显微技术
- 格式:ppt
- 大小:1.42 MB
- 文档页数:28
显微技术显微技术是微生物检验技术中最常用的技术之一。
显微镜的种类很多,在实验室中常用的有:普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜和电子显微镜等。
而在食品微生物检验中最常用的还是普通光学显微镜。
一、普通光学显微镜的结构和基本原理:1.结构:光学显微镜是由光学放大系统和机械装置两部分组成。
光学系统一般包括目镜、物镜、聚光器、光源等;机械系统一般包括镜筒、物镜转换器、镜台、镜臂和底座等。
(图3-1)标本的放大主要由物镜完成,物镜放大倍数越大,它的焦距越短。
焦距越小,物镜的透镜和玻片间距离(工作距离)也小。
油镜的工作距离很短,使用时需格外注意。
目镜只起放大作用,不能提高分辨率,标准目镜的放大倍数是十倍。
聚光镜能使光线照射标本后进入物镜,形成一个大角度的锥形光柱,因而对提高物镜分辨率是很重要的。
聚光镜可以上下移动,以调节光的明暗,可变光阑可以调节入射光束的大小。
显微镜用光源,自然光和灯光都可以,以灯光较好,因光色和强度都容易控制。
一般的显微镜可用普通的灯光,质量高的显微镜要用显微镜灯,才能充分发挥其性能。
有些需要很强照明,如暗视野照明、摄影等,常常使用卤素灯作为光源。
图3-1光学显微镜结构图2.原理:显微镜的放大效能(分辨率)是由所用光波长短和物镜数值口径决定,缩短使用的光波波长或增加数值口径可以提高分辨率,可见光的光波幅度比较窄,紫外光波长短可以提高分辨率,但不能用肉眼直接观察。
所以利用减小光波长来提高光学显微镜分辨率是有限的,提高数值口径是提高分辨率的理想措施。
要增加数值口径,可以提高介质折射率,当空气为介质时折射率为1,而香柏油的折射率为1.51,和载片玻璃的折射率(1.52)相近,这样光线可以不发生折射而直接通过载片、香柏油进入物镜,从而提高分辨率。
显微镜总的放大倍数是目镜和物镜放大倍数的乘积,而物镜的放大倍数越高,分辨率越高。
二、普通显微镜的使用方法1、低倍镜观察先将低倍物镜的位置固定好,然后放置标本片,转动反光镜,调好光线,将物镜提高,向下调至看到标本,再用细调对准焦距进行观察。
微生物显微技术的发展及应用化生系生物技术11 麦柳明学号:2011111778微生物显微技术主要包括标本的制作技术、显微镜技术、显微摄影技术以厦摄影后的图像处理技术等四个方面。
(一)微生物显微技术的历史回顾1676年,列文虎克利用自制的单式显微镜首次发现了细菌,这标志着人类开始了微生物学领域的研究;同时也标志着微生物显微技术的诞生。
伽利略发明了望远镜后,人们受到启发,将它倒过来制成了第一台复式显微镜。
l850年,在显微摄影技术极低困难重重的情况下,科赫拍摄了至今还能清晰辨认的细菌照片,这一成果被视为显微摄影史上的奇迹之一;他于l877年第一个制作了可以永久保存的、用美蓝染色的干细菌膜标本。
l934年,马顿制造了第一架电子显微镜;1 941年,马德等发表了第一批细菌细胞的电镜照片。
电镜的发明以及引入了计算机技术标志着显微技术进入了新的历史发展阶段,它不仅使微生物研究进入了分子水平,以至电子水平,进而促使微生物显微技术向着快速、准确和自动化方向发展。
(二)微生物显微技术的发展现状概述新技术、新理论的不断引进逐步充实和完善了微生物显微技术,其发展主要表现在以下四个方面:1、标本制作技术(即切片技术)及其设备:近代物理学、化学和生物学等学科的发展为标本制作技术奠定了坚实的理论和技术基础,使切片技术逐渐成熟形成了体系。
生物种类(动物、植物和微生物)的切片技术主要包括整体标本制作、超薄切片制作和冷冻切片技术等。
切片技术改进的一个突出例子是x射线显微分析超薄冰冻切片上的可扩散元素。
在元素浓度低(如lOOnm 厚的切片中),X射线显微分析只能在直径为l OOnm 范围内进行;在元素浓度高(如在厚度为1—2 m的无机包含物切片中),X射线显微分析可在直径小至25am范围内进行;在元素浓度高,具有良好的冰冻干燥设备,并采用严格的冰冻切片技术,x射线显微分析可在直径小于25nm范围内进行,从而在不同试验条件和不同超微结构水平上研究细胞化学成分。
植物显微技术课程教案第一章:显微镜的使用1.1 显微镜的种类与结构1.2 显微镜的使用方法1.3 显微镜的清洁与保养第二章:植物组织的观察2.1 植物组织的分类与特点2.2 植物组织的切片制作2.3 植物组织的显微观察第三章:植物细胞结构与功能3.1 植物细胞的基本结构3.2 植物细胞的特殊结构3.3 植物细胞的功能与显微观察第四章:植物器官的显微结构4.1 根的显微结构4.2 茎的显微结构4.3 叶的显微结构4.4 花与果实的显微结构第五章:植物显微技术的应用5.1 植物病毒的显微观察5.2 植物病虫害的显微诊断5.3 植物组织的培养与繁殖第六章:植物组织的化学染色6.1 染色原理与方法6.2 常用的染色剂及其应用6.3 染色过程中的注意事项第七章:显微摄影与图像分析7.1 显微摄影的基本技巧7.2 显微摄影的参数设置7.3 图像分析与处理方法第八章:植物显微技术实验操作8.1 实验材料的选择与处理8.2 切片制作与观察第九章:植物显微技术的实验案例分析9.1 植物病毒感染的显微观察案例9.2 植物病虫害诊断的显微分析案例9.3 植物组织培养的成功案例第十章:植物显微技术的未来发展10.1 显微技术的最新发展10.2 植物显微技术在科研中的应用10.3 植物显微技术的未来挑战与机遇重点和难点解析一、显微镜的使用难点解析:显微镜的种类繁多,结构复杂,不同类型的显微镜使用方法也有所不同。
学生需要掌握显微镜的基本使用方法,包括调节焦距、换镜、调节光源等。
二、植物组织的观察难点解析:植物组织的分类和特点需要学生通过观察和实践来理解和掌握。
切片制作过程中,如何获得薄而均匀的切片是一大难点。
三、植物细胞结构与功能难点解析:植物细胞的特殊结构如细胞壁、叶绿体、液泡等,其功能和结构特点需要学生通过观察和分析来深入理解。
四、植物器官的显微结构难点解析:不同器官的显微结构有其特点,如根的初生构造、茎的维管束结构、叶的叶肉细胞排列等,学生需要通过观察和比较来掌握。
现代生物显微技术的现状与发展趋势摘要:生物显微技术是生命科学研究中不可或缺的工具。
随着科学技术的不断进步,生物显微技术也在不断发展和演变。
本文将介绍现代生物显微技术的现状,包括常见的显微技术和相关的成像技术,以及生物显微技术的发展趋势,如高分辨率成像、实时成像和三维成像等。
同时,还将讨论生物显微技术在生物医学研究、生物材料和组织工程等领域的应用前景。
一、引言生物显微技术是研究生命科学中最基本和重要的工具之一。
通过显微镜观察和研究生物样本的结构和功能,我们可以揭示生命的奥秘,并为生物医学研究、药物开发和疾病诊断提供重要的依据。
随着科学技术的快速发展,现代生物显微技术不断突破传统的限制,为科学家提供了更高分辨率、更丰富的信息和更多的实时观察能力。
二、现代生物显微技术的常见技术和成像技术1. 光学显微技术光学显微技术是最常见和最基本的生物显微技术之一。
它利用光线通过透镜对样本进行成像。
光学显微技术包括亮场显微镜、荧光显微镜、共聚焦显微镜等。
其中,荧光显微镜通过荧光标记物对样本进行标记,可以观察到细胞和组织中的特定分子和结构。
2. 电子显微技术电子显微技术是一种利用电子束而不是光束对样本进行成像的技术。
电子显微技术包括传统的透射电子显微镜(TEM)和扫描电子显微镜(SEM)。
透射电子显微镜可以提供高分辨率的细胞和组织超微结构图像,而扫描电子显微镜则可以获得样本表面的高分辨率图像。
3. 原子力显微技术原子力显微技术(AFM)是一种基于原子力的显微技术,可以实现纳米级的表面成像和力学测量。
它通过探针在样品表面扫描并感知表面的微小力变化,从而获得样品的表面形貌和力学性质信息。
4. 多光子显微技术多光子显微技术是一种利用非线性光学效应实现高分辨率三维成像的技术。
它通过聚焦激光束在样品内部产生非线性光学效应,仅在聚焦点处发生光子吸收,从而获得高分辨率的深度成像。
5. 超分辨率显微技术超分辨率显微技术是近年来发展迅猛的生物显微技术之一。
现代显微成像技术综述显微镜根据成像方式可以分为光学宽视场显微镜、共聚焦显微镜、体视显微镜。
光学宽视场显微镜和共聚焦显微镜更多地应用于生命科学研究,对成像的要求更高,而体视显微镜更多应用于工业领域,对数码化和人性化的要求更高。
本文主要阐述用于生命科学领域的显微成像技术,光学宽视场显微镜常用的显微技术有明场成像、暗场成像、相衬成像、偏光成像、微分干涉(DIC)成像、调制对比成像和荧光成像,共聚焦显微镜常用的显微技术有荧光、全反射、超分辨、多光子和白光共聚焦成像。
1 光学宽视场显微镜在光学宽视场显微镜中的各种成像技术中,明场、暗场、偏光和荧光成像是为了使需要观察的标本结构可见,而相衬、微分干涉、调制对比成像是将标本结构中的相位变化显现出来。
很多情况下几种成像技术同时使用。
1.1 明场成像和暗场成像明场成像是最基本的显微成像技术,其他所有的成像技术都是以明场成像为基础的。
明场成像光路如图1所示,光源通过集光镜和聚光镜聚焦到标本上,如果是临界照明,灯丝的像直接会聚到标本;如果是科勒照明,灯丝像会聚在聚光镜前焦面,由聚光镜再照射到标本上。
透射过标本的光线由物镜收集在物镜后焦面上形成光瞳的像,光瞳的像是相对于空间的成像光线角度的分布,现代显微镜中多用这个位置进行各种对比方式的变化。
经过后焦面后,光线进入镜筒透镜,镜筒透镜将相对于空间的角度分布变换为相对于空间的位置分布,即在镜筒透镜的后焦面形成中间像面。
现代显微镜中,在镜筒透镜形成中间像面之前,会利用Cmount镜头转接中间像面到摄像头上,从而实现数码成像,便于现代教学和研究。
最后中间像面由目镜成像到眼睛的视网膜上,从而看到放大的像。
暗场成像和明场成像只有照明光路有所区别。
暗场成像是以超出物镜数值孔径的角度照明,标本由于大角度照明产生衍射光或者散射光,包含在物镜数值孔径内的衍射光或者散射光由物镜收集,按照明场光路投射到眼睛或者摄像头。
暗场照明如图2所示,有两种方式:一种是透射式暗场照明,直接用中间不透光的圆环在聚光镜前焦面拦截光线;另一种是反射式暗场照明,暗场反射镜面安装在物镜外壳靠近标本的位置,光线经过暗场反射镜面以超出物镜数值孔径的角度入射在标本上,标本发出的衍射或者杂散光由物镜收集后成像。
光学金相显微技术光学金相显微技术是一种常用于材料科学领域的显微镜技术,它通过利用光学原理来观察和分析材料的微观结构和组织。
这种技术在材料研究和工业生产中起着重要的作用,可以帮助科学家和工程师了解材料的性质和性能,并指导材料的设计和加工过程。
光学金相显微技术的原理是利用光的折射、反射和透射等特性来观察和分析材料的微观结构。
在显微镜中,通过透射光照射到待观察的材料表面,光线经过材料的折射、反射和散射后进入显微镜的物镜,形成放大的像。
通过调节显微镜的焦距和放大倍数,可以观察到材料的微观结构和组织。
在光学金相显微技术中,常用的观察方法包括亮场显微镜和暗场显微镜。
亮场显微镜是最常见的一种显微镜,它通过透射光观察材料的表面和内部结构。
暗场显微镜则是一种特殊的显微镜,通过在物镜中引入偏光片和散光板,使光线在材料内部发生散射,从而观察到材料的细微结构和缺陷。
光学金相显微技术在材料科学中有着广泛的应用。
首先,它可以帮助科学家和工程师了解材料的晶体结构、晶粒大小和形态以及相互关系。
这对于了解材料的力学性能、热学性能和导电性能等至关重要。
其次,光学金相显微技术还可以用于分析材料的组织和相变过程,通过观察材料的相变过程和组织演变,可以揭示材料的相变机制和相变规律。
此外,光学金相显微技术还可以用于检测材料的缺陷和损伤,如晶界、裂纹、夹杂物等,从而评估材料的质量和可靠性。
光学金相显微技术的发展离不开现代光学技术的进步。
随着光学材料的发展和光学设备的改进,现代光学金相显微技术可以实现更高的分辨率和更大的深度。
同时,随着数字图像处理技术的发展,可以对显微图像进行数字化处理和分析,进一步提高材料分析的精度和效率。
总的来说,光学金相显微技术是一种重要的材料分析和研究工具,它可以帮助科学家和工程师了解材料的微观结构和组织,揭示材料的性质和性能,指导材料的设计和加工过程。
随着光学技术的不断发展和进步,相信光学金相显微技术在材料科学领域的应用将会越来越广泛,并为材料研究和工业生产带来更大的发展机遇。