最优搜索理论及其应用
- 格式:pdf
- 大小:531.01 KB
- 文档页数:11
列车运行调整的优化问题最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。
最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。
实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、国防等各个领域,发挥着越来越重要的作用。
本文主要论述最优化理论在列车运行调整中的应用。
1、列车运行调整的概述列车自动调整的主要任务是当列车运行受到干扰时通过适当地调整列车的运行计划,使列车群的运行尽快恢复到计划运行图上。
因而列车自动调整过程是一个不断对列车运行图进行局部调整以消除干扰的优化过程,列车运行图既是列车自动调整的依据,同时也是列车自动调整的目标。
列车运行调整即是当列车运行实际状态偏离预定值,造成列车运行紊乱时,通过重新规划列车运行时刻表,尽可能恢复列车有秩序运行状态的过程。
列车的运行过程可以分解为车站作业(发车、到达、通过)和区间运行。
通常列车群在区间的运行用区间运行时分描述即可,在区间对列车进行调整的常用手段就是压缩区间运行时分,而区间运行时分这一信息只影响列车在下一站的到达时分,可归结到车站去处理。
因此列车自动调整的重点是控制列车在车站的作业情况,即在城市交通列车群的相对确定的次序条件下,在多个约束条件下如何合理确定列车在各站的到点、发点。
1.1 列车运行调整本身具有的特点:●约束条件众多。
它要满足列车与列车,列车与车站,计划列车时刻表等来自多方面的约束,这其中包括了最小停站时间,最短追踪间隔,最短运行时间等等;●优化指标众多。
在传统的运行调整问题的研究中常用到的优化指标有总到达时间晚点最小,总晚点列车数目最少等;●动态性、实时性,复杂性。
最优化理论学习心得体会最优化理论学习心得一、引言最优化理论是运筹学和应用数学的一门重要学科,研究的是如何在给定的约束条件下,找到使目标函数取得极值的最优解。
最优化问题广泛存在于经济、工程、物理、计算机科学等领域,具有重要的理论和实际意义。
通过学习最优化理论,不仅能够掌握优化算法的理论基础,还可以应用于实际问题的建模和解决。
在本次的学习中,我主要学习了最优化理论的基本概念、最优性条件、线性规划、整数规划、非线性规划等内容。
通过学习,我深刻体会到了最优化理论的重要性和应用价值,并对最优化算法的原理和方法有了更深入的了解。
下面我将总结学习过程中的体会和心得,包括最优化理论的基本原理、最优性条件的推导和应用、各类规划问题的求解方法等。
二、最优化理论的基本原理最优化理论的核心思想是在给定的约束条件下寻找使目标函数取得极值的最优解。
最优化问题可以分为无约束优化问题和有约束优化问题两种情况。
无约束优化问题是指在没有约束条件下,寻找使目标函数取得极值的最优解。
常见的求解方法有牛顿法、拟牛顿法、共轭梯度法等。
这些方法通过迭代的方式来逼近最优解,从而不断优化目标函数的值。
有约束优化问题是指在存在一些约束条件下,寻找使目标函数取得极值的最优解。
常见的求解方法有拉格朗日乘子法、KKT条件、对偶问题等。
这些方法通过引入拉格朗日乘子或者对偶变量,将原问题转化为等价的无约束优化问题,从而可以利用无约束优化问题的方法求解。
最优化理论的基本原理包括目标函数、约束条件、最优性条件等概念的引入和定义,以及最优解的存在性和唯一性等性质的证明。
通过学习这些基本原理,我深刻理解了最优解的概念和意义,以及如何通过数学方法来寻找最优解。
三、最优性条件的推导和应用最优性条件是判断一个解是否为最优解的重要依据。
在最优化理论中,有很多最优性条件的推导和应用,其中最为经典的是一阶和二阶条件。
一阶条件是指关于目标函数的导数和约束条件的导数等于零的条件。
最优化方法及其应用作者:郭科出版社:高等教育出版社类别:不限出版日期:20070701最优化方法及其应用 的图书简介系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考,最优化方法及其应用 的pdf电子书下载最优化方法及其应用 的电子版预览第一章 最优化问题总论1.1 最优化问题数学模型1.2最优化问题的算法1.3 最优化算法分类1.4组合优化问題简卉习题一第二章 最优化问题的数学基础2.1二次型与正定矩阵2.2 方向导数与梯度2.3Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5锥、凸集、凸锥2.6 凸函数2.7约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1动态规划基本原理7.2 动态规划迭代算法7.3动态规划有关说明习题七第八章 多目标优化8.1多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2常用最优化方法的特点及选用标准10.3最优化问题编程的一般过程10.4 优化问题设计实例参考文献更多 最优化方法及其应用 相关pdf电子书下载。
最优化理论与应用最优化是数学中的一个重要分支,其研究的对象是如何找到某个函数在一定约束条件下的最优解。
最优化理论和方法在众多领域中有广泛的应用,涵盖了经济学、工程学、管理学以及物理学等多个领域。
本文将介绍最优化理论的基本概念和常用方法,并以实例展示其在实际应用中的重要性。
一、最优化理论的基本概念最优化理论的核心目标是找到一个使目标函数取得最大值或最小值的解,同时满足一定的约束条件。
为了更好地理解最优化理论,我们首先来了解一些基本概念。
1. 目标函数:最优化问题中需要进行优化的函数被称为目标函数。
目标函数可以是线性函数、非线性函数以及其他特定形式的函数。
2. 变量:为了求解最优化问题,我们需要确定一组变量的取值。
这些变量被称为决策变量,它们直接影响到目标函数的取值。
3. 约束条件:最优化问题通常存在一定的约束条件。
这些约束条件可以是线性约束、非线性约束或者其他特定形式的约束。
4. 最优解:最优解是指在给定的约束条件下,使目标函数取得最优值的变量取值。
最优解可能是唯一的,也可能存在多个。
二、最优化方法的分类为了求解最优化问题,我们使用各种不同的方法。
下面介绍几种常见的最优化方法:1. 暴力搜索法:暴力搜索法是最简单直接的方法之一。
它遍历了所有可能的解,并计算每个解对应的目标函数的值。
然后从中选择最优解。
暴力搜索法的缺点是计算量大,在问题规模较大时不可行。
2. 梯度下降法:梯度下降法是一种迭代求解的方法。
它通过计算目标函数在当前解处的梯度,并以梯度的相反方向进行迭代更新。
梯度下降法适用于连续可导的目标函数。
3. 线性规划法:线性规划法适用于目标函数和约束条件都是线性的最优化问题。
它通过线性规划模型的建立和求解,找到最优解。
4. 非线性规划法:非线性规划法适用于目标函数或约束条件中存在非线性部分的问题。
它通过使用约束函数的导数和二阶导数来确定最优解。
三、最优化理论的应用领域举例最优化理论和方法在实际应用中具有广泛的应用价值。
最优化理论与方法综述李超雄最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
最优化方法的主要研究对象是各种管理问题及其生产经营活动。
最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。
实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。
这就是我理解的整个课程的流程。
在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。
下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。
20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。
因此最优化理论和算法迅速发展起来,形成一个新的学科。
至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。
最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。
最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。
这类问题普遍存在。
例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。
《最优化理论》课程教学大纲一、课程基本信息
二、课程目标及对毕业要求指标点的支撑
三、教学内容及进度安排
四、课程考核
五、教材及参考资料
教材:《最优化理论与算法(第2版)》,陈宝林著,清华大学出版社,2005年,ISBN:97873021137680
参考书:
1、《最优化方法》,孙文瑜、徐成贤、朱德通主编,高等教育出版社,2004年第一版,ISBN:9787040143751o
2、《最优化理论与方法》,袁亚湘,孙文瑜著,科技出版社,2010年(第二版),ISBN:9787030054135o
3、《最优化计算方法》,黄正海,苗新河著,科技出版社,2015年(第二版),ISBN:9787030433053o
六、教学条件
本课程属于基础理论与应用型课程,对实验条件要求不是很高。
学校实验大楼拥有的计算机软硬件资源,高性能计算机,投影仪等设备,基本能够完成所需的理论计算任务、数值模拟试验以及程序测试等。
需要使用多媒体教室授课,授课电脑安装了WindoWS7、
OffiCe2010、1ingo11Python>Mat1ab2015>Mathematica11>MathTyPe6.9以上版本的正版软件。
附录:各类考核评分标准表。
第一章最优化理论方法优化理论是一门实践性很强的学科。
所谓最优化问题,一般是指按照给定的标准在某些约束条件下选取最优的解集。
他被广泛地应用于生产管理、军事指挥和科学试验等领域,如工程设计中的最优设计、军事指挥中的最优火力配置问题等。
优化理论和方法于20世纪50年代形成基础理论。
在第二次世界大战期间,出于军事上的需要,提出并解决了大量的优化问题。
但作为一门新兴学科,则是在G.B.Dantzig提出求解线性规划问题的单纯形法,H.W.Kuhnh和A.W.Tucker 提出非线性规划基本定理,以及R.Bellman提出动态规划的最优化原理以后。
之后,由于计算机的发展,使优化理论得到了飞速的发展,至今已形成具有多分支的综合学科。
其主要分支有:线性规划、非线性规划、动态规划、图论与网络、对策论、决策论等。
1.极小值优化1.1标量最小值优化求解单变量最优化问题的方法有多种,根据目标函数是否需要求导,可以分为两类,即直接法和间接法。
直接法不需要对目标函数进行求导,而间接法则需要用到目标函数的导数。
常用的一维直接法主要有消去法和近似法两种。
消去法利用单峰函数具有的消去性质进行反复迭代,逐渐消去不包含极小点的区间,缩小搜索区间,直到搜索区间缩小到给定的允许精度为止。
该法的优点是算法简单,效率较高,稳定性好。
多项式近似法用于目标函数比较复杂的情况。
此时搜索一个与它近似的函数代替目标函数,并用近似函数的极小点作为原函数极小点的近似。
常用的近似函数为二次和三次多项式、间接法需要计算目标函数的导数,优点是计算速度很快。
常见的间接法包括牛顿切线法、对分法、割线法和三次差值多项式近似法等。
如果函数的导数容易求得,一般来说应首先考虑使用三次插值法,因为它具有较高的效率。
在只需要计算函数值得方法中,二次差值是一个很好的方法,它的收敛速度快,特别是在极小点所在区间较小时尤为如此。
1.2无约束最小值优化无约束最优化问题在实际应用中也比较常见,如工程中常见的参数反演问题。
最优化建模算法与理论最优化建模算法与理论最优化建模是以一种有效的方式来求解优化问题的过程。
它是一种用于处理优化问题的综合算法,其中包括搜索算法、随机算法、组合算法等。
最优化建模的主要目标是通过有效的算法和理论,寻找最优解来解决优化问题。
本文将从以下几个方面讨论最优化建模中的算法和理论:一、基本最优化模型基本最优化模型是一种描述变量之间关系的模型,它一般用于求解优化问题。
基本最优化模型一般由目标函数、约束条件、决策变量等组成。
目标函数是描述求解问题的目标,约束条件是指处理问题的要求,决策变量是用于描述最优化问题的变量。
基本最优化模型一般可以用数学模型来表示,如线性模型、非线性模型等。
二、最优化搜索算法最优化搜索算法是用于最优化问题的一类算法,它可以在有限的时间内搜索出最优解,因此被用来求解最优化问题。
最优化搜索算法主要包括贪心算法、模拟退火算法、遗传算法等。
贪心算法是一种局部最优搜索算法,它通过从一个状态进行评估,不断的求解局部最优解,最终求得全局最优解。
模拟退火算法是一种基于概率的搜索算法,它通过增加概率来接受新的状态,从而最终接受最优解。
遗传算法是一种进化算法,它通过迭代的过程,不断的进化出更优的解。
三、最优化理论最优化理论是指用于求解最优化问题的一系列理论,它可以帮助我们更好地理解和分析最优化问题。
最优化理论主要包括多目标优化理论、随机优化理论、优化系统理论等。
多目标优化理论是指在求解多目标优化问题时,按照一定的准则,构造出最优解的理论。
随机优化理论是指在求解随机优化问题时,按照一定的准则,构造出最优解的理论。
优化系统理论是指在求解优化系统问题时,按照一定的准则,构造出最优解的理论。
四、应用最优化建模算法和理论已被广泛应用于各个领域。
在工程中,最优化建模算法和理论可用于解决结构优化、供应链管理等问题。
在管理学中,最优化建模算法和理论可用于解决生产调度、经营决策等问题。
在经济学中,最优化建模算法和理论可用于解决价格机制、资源分配等问题。