-3+(1-x)·(-1)=0,解得x=2,这与0≤x≤1矛盾,假设不成立,所以DE和PC不可能垂直.(2)因为PE=2BE,所以E设平面CDE的一个法向量是n=(x,y,z),因为=(-1,2,0),,所以n=0,n=0,即令y=1,则n=(2,1,5),而=(0,3,-1),所以|cos <,n>|=所以PD与平面CDE所成角的正弦值为8.解∵平面PAD⊥平面ABCD,且∠PAD=90°,∴PA⊥平面ABCD,而四边形ABCD是正方形,即AB⊥AD.故可建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,=2+2又不共线,共面.∵PB⊄平面EFG,∴PB∥平面EFG.(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.又∵||=,||==2,∴cos<>=因此,异面直线EG与BD所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0≤m≤2),则DQ=2-m,∴点Q的坐标为(2-m,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则令x=1,则n=(1,0,2-m),∴点A到平面EFQ的距离d=,即(2-m)2=,∴m=或m=(不合题意,舍去),故存在点Q,当CQ=时,点A到平面EFQ的距离为。
2018年高考数学讲练测【浙江版】【练】第八章 立体几何第07节 立体几何中的向量方法A 基础巩固训练1.直线l 的方向向量s =(-1,1,1),平面α的法向量为n =(2,x 2+x ,-x ),若直线l ∥平面α,则x 的值为( ) A .-2 B .- 2 C . 2 D .± 2【答案】D2.【河南省豫南九校第三次联考】已知直线l 的方向向量α,平面α的法向量μ,若()1,1,1α=, ()1,0,1μ=-,则直线l 与平面α的位置关系是( )A. 垂直B. 平行C. 相交但不垂直D. 直线l 在平面α内或直线l 与平面α平行 【答案】D【解析】因为1010αμ⋅=-++=r r ,即αμ⊥r r,所以直线l 在平面α内或直线l 与平面α平行,故选D .3.【2017届河北定州中学高三周练】已知点A (1,-2,0)和向量a r =(-3,4,12),若向量//a r,且2AB a =u u u r r,则B 点的坐标为( )A .(-5,6,24)B .(-5,6,24)或(7,-10,-24)C .(-5,16,-24)D .(-5,16,-24)或(7,-16,24) 【答案】B 【解析】试题分析:设(,,)B x y z , ()1,2,AB x y z =-+u u u r,依题意有()()222222123412123412x y z x y z -+⎧==⎪-⎨⎪-+++=++⎩,解得()5,6,24B -或()7,10,24B --. 4.如空间直角坐标系中,已知()()()2,3,11,2,6,2,1,4,11A B C ,则直线AB 与AC 的夹角为__________. 【答案】60︒【解析】空间直角坐标系中,()()()()()2,3,1,2,6,2,1,4,1,0,3,3,1,1,0A B C AB AC --∴==-u u u v u u u v, ()0131303AB AC ∴⋅=⨯-+⨯+⨯=u u u v u u u v,()22222203332,1102AB AC =++==-++=u u u v u u u v ,31cos ,2322AB AC AB AC AB AC ⋅∴===⨯⋅u u u v u u u vu u u v u u u v u u u v u u u v ,所以向量,AB AC u u u v u u u v 的夹角为60o ,即直线AB 与AC 的夹角为60o ,故答案为60o . 5.已知向量,,若与的夹角为钝角,则的取值范围是______.【答案】B 能力提升训练1.在四棱锥ABCD P -中,)3,2,4(-=→AB ,)0,1,4(-=→AD ,)8,2,6(--=→AP ,则这个四棱锥的高=h ( )A .1B .2C .13D .26 【答案】B【解析】设面ABCD 的一个法向量为(),,n x y z =r .则423040n ABx y z x y n AD ⎧⊥-+=⎧⎪⇒⎨⎨-+=⊥⎩⎪⎩r u u u rr u u u r ,令4y =,则41,4,3n ⎛⎫= ⎪⎝⎭r ,则3268263cos ,13262263n AP n AP n AP -+-⋅===-⨯r u u u r r u u u r r u u u r ,cos ,hn AP AP=r u u u r Q u u u r ,26226226h ∴=⨯=.故B 正确. 2.已知平面α,β的法向量分别为μ=(-2,3,-5),v =(3,-1,4),则( ) A .α∥βB .α⊥βC .α、β相交但不垂直D .以上都不正确【答案】C3.如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F 且EF =22,则下列结论中错误的是( ).A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A-BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值 【答案】D【解析】∵AC ⊥平面BB 1D 1D ,又BE ⊂平面BB 1D 1D.∴AC ⊥BE ,故A 正确.∵B 1D 1∥平面ABCD ,又E ,F 在直线D 1B 1上运动,∴EF ∥平面ABCD ,故B 正确.C 中,由于点B 到直线B 1D 1的距离不变,故△BEF 的面积为定值,又点A 到平面BEF 的距离为22,故V A-BEF 为定值.故C 正确. 建立空间直角坐标系,如图所示,可得A(1,1,0),B(0,1,0),①当点E 在D 1处,点F 为D 1B 1的中点时,E(1,0,1),F (12,12,1), ∴AE u u u r =(0,-1,1),BF u u u r =(12,-12,1),∴AE u u u r ·BF u u u r=32.又|AE u u u r |=2,|BF u u u r |=62,∴cos 〈AE u u u r ,BF u u u r 〉=AE BFAE BF⋅⋅u u u r u u u ru u u r u u u r =32622⋅=32. ∴此时异面直线AE 与BF 成30°角.②当点E 为D 1B 1的中点,F 在B 1处,此时E (12,12,1),F(0,1,1),∴AE u u u r =(-12,-12,1),BF u u u r =(0,0,1),∴AE u u u r ·BF u u u r =1,|AE u u u r |=2221161222⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-+-+=,∴cos 〈AE u u u r ,BF u u u r 〉=AE BF AE BF⋅⋅u u u r u u u r u u u r u u u r=16332612≠⋅=,故选D. 4.【2018届南宁市高三毕业班摸底】如图,在四棱锥中,底面是菱形,平面,,,,.(1)求证:直线平面;(2)求二面角的余弦值【答案】(1)证明见解析;(2).试题解析:(1)在上取一点,使,连接,,∵,,∴,,,.∴,.∴为平行四边形.即.又平面,∴直线平面.(2)取中点,底面是菱形,,∴. ∵,∴,即.又平面,∴.又,∴直线平面.故相互垂直,以为原点,如图建立空间直角坐标系.则,,,,,.易知平面的法向量,设面的法向量,由,得. ∴. 故二面角的余弦值为.5.【2018届云南省昆明一中高三第一次摸底】如图,在直三棱柱111ABC A B C -中,090BAC ∠=, 2AB AC ==,点,M N 分别为111,A C AB 的中点.(1)证明: //MN 平面11BB C C ;(2)若CM MN ⊥,求二面角M CN A --的余弦值. 【答案】(1)证明见解析;(2)515. 【解析】试题分析:(1)连接11A B , 1BC ,点M , N 分别为11A C , 1A B 的中点,可得MN 为试题解析:(1)证明:连接11A B ,,点M ,分别为11A C ,的中点,所以MN 为△11A BC 的一条中位线, 1//MN BC ,MN ⊄平面11BB C C , 1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .(2)设,则,, ,由CM MN ⊥,得,解得,由题意以点为坐标原点,为轴,为轴,为轴建立空间直角坐标系.可得,,,,故,,, ,设为平面的一个法向量,则,得102m =-v(,,),同理可得平面的一个法向量为322n =v(,,),设二面角M CN A --的平面角为,,,所以,二面角M CN A --的余弦值为.C 思维扩展训练1.如图,三棱柱的各棱长均为2,侧棱与底面所成的角为,111C B A ABC -1BB ABC ο60为锐角,且侧面⊥底面,给出下列四个结论:①;②;③直线与平面所成的角为;④.其中正确的结论是()A.①③B.②④C.①③④D.①②③④【答案】C.∴②错误;③:由题意得即为与平面所成的角,,∴,∴③正确;④:由②,,,∴,∴,∴④正确.145C AH∠=o1(0,3,3)BC=u u u r1(0,3,3)AC=-u u u u r11ACCB⊥11BAA∠11AABB ABCο601=∠ABB1BBAC⊥1AC11AABBο4511ACCB⊥1C AH∠1AC11AA B B11tan1C HC AHAH∠== 11B C AC⋅=u u u r u u u u r2.【2017浙江省嘉兴一中第一次联考】在长方体中,,,点在棱上移动,则直线与所成角的大小是__________,若,则__________.【答案】1则D (0,0,0),D 1(0,0,1),A (1,0,0),A 1(1,0,1),C (0,2,0), 设E (1,m ,0),0≤m≤2, 则=(1,m ,﹣1),=(﹣1,0,﹣1),∴•=﹣1+0+1=0,∴直线D 1E 与A 1D 所成角的大小是90°. ∵=(1,m ,﹣1),=(﹣1,2﹣m ,0),D 1E⊥EC,∴=﹣1+m (2﹣m )+0=0,解得m=1,∴AE=1. 故答案为:900,1.3.正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 边的中点,现将ABC ∆沿CD 翻折成直二面角A DC B --.(Ⅰ)试判断直线AB 与平面DEF 的位置关系,并说明理由;(Ⅱ)求二面角E DF C --的余弦值;(Ⅲ)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【答案】(1) AB ∥平面DEF ;(2)721,(3)在线段BC 上存在点423(,,0)33P ,使AP DE ⊥.平面CDF 的法向量为)2,0,0(=设平面EDF 的法向量为),,(z y x = 则⎪⎩⎪⎨⎧=⋅=⋅00n DE 即30(3,3,3)30x n y z ⎧+=⎪=-+=r ,取, 721||||,cos =>=<n DA n DA , ∴二面角E —DF —C 的余弦值为721;---- 8分(Ⅲ)设332023),0,,(=∴=-=⋅y y DE AP y x P 则 又)0,32,(),0,,2(y x PC y x BP --=-=,把BC BP x y 31,34332=∴==代入上式得, ∴在线段BC 上存在点423(,,0)33P ,使AP DE ⊥. ----12分 4.【新课标1】如图,,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(Ⅰ)证明:平面AEC ⊥平面AFC ;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.//(3)323BP PC x y xy x y ∴-=-+=u u u r u u u r Q【答案】(Ⅰ)见解析;(Ⅱ)33. 【解析】(Ⅰ)连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB =1,由∠ABC =120°,可得AG =GC =3.由BE ⊥平面ABCD ,AB =BC 可知,AE =EC ,又∵AE ⊥EC ,∴EG =3,EG ⊥AC ,在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22可得EF =322, ∴222EG FG EF +=,∴EG ⊥FG ,∵AC ∩FG=G ,∴EG ⊥平面AFC , ∵EG ⊂面A EC ,∴平面AFC ⊥平面AEC . ……6分5.【天津六校联考】如图,在四棱锥中,底面,底面为正方形,,分别是的中点.(1)求证:;(2)在平面内求一点,使平面,并证明你的结论;(3)求与平面所成角的正弦值.【答案】(1)详见解析;(2)详见解析;(3) .【解析】P ABCD -PD ⊥ABCD ABCD PD DC =,E F ,AB PBEF CD ⊥PAD G GF ⊥PCB DB DEF 36(3)设平面的法向量为. 由得,即 取,则,,得. , 所以,与平面所成角的正弦值的大小为DEF (,,)x y z =n 00DF DE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n (,,)(,,)0222(,,)(,,0)02a a a x y z a x y z a ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩()0202a x y z a ax y ⎧++=⎪⎪⎨⎪+=⎪⎩1x =2y =-1z =(1,2,1)=-n 3cos ,6|||26BD a BD BD a ⋅〈〉===⋅u u u r u u u r u u u r n n n |DB DEF 36。
(浙江专用)2018版高考数学大一轮复习 第八章 立体几何 8.7 立体几何中的向量方法教师用书1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 4.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则5.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.6.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面的单位法向量是唯一确定的.( × ) (2)若两平面的法向量平行,则两平面平行.( √ ) (3)若两直线的方向向量不平行,则两直线不平行.( √ )(4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (5)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].( √ )(6)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )1.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1) B .(1,-1,1) C .(-33,-33,-33) D .(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.2.(2016·杭州模拟)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55B.53C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=0+4-14+4+1×0+4+1=15=55,故选A. 3.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.4.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0,∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 (2016·重庆模拟)如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC .证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.(2016·北京海淀区模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD . 证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系. 设正方体的棱长为1,则M (0,1,12),N (12,1,1),D (0,0,0),A 1(1,0,1),B (1,1,0),于是MN →=(12,0,12),DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. 所以n =(1,-1,-1).又MN →·n =(12,0,12)·(1,-1,-1)=0,所以MN →⊥n .又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD .题型二 利用空间向量证明垂直问题例2 (2016·绍兴模拟)如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明 (1)∵二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形, ∴AA 1⊥平面BAC . 又∵AB =AC ,BC =2AB , ∴∠CAB =90°,即CA ⊥AB , ∴AB ,AC ,AA 1两两互相垂直.建立如图所示的空间直角坐标系,点A 为坐标原点,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2), ∴A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0). 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0,取y =1,则n =(0,1,0).∴A 1B 1→=2n ,即A 1B 1→∥n . ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2),设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). ∴AB 1→·m =0×1+2×(-1)+2×1=0, ∴AB 1→⊥m .又AB 1⊄平面A 1C 1C ,∴AB 1∥平面A 1C 1C . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(2016·宁波模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAB ⊥平面PDC . 证明 (1)如图,取AD 的中点O ,连接OP ,OF . 因为PA =PD ,所以PO ⊥AD .因为侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB . 又ABCD 是正方形,所以OF ⊥AD .因为PA =PD =22AD ,所以PA ⊥PD ,OP =OA =a 2. 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则A (a 2,0,0),F (0,a 2,0),D (-a 2,0,0),P (0,0,a 2),B (a 2,a,0),C (-a2,a,0).因为E 为PC 的中点,所以E (-a 4,a 2,a4).易知平面PAD 的一个法向量为OF →=(0,a 2,0),因为EF →=(a 4,0,-a 4),且OF →·EF →=(0,a 2,0)·(a 4,0,-a 4)=0,所以OF ⊥EF ,又因为EF ⊄平面PAD ,所以EF ∥平面PAD .(2)因为PA →=(a 2,0,-a 2),CD →=(0,-a,0),所以PA →·CD →=(a 2,0,-a 2)·(0,-a,0)=0,所以PA ⊥CD .又PA ⊥PD ,PD ∩CD =D ,PD ⊂平面PDC ,CD ⊂平面PDC , 所以PA ⊥平面PDC .又PA ⊂平面PAB ,所以平面PAB ⊥平面PDC .题型三 利用空间向量求空间角 命题点1 求直线和平面所成的角例3 (2016·杭州二中月考)如图1,在Rt△ACB 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 上的点,试确定点M 的位置,使得直线CM 与平面A 1BE 所成角的正弦值为51428.(1)证明 因为∠C =90°,DE ∥BC , 所以BC ⊥CD ,BC ⊥A 1D ,因为CD ∩A 1D =D ,CD ⊂平面A 1CD ,A 1D ⊂平面A 1CD , 所以BC ⊥平面A 1CD ,因为A 1C ⊂平面A 1CD ,所以BC ⊥A 1C ,DE ⊥A 1C , 又A 1C ⊥CD ,CD ∩BC =C ,CD ∩DE =D ,DE ∥BC ,所以A 1C ⊥平面BCDE .(2)解 以C 为原点,以CB ,CD ,CA 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(图略), 因为AD AC =DECB,所以AD =4,CD =2,A 1C =23,所以A 1(0,0,23),B (3,0,0),E (2,2,0),D (0,2,0),A 1E →=(2,2,-23),BE →=(-1,2,0), DA 1→=(0,-2,23).设M 点的坐标为(0,y 0,z 0),DM →=λDA 1→, 则⎩⎨⎧y 0-2=-2λ,z 0=23λ,所以CM →=(0,2-2λ,23λ),设平面A 1BE 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1E →=0,n ·BE →=0,即⎩⎨⎧2x +2y -23z =0,-x +2y =0,令x =2,则y =1,z =3,即n =(2,1,3). 设直线CM 与平面A 1BE 所成角为θ, 则sin θ=|2-2λ+6λ|2-2λ 2+12λ2·12+22+3=51428, 即|2+4λ|16λ2-8λ+4=57,解得λ=34或13, 所以M 为线段A 1D (靠近点A 1)四分之一处的点或三分之二处的点. 命题点2 求二面角例4 已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABCD 所成的二面角的正切值为________.答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E (1,1,13),F (0,1,23),AE →=(0,1,13),AF →=(-1,1,23),设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABCD 所成的二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,即n =(-1,1,-3), 取平面ABCD 的法向量为m =(0,0,-1), 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.思维升华 利用向量法求空间角的方法(1)先求出直线的方向向量和平面的法向量,将求空间角转化为求两个向量的夹角. (2)利用数量积求向量的夹角,然后根据和所求角的关系得到空间角,但要注意所求角的大小.(2016·全国丙卷)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD=AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.(1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB . (2)解 取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC , 从而AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5. 以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz . 由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则 ⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||A N →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525,∴直线AN 与平面PMN 所成角的正弦值为8525.21.利用向量法解决立体几何问题典例 (14分)(2016·吉林实验中学月考)如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论. 思想方法指导 对于较复杂的立体几何问题可采用向量法(1)用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.(2)两种思路:①选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.②建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题. 规范解答解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .[2分](2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),[3分] 易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →|·|n |=217,∴二面角E -DF -C 的余弦值为217.[8分] (3)设P (x ,y,0),则AP →·DE →=3y -2=0, ∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0), ∵BP →∥PC →,∴(x -2)(23-y )=-xy , ∴3x +y =2 3.[10分]把y =233代入上式得x =43,∴P (43,233,0),∴BP →=13BC →,∴在线段BC 上存在点P (43,233,0),使AP ⊥DE .[14分]1.(2017·西安质检)若平面α,β的法向量分别是n 1=(2,-3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上答案均不正确答案 C解析 ∵n 1·n 2=2×(-3)+(-3)×1+5×(-4)≠0, ∴n 1与n 2不垂直,且不共线. ∴α与β相交但不垂直.2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行C .在平面内D .平行或在平面内答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面, ∴AB 与平面CDE 平行或在平面CDE 内.4.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( ) A .3 B .4 C .5 D .6 答案 C解析 ∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0,∴t =5.5.(2016·泰安模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .斜交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3, 则M (a ,2a 3,a 3),N (2a 3,2a 3,a ),MN →=(-a 3,0,2a 3).又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量.因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .6.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E (1,0,12),D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=(1,0,-12).设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.即n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.7.(2016·广州质检)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________________________________________________________________________. 答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z , 由m ·AC →=0,得x -z =0⇒x =z ,取x =1, ∴m =(1,1,1),m =-n , ∴m ∥n ,∴α∥β.8.(2016·潍坊模拟)已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________. 答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确. 又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确. ∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误.9.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.答案 1解析 以D 1为原点,D 1A 1,D 1C 1,D 1D 所在直线分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),∵B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.*10.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案72解析 由题意可知,建立空间直角坐标系,如图所示.则A (0,-1,0),B (0,1,0),S (0,0,3),M (0,0,32),设P (x ,y,0), ∴AM →=(0,1,32),MP →=(x ,y ,-32),即y =34,∴点P 的轨迹方程为y =34.根据圆的弦长公式,可得点P 形成的轨迹长度为21- 34 2=72.11.(2016·泉州模拟)如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 (1)以A 为坐标原点,AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN ,则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,AF ⊂平面AEF ,EF ⊂平面AEF , ∴B 1F ⊥平面AEF .12.(2016·杭州模拟)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.(1)证明 ∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD , ∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)解 过点B 在平面BCD 内作BE ⊥BD ,如图所示.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD . ∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系. 依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M (0,12,12),则BC →=(1,1,0),BM →=(0,12,12),AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0,取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=|n ·AD →||n ||AD →|=63,即直线AD 与平面MBC 所成角的正弦值为63. *13.(2016·嘉兴二模)如图,长方体ABCD —A 1B 1C 1D 1中,AB =2,BC =CC 1=1,点P 是CD 上的一点,PC =λPD .(1)若A 1C ⊥平面PBC 1,求λ的值;(2)设λ1=1,λ2=3所对应的点P 为P 1,P 2,二面角P 1—BC 1—P 2的大小为θ,求cos θ的值.解 方法一 (1)∵A 1C ⊥BC 1,若A 1C ⊥PB ,则A 1C ⊥平面PBC 1,只需A 1C ⊥PB 即可, 在矩形ABCD 中,CP BC =BC AB ,解得CP =12,PD =32,λ=13.(2)过点C 作CH ⊥BC 1交BC 1于点H ,连接P 1H ,P 2H (图略),则∠P 1HP 2就是所求二面角的一个平面角θ.∵P 1C =1,P 2C =32,CH =22,∴tan∠P 1HC =2,tan∠P 2HC =32,tan θ=tan(∠P 2HC -∠P 1HC )=28, 所求余弦值为46633.方法二 (1)建立如图所示空间直角坐标系Oxyz ,则B (1,2,0),C 1(0,2,1),A 1(1,0,1),C (0,2,0), 设P (0,21+λ,0),则A 1C →=(-1,2,-1),BC 1→=(-1,0,1), BP →=(-1,21+λ-2,0), 若A 1C ⊥平面PBC 1, 则⎩⎪⎨⎪⎧A 1C →·BP →=0,A 1C →·BC 1→=0,即⎩⎪⎨⎪⎧1+41+λ-4=0,1+0-1=0,解得λ=13.(2)由P 1(0,1,0),P 2(0,12,0),得BP 1→=(-1,-1,0),BC 1→=(-1,0,1),BP 2→=(-1,-32,0).设平面BC 1P 1与平面BC 1P 2的法向量分别是n 1,n 2,由⎩⎪⎨⎪⎧ n 1·BP 1→=0,n 1·BC 1→=0,得n 1=(1,-1,1),由⎩⎪⎨⎪⎧n 2·BP 2→=0,n 2·BC 1→=0,得n 2=(3,-2,3),∴cos θ=|n 1·n 2||n 1||n 2|=4233=46633.。
2018年高考数学讲练测【浙江版】【练】第八章 立体几何第07节 立体几何中的向量方法A 基础巩固训练1.直线l 的方向向量s =(-1,1,1),平面α的法向量为n =(2,x 2+x ,-x ),若直线l ∥平面α,则x 的值为( ) A .-2 B .- 2 C . 2 D .± 2【答案】D2.【河南省豫南九校第三次联考】已知直线l 的方向向量α,平面α的法向量μ,若()1,1,1α=, ()1,0,1μ=-,则直线l 与平面α的位置关系是( )A. 垂直B. 平行C. 相交但不垂直D. 直线l 在平面α内或直线l 与平面α平行 【答案】D【解析】因为1010αμ⋅=-++=,即αμ⊥,所以直线l 在平面α内或直线l 与平面α平行,故选D .3.【2017届河北定州中学高三周练】已知点A (1,-2,0)和向量a =(-3,4,12),若向量//a ,且2AB a =,则B 点的坐标为( ) A .(-5,6,24) B .(-5,6,24)或(7,-10,-24) C .(-5,16,-24) D .(-5,16,-24)或(7,-16,24) 【答案】B 【解析】试题分析:设(,,)B x y z , ()1,2,AB x y z =-+,依题意有()()222222123412123412x y z x y z -+⎧==⎪-⎨⎪-+++=++⎩,解得()5,6,24B -或()7,10,24B --. 4.如空间直角坐标系中,已知()()()2,3,11,2,6,2,1,4,11A B C ,则直线AB 与AC 的夹角为__________. 【答案】60︒【解析】空间直角坐标系中,()()()()()2,3,1,2,6,2,1,4,1,0,3,3,1,1,0A B C AB AC --∴==-, ()0131303AB AC ∴⋅=⨯-+⨯+⨯=,()22203332,1AB AC =++==-31cos ,2322AB AC AB AC AB AC⋅∴===⨯⋅,所以向量,AB AC 的夹角为60,即直线AB与AC 的夹角为60,故答案为60.5.已知向量错误!未找到引用源。
专题限时集训(十) 立体几何中的向量方法(对应学生用书第97页)(限时:40分钟)题型1 向量法求线面角 1 题型2 向量法求二面角2,4 题型3 利用空间向量求解探索性问题31.(2017·郑州二模)如图109,三棱柱ABC A 1B 1C 1中,各棱长均相等.D ,E ,F 分别为棱AB ,BC ,A 1C 1的中点.图109(1)证明:EF ∥平面A 1CD ;(2)若三棱柱ABC A 1B 1C 1为直棱柱,求直线BC 与平面A 1CD 所成角的正弦值.[解] (1)证明:在三棱柱ABC A 1B 1C 1中,AC ∥A 1C 1,且AC =A 1C 1,连接ED ,在△ABC 中,因为D ,E 分别为棱AB ,BC 的中点,所以DE ∥AC ,DE =12AC .又F 为A 1C 1的中点,可得A 1F =12A 1C 1,所以A 1F ∥DE ,A 1F =DE ,因此四边形A 1FED 为平行四边形,所以EF ∥A 1D , 又EF ⊄平面A 1CD ,A 1D ⊂平面A 1CD , 所以EF ∥平面A 1CD .(2)法一:(几何法)因为底面ABC 是正三角形,D 为AB 的中点,所以CD ⊥AB ,又AA 1⊥CD ,AA 1∩AB =A ,所以CD ⊥平面A 1ABB 1. 如图在平面A 1ABB 1内,过点B 作BG ⊥A 1D ,交直线A 1D 于点G ,连接CG ,则BG ⊥平面A 1CD ,所以∠BCG 为直线BC 与平面A 1CD 所成的角.设三棱柱的棱长为a ,可得A 1D =5a2,由△A 1AD ∽△BGD , 可得BG =5a5, 在Rt△BCG 中,sin∠BCG =BG BC =55.所以直线BC 与平面A 1CD 所成角的正弦值为55. 法二:(向量法)设A 1B 1的中点为O ,连接OC 1,OD ,因为三棱柱ABC A 1B 1C 1为直棱柱,所以OD ⊥平面A 1B 1C 1,所以OD ⊥OC 1,OD ⊥OA 1.又△A 1B 1C 1为等边三角形,所以OC 1⊥A 1B 1.以O 为坐标原点,OA 1→,OD →,OC 1→的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系O xyz .设三棱柱的棱长为a ,则O (0,0,0),B ⎝ ⎛⎭⎪⎫-a2,a ,0,C ⎝ ⎛⎭⎪⎫0,a ,32a ,A 1⎝ ⎛⎭⎪⎫a 2,0,0,D (0,a,0).所以BC →=⎝ ⎛⎭⎪⎫a 2,0,32a ,A 1D →=⎝ ⎛⎭⎪⎫-a 2,a ,0,DC→=⎝ ⎛⎭⎪⎫0,0,32a . 设平面A 1CD 的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·A 1D →=0n ·DC →=0,得⎩⎪⎨⎪⎧-a2x +ay =032az =0.设x =2,解得n =(2,1,0).设直线BC 与平面A 1CD 所成的角为θ,则sin θ=|n ·BC →||n |·|BC →|=a 5·a 2=55. 所以直线BC 与平面A 1CD 所成角的正弦值为55. 2.(2017·合肥二模)如图1010(1),在矩形ABCD 中,AB =1,AD =2,点E 为AD 的中点,沿BE 将△ABE 折起至△PBE ,如图2所示,点P 在平面BCDE 上的射影O 落在BE 上.图1010(1)图1010(2)(1)求证:BP ⊥CE ;(2)求二面角B PC D 的余弦值.【导学号:07804077】[解] (1)证明:因为点P 在平面BCDE 上的射影O 落在BE 上,所以平面PBE ⊥平面BCDE ,易知BE ⊥CE ,所以CE ⊥平面PBE ,而BP ⊂平面PBE , 所以PB ⊥CE .(2)以O 为坐标原点,以过点O 且平行于CD 的直线为x 轴,过点O 且平行于BC 的直线为y 轴,直线PO 为z 轴,建立如图所示的空间直角坐标系,则B ⎝ ⎛⎭⎪⎫12,-12,0,C ⎝ ⎛⎭⎪⎫12,32,0,D ⎝ ⎛⎭⎪⎫-12,32,0,P ⎝ ⎛⎭⎪⎫0,0,22. 所以CD →=(-1,0,0),CP →=⎝ ⎛⎭⎪⎫-12,-32,22,PB →=⎝ ⎛⎭⎪⎫12,-12,-22,BC →=(0,2,0).设平面PCD 的法向量为n 1=(x 1,y 1,z 1),则有⎩⎨⎧n 1·CD →=0n 1·CP →=0,即⎩⎨⎧-x 1=0x 1+3y 1-2z 1=0,令z 1=2,可得n 1=⎝ ⎛⎭⎪⎫0,23,2. 设平面PBC 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎨⎧n 2·PB →=0n 2·BC →=0,即⎩⎨⎧x 2-y 2-2z 2=02y 2=0,令z 2=2,可得n 2=(2,0,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=3311.考虑到二面角B PC D 为钝角,则其余弦值为-3311. 3.(2017·郑州三模)如图1011,在四边形ABCD 中,AB ∥CD ,∠BCD =2π3,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .图1011(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成锐二面角最大,并求此时二面角的余弦值.[解] (1)证明:在梯形ABCD 中,设AD =CD =BC =1,∵AB ∥CD ,∠BCD =2π3,∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos π3=3.∴AB 2=AC 2+BC 2,∴BC ⊥AC . ∵CF ⊥平面ABCD ,AC ⊂平面ABCD , ∴AC ⊥CF ,而CF ∩BC =C , ∴AC ⊥平面BCF .∵四边形ACFE 是矩形,∴EF ∥AC ,∴EF ⊥平面BCF . (2)由(1)知,以CA ,CB ,CF 所成直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设AD =CD =BC =CF =1,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1), 设平面MAB 的法向量为n 1=(x ,y ,z ),则⎩⎨⎧n 1·AB →=0n 1·BM →=0,即⎩⎨⎧-3x +y =0λx -y +z =0,令x =1,则n 1=(1,3,3-λ),为平面MAB 的一个法向量. 易知n 2=(1,0,0)是平面FCB 的一个法向量, 设平面MAB 与平面FCB 所成锐二面角为θ, 则cos θ=|n 1·n 2||n 1|·|n 2|=11+3+3-λ2×1=1λ-32+4.∵0≤λ≤3,∴当λ=0时,cos θ有最小值77, ∴点M 与点F 重合时,平面MAB 与平面FCB 所成锐二面角最大, 此时二面角的余弦值为77. 4.(2017·河北石家庄二模)如图1012,在三棱柱ABC DEF 中,侧面ABED 是边长为2的菱形,且∠ABE =π3,BC =212.四棱锥F ABED 的体积为2,点F 在平面ABED 内的正投影为点G ,且点G 在AE 上,点M 在线段CF 上,且CM =14CF .图1012(1)证明:直线GM ∥平面DEF ; (2)求二面角M AB F 的余弦值.【导学号:07804078】[解] (1)证明:因为四棱锥F ABED 的体积为2,所以V F ABED =13×32×2×2×FG =2,所以FG = 3.又BC =EF =212,所以EG =32, 易知AE =2,则点G 是AE 的靠近点A 的四等分点. 过点G 作GK ∥AD 交DE 于点K ,连接FK ,则GK =34AD =34CF .又MF =34CF ,所以MF =GK ,又MF ∥GK ,所以四边形MFKG 为平行四边形,所以GM ∥FK ,又FK ⊂平面DEF ,GM ⊄平面DEF , 所以直线GM ∥平面DEF .(2)连接BD ,设AE ,BD 的交点为O ,以OB 所在直线为x 轴,OE 所在直线为y 轴,过点O 的平面ABED 的垂线为z 轴建立空间直角坐标系,如图所示,则A (0,-1,0),B (3,0,0),F ⎝ ⎛⎭⎪⎫0,-12,3, M ⎝ ⎛⎭⎪⎫334,-54,3,BA →=(-3,-1,0),BM →=⎝ ⎛⎭⎪⎫-34,-54,3,BF →=⎝ ⎛⎭⎪⎫-3,-12,3. 设平面ABM ,平面ABF 的法向量分别为m =(x 1,y 1,z 1),n =(x 2,y 2,z 2),则⎩⎨⎧m ·BA →=0,m ·BM →=0,⎩⎨⎧n ·BA →=0,n ·BF →=0,得⎩⎨⎧y 1=-3x 1,z 1=-x 1,⎩⎪⎨⎪⎧y 2=-3x 2,z 2=12x 2,不妨取x 1=x 2=1,则m =(1,-3,-1),n =⎝ ⎛⎭⎪⎫1,-3,12,所以cos 〈m ,n 〉=m ·n |m ||n |=78585, 易知二面角M AB F 是锐二面角, 故二面角M AB F 的余弦值为78585.。
专题限时集训(十) 立体几何中的向量方法(对应学生用书第137页) [建议用时:45分钟]1.如图1011,在四棱锥P ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.图1011(1)求证:PD ⊥平面PAB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.[解] (1)证明:因为平面PAD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面PAD .所以AB ⊥PD .2分又因为PA ⊥PD , 所以PD ⊥平面PAB .4分(2)取AD 的中点O ,连接PO ,CO . 因为PA =PD ,所以PO ⊥AD .又因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD .5分如图,建立空间直角坐标系O xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1). 6分设平面PCD 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0.令z =2,则x =1,y =-2.所以n =(1,-2,2). 8分又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33. 10分(3)设M 是棱PA 上一点, 则存在λ∈[0,1]使得AM →=λAP →.11分 因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).12分因为BM ⊄平面PCD ,所以要使BM ∥平面PCD 当且仅当BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0.解得λ=14.所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.15分2.如图1012,在四棱锥P ABCD 中,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD ,E 为棱AD的中点,异面直线PA 与CD 所成的角为90°.图1012(1)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (2)若二面角P CD A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.【导学号:68334118】[解] (1)在梯形ABCD 中,AB 与CD 不平行.如图(1),延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.2分(1)理由如下:由已知,知BC ∥ED ,且BC =ED , 所以四边形BCDE 是平行四边形,从而CM ∥EB .4分又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE .6分(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一 点)(2)法一:由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A , 所以CD ⊥平面PAD ,从而CD ⊥PD , 所以∠PDA 是二面角P CD A 的平面角, 所以∠PDA =45°.7分设BC =1,则在Rt △PAD 中,PA =AD =2.如图(1),过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH ,易知PA ⊥平面ABCD ,从而PA ⊥CE ,于是CE ⊥平面PAH . 所以平面PCE ⊥平面PAH .11分过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE , 所以∠APH 是PA 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1,所以AH =22. 在Rt △PAH 中,PH =PA 2+AH 2=322,所以sin ∠APH =AH PH =13.15分法二:由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A , 所以CD ⊥平面PAD ,于是CD ⊥PD . 从而∠PDA 是二面角P CD A 的平面角, 所以∠PDA =45°.又PA ⊥AB ,所以PA ⊥平面ABCD .7分设BC =1,则在Rt △PAD 中,PA =AD =2,作Ay ⊥平面PAD ,以A 为原点,以AD →,AP →的方向分别为x 轴、z 轴的正方向,建立如图(2)所示的空间直角坐标系A xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),(2)所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2). 9分设平面PCE 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1). 12分设直线PA 与平面PCE 所成角为α, 则sin α=|n ·AP →||n |·|AP →|=22×22+-2+12=13, 所以直线PA 与平面PCE 所成角的正弦值为13.15分3.在平面四边形ACBD (如图1013(1))中,△ABC 与△ABD 均为直角三角形且有公共斜边AB ,设AB =2,∠BAD =30°,∠BAC =45°,将△ABC 沿AB 折起,构成如图1013(2)所示的三棱锥C ′ABD ,且使C ′D = 2.(1) (2)图1013(1)求证:平面C ′AB ⊥平面DAB ;(2)求二面角A C ′D B 的余弦值. 【导学号:68334119】 [解] (1)证明:取AB 的中点O ,连接C ′O ,DO , 在Rt △AC ′B ,Rt △ADB 中,AB =2,C ′O =DO =1. 又∵C ′D =2,∴C ′O 2+DO 2=C ′D 2,即C ′O ⊥OD . 2分又∵C ′O ⊥AB ,AB ∩OD =O ,AB ,OD ⊂平面ABD , ∴C ′O ⊥平面ABD .4分 又∵C ′O ⊂平面ABC ′,∴平面C ′AB ⊥平面DAB .5分(2)以O 为原点,AB ,OC ′所在的直线分别为y 轴,z 轴,建立如图所示的空间直角坐标系.则A (0,-1,0),B (0,1,0),C ′(0,0,1),D ⎝⎛⎭⎪⎫32,12,0, ∴AC ′→=(0,1,1),BC ′→=(0,-1,1),C ′D →=⎝ ⎛⎭⎪⎫32,12,-1.6分设平面AC ′D 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1⊥AC ′→,n 1⊥C ′D →,即⎩⎪⎨⎪⎧n 1·AC ′→=0,n 1·C ′D →=0,⎩⎪⎨⎪⎧ y 1+z 1=0,32x 1+12y 1-z 1=0,令z 1=1,则y 1=-1,x 1=3,∴n 1=(3,-1,1).8分设平面BC ′D 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2⊥BC ′→,n 2⊥C ′D →,即⎩⎪⎨⎪⎧n 2·BC ′→=0,n 2·C ′D →=0,⎩⎪⎨⎪⎧-y 2+z 2=0,32x 2+12y 2-z 2=0,令z 2=1,则y 2=1, x 2=33, ∴n 2=⎝⎛⎭⎪⎫33,1,1,12分∴cos 〈n 1,n 2〉=3×33+-+1×13+1+1×13+1+1=15×73=10535,二面角A C ′D B 的余弦值为-10535.15分4.(2017·杭州学军中学高三模拟)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.图1014(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC .求二面角F BC A 的余弦值.[解] (1)证明:设FC 的中点为I ,连接GI ,HI (图略). 在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .3分在△CFB 中,因为H 是FB 的中点,所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI ,所以GH ∥平面ABC . 6分 (2)法一:连接OO ′,则OO ′⊥平面ABC . 又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC .8分以O 为坐标原点,建立如图所示的空间直角坐标系O xyz .由题意得B (0,23,0),C (-23,0,0), 所以BC →=(-23,-23,0), 10分过点F 作FM 垂直于OB 于点M .所以FM =FB 2-BM 2=3,可得F (0,3,3). 故BF →=(0,-3,3).12分设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎨⎧-23x -23y =0,-3y +3z =0,可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33. 因为平面ABC 的一个法向量n =(0,0,1),所以cos 〈m ,n 〉=m·n |m||n |=77.所以二面角F BC A 的余弦值为77.15分法二:连接OO ′.过点F 作FM 垂直于OB 于点M , 则有FM ∥OO ′.又OO ′⊥平面ABC ,所以FM ⊥平面ABC . 9分 可得FM =FB 2-BM 2=3.OB =23,OM =O ′F =3,BM =OB -OM =3,过点M 作MN 垂直BC 于点N ,连接FN .可得FN ⊥BC ,从而∠FNM 为二面角F BC A 的平面角. 又AB =BC ,AC 是圆O 的直径, 所以MN =BM sin 45°=62. 13分从而FN =FM 2+MN 2=422, 可得cos ∠FNM =MN FN=77, 所以二面角F BC A 的余弦值为77.15分。
立体几何中的向量方法A 级 基础一、选择题1.如图,F 是正方体ABCD-A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合2.如图,点A ,B ,C 分别在空间直角坐标系O-xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A.43B.53C.23D .-233.在三棱柱ABC-A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32B.22C.104D.644.如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上说法正确的个数为( ) A .1B .2C .3D .45.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22二、填空题6.(2019·东莞中学检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成的角的大小是________.7.如图所示,在正方体ABCD-A 1B 1C 1D 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.三、解答题8.(2018·北京卷)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.9.(2019·长郡中学模拟)如图1,直角梯形ABCD中,AD∥BC 中,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(1)求证:AF∥平面CBD;(2)求平面CBD与平面DAE所成锐角的余弦值.B级能力提升10.(2019·天津卷)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值为13,求线段CF的长.11.(2019·六安一中模拟)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.A 级 基础一、选择题1.解析:以D 为坐标原点,以DA ,DC ,DD 1所在直线为坐标轴建立坐标系,设正方体的棱长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),因为D 1F →·DE →=0×2+1×2-2z =0,所以z =1,所以B 1E =EB.答案:A2.解析:由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C-AB-O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.答案:C3.解析:如图,建立空间直角坐标系,易求点D ⎝ ⎛⎭⎪⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以sin α=|cos 〈n ,AD →〉|=322=64.答案:D4. 解析:A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,所以A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.答案:C5.解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1→=(-1,0,3),DB 1→=(1,1,3). 则cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故异面直线AD 1与DB 1所成角的余弦值为55.答案:C 二、填空题 6.解析:依题意,以C 为原点,建立如图所示的直角坐标系,设AB =BC =CD =a ,AB ⊥平面BCD .则B (a ,0,0),D (0,a ,0),C (0,0,0),A (a ,0,a ). 所以BD →=(-a ,a ,0),CA →=(a ,0,a ).所以cos 〈BD →,CA →〉=BD →·CA→|BD →|·|CA →|=-a 22a ·2a=-12,则〈BD →,CA →〉=2π3,故AC 与BD 所成角为π3.答案:π37. 解析:因为AC ⊥BD 且AC ⊥BB 1,BD ∩BB 1=B , 所以AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,所以α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面ADD 1A 1,则β=∠EDF .cos(α-β)=cos ⎝ ⎛⎭⎪⎫π2-∠EDF =sin ∠EDF =EFED =66.答案:66三、解答题8.(1)证明:在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.因为AB=BC,所以AC⊥BE.又EF∩BE=E,所以AC⊥平面BEF.(2)解:由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE⊂平面ABC,所以EF⊥BE.如图建立空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),E(0,0,0),F(0,0,2),G(0,2,1).所以BC→=(-1,-2,0),BD→=(1,-2,1).设平面BCD的法向量为n=(x0,y0,z0).则⎩⎪⎨⎪⎧n·BC→=0,n·BD→=0,即⎩⎪⎨⎪⎧x0+2y0=0,x0-2y0+z0=0.令y0=-1,则x0=2,z0=-4.于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题意知二面角B -CD -C 1为钝角,所以其余弦值为-2121. (3)证明:由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1).因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.9.(1)证明:取DE 中点G ,连接FG ,AG ,CG . 由条件CFDG ,所以CFGD 为平行四边形,所以FG ∥CD .又FG ⊄平面CBD ,CD ⊂平面CBD , 所以FG ∥平面CBD . 同理AG ∥平面CBD .又FG ∩AG =G ,FG ⊂平面AFG ,AG ⊂平面AFG . 所以平面AFG ∥平面CBD . 又AF ⊂平面AFG , 所以AF ∥平面CBD .(2)解:因为EF ⊥AE ,EF ⊥DE ,AE ∩DE =E ,所以EF ⊥平面ADE .又AD =AE =DE ,以AE 中点H 为原点,AE 为x 轴建立如图所示的空间直角坐标系,则A (-1,0,0),D (0,0,3),B (-1,-2,0),E (1,0,0), F (1,-2,0).因为CF →=12DE →,所以C ⎝ ⎛⎭⎪⎫12,-2,32,所以BC →=⎝ ⎛⎭⎪⎫32,0,32,BD →=(1,2,3).易知BA →是平面ADE 的一个法向量,BA →=n 1=(0,2,0), 设平面BCD 的一个法向量为n 2=(x ,y ,z ),由⎩⎨⎧n 2·BC →=(x ,y ,z )·⎝ ⎛⎭⎪⎫32,0,32=32x +32z =0,n 2·BD →=(x ,y ,z )·(1,2,3)=x +2y +3z =0,令x =2,则y =2,z =-23,所以n 2=(2,2,-23). cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=2×0+2×2-23×02×25=55.所以平面CBD 与平面DAE 所成锐角的余弦值为55.B 级 能力提升10.(1)证明:依题意,建立以A 为原点,分别以AB →,AD →,AE →的方向为x 轴、y 轴、z 轴正方向的空间直角坐标系(如图),可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2).设CF =h (h >0),则F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的法向量. 又BF →=(0,2,h ),可得BF →·AB →=0, 又因为直线BF ⊄平面ADE . 所以BF ∥平面ADE .(2)解:依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0.即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0.不妨令z =1,可取n =(2,2,1). 因此有cos 〈CE →·n 〉=CE →·n |CE →||n |=-49.所以直线CE 与平面BDE 所成角的正弦值为49.(3)解:设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0,不妨令y 1=1,可得m =⎝ ⎛⎭⎪⎫1,1,-2h .由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h2=13, 解得h =87 .经检验,符合题意.所以线段CF 的长为87.11.(1)证明:连接BD ,设AC 交BD 于点O ,连接SO ,由题意知SO ⊥平面ABCD ,以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立坐标系O-xyz , 设底面边长为a ,则高SO =62a ,于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解:由题设知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a .设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,所以所求二面角的大小为30°.(3)解:在棱SC 上存在一点E 使BE ∥平面PAC .根据第(2)问知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a .设CE →=tCS →.则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .由BE →·DS →=0,得-a 22+0+64a 2t =0,则t =13.所以当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面PAC ,故BE ∥平面PAC .因此在棱SC 上存在点E ,使BE ∥平面PAC ,此时SE ∶EC =2∶1.。
专题限时集训(十) 立体几何中的向量方法(对应学生用书第137页) [建议用时:45分钟]1.如图1011,在四棱锥P ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.图1011(1)求证:PD ⊥平面PAB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.[解] (1)证明:因为平面PAD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面PAD .所以AB ⊥PD .2分又因为PA ⊥PD , 所以PD ⊥平面PAB .4分(2)取AD 的中点O ,连接PO ,CO . 因为PA =PD ,所以PO ⊥AD .又因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD .5分如图,建立空间直角坐标系O xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1). 6分设平面PCD 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0.令z =2,则x =1,y =-2.所以n =(1,-2,2). 8分又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33. 10分(3)设M 是棱PA 上一点, 则存在λ∈[0,1]使得AM →=λAP →.11分 因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).12分因为BM ⊄平面PCD ,所以要使BM ∥平面PCD 当且仅当BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0.解得λ=14.所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.15分2.如图1012,在四棱锥P ABCD 中,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD ,E 为棱AD的中点,异面直线PA 与CD 所成的角为90°.图1012(1)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (2)若二面角P CD A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.【导学号:68334118】[解] (1)在梯形ABCD 中,AB 与CD 不平行.如图(1),延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.2分(1)理由如下:由已知,知BC ∥ED ,且BC =ED , 所以四边形BCDE 是平行四边形,从而CM ∥EB .4分又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE .6分(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一 点)(2)法一:由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A , 所以CD ⊥平面PAD ,从而CD ⊥PD , 所以∠PDA 是二面角P CD A 的平面角, 所以∠PDA =45°.7分设BC =1,则在Rt △PAD 中,PA =AD =2.如图(1),过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH ,易知PA ⊥平面ABCD ,从而PA ⊥CE ,于是CE ⊥平面PAH . 所以平面PCE ⊥平面PAH .11分过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE , 所以∠APH 是PA 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1,所以AH =22. 在Rt △PAH 中,PH =PA 2+AH 2=322,所以sin ∠APH =AH PH =13.15分法二:由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A , 所以CD ⊥平面PAD ,于是CD ⊥PD . 从而∠PDA 是二面角P CD A 的平面角, 所以∠PDA =45°.又PA ⊥AB ,所以PA ⊥平面ABCD .7分设BC =1,则在Rt △PAD 中,PA =AD =2,作Ay ⊥平面PAD ,以A 为原点,以AD →,AP →的方向分别为x 轴、z 轴的正方向,建立如图(2)所示的空间直角坐标系A xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),(2)所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2). 9分设平面PCE 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1). 12分设直线PA 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+ -2 2+12=13,所以直线PA 与平面PCE 所成角的正弦值为13.15分3.在平面四边形ACBD (如图1013(1))中,△ABC 与△ABD 均为直角三角形且有公共斜边AB ,设AB =2,∠BAD =30°,∠BAC =45°,将△ABC 沿AB 折起,构成如图1013(2)所示的三棱锥C ′ABD ,且使C ′D = 2.(1) (2)图1013(1)求证:平面C ′AB ⊥平面DAB ;(2)求二面角A C ′D B 的余弦值. 【导学号:68334119】 [解] (1)证明:取AB 的中点O ,连接C ′O ,DO , 在Rt △AC ′B ,Rt △ADB 中,AB =2,C ′O =DO =1. 又∵C ′D =2,∴C ′O 2+DO 2=C ′D 2,即C ′O ⊥OD . 2分又∵C ′O ⊥AB ,AB ∩OD =O ,AB ,OD ⊂平面ABD , ∴C ′O ⊥平面ABD .4分 又∵C ′O ⊂平面ABC ′,∴平面C ′AB ⊥平面DAB .5分(2)以O 为原点,AB ,OC ′所在的直线分别为y 轴,z 轴,建立如图所示的空间直角坐标系.则A (0,-1,0),B (0,1,0),C ′(0,0,1),D ⎝⎛⎭⎪⎫32,12,0, ∴AC ′→=(0,1,1),BC ′→=(0,-1,1),C ′D →=⎝ ⎛⎭⎪⎫32,12,-1.6分设平面AC ′D 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1⊥AC ′→,n 1⊥C ′D →,即⎩⎪⎨⎪⎧n 1·AC ′→=0,n 1·C ′D →=0,⎩⎪⎨⎪⎧ y 1+z 1=0,32x 1+12y 1-z 1=0,令z 1=1,则y 1=-1,x 1=3,∴n 1=(3,-1,1).8分设平面BC ′D 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2⊥BC ′→,n 2⊥C ′D →,即⎩⎪⎨⎪⎧n 2·BC ′→=0,n 2·C ′D →=0,⎩⎪⎨⎪⎧-y 2+z 2=0,32x 2+12y 2-z 2=0,令z 2=1,则y 2=1, x 2=33, ∴n 2=⎝⎛⎭⎪⎫33,1,1,12分∴cos 〈n 1,n 2〉=3×33+ -1 ×1+1×13+1+1×13+1+1=15×73=10535,二面角A C ′D B 的余弦值为-10535.15分4.(2017·杭州学军中学高三模拟)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.图1014(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC .求二面角F BC A 的余弦值.[解] (1)证明:设FC 的中点为I ,连接GI ,HI (图略). 在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .3分在△CFB 中,因为H 是FB 的中点,所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI ,所以GH ∥平面ABC . 6分 (2)法一:连接OO ′,则OO ′⊥平面ABC . 又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC .8分以O 为坐标原点,建立如图所示的空间直角坐标系O xyz .由题意得B (0,23,0),C (-23,0,0), 所以BC →=(-23,-23,0), 10分过点F 作FM 垂直于OB 于点M .所以FM =FB 2-BM 2=3,可得F (0,3,3). 故BF →=(0,-3,3).12分设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎨⎧-23x -23y =0,-3y +3z =0,可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33. 因为平面ABC 的一个法向量n =(0,0,1),所以cos 〈m ,n 〉=m·n |m||n |=77.所以二面角F BC A 的余弦值为77.15分法二:连接OO ′.过点F 作FM 垂直于OB 于点M , 则有FM ∥OO ′.又OO ′⊥平面ABC ,所以FM ⊥平面ABC . 9分 可得FM =FB 2-BM 2=3.OB =23,OM =O ′F =3,BM =OB -OM =3,过点M 作MN 垂直BC 于点N ,连接FN .可得FN ⊥BC ,从而∠FNM 为二面角F BC A 的平面角. 又AB =BC ,AC 是圆O 的直径, 所以MN =BM sin 45°=62. 13分从而FN =FM 2+MN 2=422, 可得cos ∠FNM =MN FN=77, 所以二面角F BC A 的余弦值为77.15分。