中心对称图形
- 格式:ppt
- 大小:1.19 MB
- 文档页数:17
什么是中心对称图形
中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称(Central of symmetry graph),这个点叫做它的对称中心(Center of symmetry),旋转180°后重合的两个点叫做对称点(corresponding points)。
理解中心对称的定义要抓住以下三个要素:
(1)有一个对称中心——点;
(2)图形绕中心旋转180°;
(3)旋转后两图形重合.
中心对称的性质:
连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心. 旋转180°后重合的两个点叫做对应点(corresponding points)。
中心对称图形
性质
①对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分(对称点在中心对称图形中)。
②成中心对称的两个图形全等。
③中心对称图形上每一对对称点所连成的线段都被对称中心平分。
区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图形。
轴对称与中心对称图形图形在数学中扮演着重要的角色,我们常常通过图形来进行分析和研究。
其中,轴对称和中心对称是两种常见的图形特征,本文将对这两种特征进行深入探讨。
一、轴对称图形轴对称图形是指具有轴对称特点的图形。
轴对称意味着图形可以通过一个轴进行镜像对称,即图形和其镜像重合。
简单来说,轴对称图形是左右完全对称的,即使折叠图形,两边也完全相同。
轴对称图形具有以下特点:1. 存在轴线:轴对称图形一定存在轴线,该轴线可以是垂直、水平或倾斜的。
2. 镜像关系:图形沿轴线进行折叠后,两侧完全对称。
3. 完全对称:图形的任意一点关于轴线,其对应点均重合于图形上。
常见的轴对称图形有正方形、长方形、圆形等。
这些图形的特点是左右对称,通过图形中的轴线可以轻松确定这些图形是否轴对称。
例如,对于一个正方形,通过从中心点绘制两条垂直、水平的轴线,可以发现图形可以完全折叠。
二、中心对称图形中心对称图形是指图形具有中心对称性质的图形。
中心对称意味着图形可以通过一个中心点进行旋转180度,使得旋转后的图形与原图形完全一致。
中心对称图形具有以下特点:1. 存在中心点:中心对称图形一定存在中心点,该中心点可以位于图形内部或边界上。
2. 旋转180度:图形绕中心点旋转180度后,与原图形完全一致。
3. 完全一致:图形的任意一点关于中心点,其对应点均重合于图形上。
常见的中心对称图形有正五边形、正六边形等。
这些图形的特点是任意一点到中心点的距离相等,并且旋转180度后的图形与原图形完全相同。
总结:轴对称和中心对称是图形的重要特征,通过观察和分析图形的对称性质,可以更好地理解图形的形态和结构。
轴对称图形以左右对称为主要特点,而中心对称图形以中心旋转180度为主要特点。
研究和了解这些对称性质,有助于我们更深入地理解数学中的图形学知识。
通过对轴对称和中心对称图形的介绍,我们可以更好地理解图形的形态和特点。
图形学是数学中的重要分支,通过研究图形的特征和性质,我们可以将其应用于各个领域,如几何学、计算机图形学等。
中心对称做法方法一方法二
1、中心对称图形定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形。
2、判定图形为中心对称的简单方法:以“十”字横竖两垂直线的交点为图形的中心,对图形划分“十”字区域,若对角区域的部分图形的形状完全一样且对应点到中心的距离相等,则这个图形为中心对称图形。
反之,只要有一个对角区域的部分图形的形状不尽相同,则这个图形就不是中心对称图形。
3、“十”字区分法是建立在中心对称图形的定义上的,因为一个图形以对称中心划分的“+”字区域,对角区域的部分图形旋转180°后必重合,所以这种方法是有其科学的依据的,有具体的操作性。
什么是中心对称图形中心对称:在平面内,把一个图形绕着某个点旋转 180° ,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称 (Central of symmetrygraph),这个点叫做它的 对称中心(Center of symmetry ),旋转180°后重合的两个点叫做 对 称点(corresponding points )。
理解中心对称的定义要抓住以下三个要素: (1 )有一个对称中心 一一点; (2 )图形绕中心旋转 180° ; (3)旋转后两图形重合. 中心对称的性质:连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分 中心对称图形:在平面内,把一个图形绕着某个点旋转 180。
,如果旋转后的图形能与原来的图形重合,那么这个图形叫做 中心对称图形,这个点叫做它的 对称中心.旋转180°后重合的两个点叫做对应点(corresp onding poi nts)。
① 对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分 (对称点在中心对称图形中)。
② 成中心对称的两个图形全等。
③ 中心对称图形上每一对对称点所连成的线段都被对称中心平分。
区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图 形。
中心对称图形常见图形常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些不规则图形等。
正偶边形是中心对称图形正奇数边形不是中心对称图形※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形),至少需旋转120度,而不是180度,所以它不是中心对称图形。
反比例函数的图像双曲线是以原点为对称中心的中心对称图形什么是轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symetric);这时,我们也说这个图形关于这条直线对称。
汇报人:日期:目录•中心对称图形的定义•中心对称图形的性质•中心对称图形的应用•中心对称图形的证明方法•中心对称图形的作图方法•中心对称图形的拓展思考中心对称图形的定义特性中心对称图形是轴对称图形的一种特例,其特点是图形以对称中心为旋转轴,旋转180度后能与自身重合。
定义如果一个图形绕某一点旋转180度后,能与自身重合,那么这个图形就叫做中心对称图形。
这个点叫做对称中心。
中心对称图形的定义及特性在中心对称图形中,过对称中心的任意一条直线,都将图形分成两个全等形。
在中心对称图形中,过对称中心的任意一条直线,若该直线与对称中心垂直,则这条直线将图形分成两个全等形。
中心对称图形的几何意义平行线性质垂直平分线性质01直线型以一条直线为对称轴的图形,如正弦函数图像等。
02圆型以圆为对称轴的图形,如圆形、椭圆形等。
03多边形型以多边形为对称轴的图形,如正多边形等。
中心对称图形的分类中心对称图形的性质旋转性质旋转中心01中心对称图形有一个明显的旋转中心,图形围绕这个中心旋转能够完全重合。
旋转角度02对于中心对称图形,旋转角度可以是任意角度,但旋转后图形不会改变形状和大小。
旋转对称性03中心对称图形在旋转后保持对称性,即旋转前后的图形是全等的。
在中心对称图形中,过图形旋转中心的平行线段长度相等且互相平行。
平行线段平行四边形平行性质的应用平行四边形是中心对称图形的一种,其两条对角线互相平分且相等。
利用中心对称图形的平行性质,可以方便地解决一些几何问题。
030201中心对称图形有一条经过图形旋转中心的对称轴,该轴将图形分为两个完全相同的部分。
对称轴对于中心对称图形,沿对称轴进行对称变换可以得到新的图形,这个新的图形与原图形是全等的。
对称变换利用中心对称图形的对称性质,可以找到解决几何问题的捷径。
对称性质的应用中心对称图形的应用中心对称图形在绘画和雕塑中有着广泛的应用,如旋转对称的图案、对称的花纹等,能够带来视觉上的舒适感和美感。
什么是中心对称图形中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称(Central of symmetry graph),这个点叫做它的对称中心(Center of symmetry),旋转180°后重合的两个点叫做对称点(corresponding points)。
理解中心对称的定义要抓住以下三个要素:(1)有一个对称中心——点;(2)图形绕中心旋转180°;(3)旋转后两图形重合.中心对称的性质:连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心. 旋转180°后重合的两个点叫做对应点(corresponding points)。
中心对称图形性质①对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分(对称点在中心对称图形中)。
②成中心对称的两个图形全等。
③中心对称图形上每一对对称点所连成的线段都被对称中心平分。
区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图形。
常见图形常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些不规则图形等。
正偶边形是中心对称图形正奇数边形不是中心对称图形※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形),至少需旋转120度,而不是180度,所以它不是中心对称图形。
反比例函数的图像双曲线是以原点为对称中心的中心对称图形什么是轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symetric);这时,我们也说这个图形关于这条直线对称。
中心对称和中心对称图形知识要点1.中心对称和对称中心中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,称这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点.2.中心对称图形与对称中心中心对称图形是指某一图形绕某一点转180°,旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点是对称中心.中心对称和中心对称图形既有联系,又有区别,它们都是图形关于某点成中心对称,但前者是针对两个图形而言,后者是指一个图形的两个部分.中心对称的性质:由中心对称定义所直接得到“两个图形若关于某一点成中心对称,则两图形必全等,以及课本P186页的定理1、定理2用逆定理.典型例题例1 如图4.7-1,如果四边形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点共有几个?分析这是考查考生应用中心对称图形性质解题的能力.两个全等的正方形ABCD和CDEF组成矩形ABFE,它是中心对称图形,对称中心就是对角线AF与BE的交点O,它必定是CD的中点.这是根据中心对称图形的定义确定的.四边形ABCD绕O顺时针(或逆时针)旋转180°后,能与四边形CDFE重合.但题中只说四边形CDEF旋转后能与正方形ABCD重合,注意到四边形CDEF绕点D顺时针旋转90°后或绕点C逆时针旋转90°后能与正方形ABCD重合,所以可以作为旋转中心(不是对称中心但包含对称中心)的点有3个,即D、O、C.解:共有3个.例2 如图4.7-1,四边形ABCD关于O点成中心对称图形.求证:四边形ABCD是平行四边形. 分析因为四边形是中心对称图形,且对称中心为点O,所以A点和C点,B点和D点是对称点.因线段AC和线段BD都过O点,且被点O所平分,故四边形是平行四边形.证明:边AC、BD∵四边形ABCD关于O点成中心对称图形∴点O在AC和BD上,且OA=OC,OB=OD∴四边形是平行四边形.例3 如图4.7-3,点O是矩形ABCD的对称中心,过点O任意作直线l,并过点B作BE⊥l于E,过点D作DF⊥l于F,求证:BE=DF.分析因为矩形ABCD是中心对称图形,且对称中心为两对角线的交点,O为对称中心,则O点必在它的对角线上,故应连接BD,要证BE=DF,只需证△OBE≌△ODF.证明:连接BD∵四边形ABCD是矩形∴ABCD为中心对称图形,且对称中心为两对称线交点∴O点必在BD上∵O为对称中心∴OB=OE ∠BOE=∠DOF∠BEO=∠DFO=Rt∠∴△BOE≌△DFO∴BE=DF练习一、填空1.两个图形成中心对称,需具备两个要素,①这两个图形的完全相同,把一个图形绕着某一个点,它能够和另外一个图形 .2.关于中心对称的两个图形,对称点连线都经过并且被 .3.中心对称是指图形之间的关系,而中心对称图形是指个图形本身成 .4.菱形是中心对称图形,它的对称中心是,菱形又是轴对称图形,它的对称轴共有条.5.关于某点中心对称的图形对应线段 .6.等腰三角形是对称图形,而不是对称图形.7.平行四边形是对称图形而不是对称图形.8.矩形既是对称图形又是对称图形.9.若△ABC与△EFC关于点C成中心对称,并且A与E是对称点,则四边形ABEF是形.10.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是 .二、选择题1.下列各图形中,既是轴对称图形又是中心对称图形的是( )A.圆B.梯形C.等边三角形D.平行四边形2.下列图形中,既是中心对称图形又是轴对称图形的是( )A.等腰三角形B.平行四边形C.等腰梯形D.菱形3.下列图形既是轴对称图形又是中心对称图形的是( )A.等边三角形B.等腰直角三角形C.等腰梯形D.菱形4.顺次连结任意四边形各边中点,所成的四边形是( )A.中心对称图形B.轴对称图形C.菱形D.矩形5.下列图形既是轴对称图形又是中心对称图形是( )A.等边三角形B.正方形C.平行四边形D.梯形6.下列图形既是轴对称又是中心对称的图形是( )A.矩形B.等边三角形C.平行四边形D.等腰梯形7.国旗上的五角星是( )A.是中心对称图形不是轴对称图形B.是轴对称图形而不是中心对称图形C.既是中心对称图形,又是轴对称图形D.既不是中心对称图形,又不是轴对称图形8.下列命题①平行四边形是中心对称图形,其对角线交点为对称中心;②只有正方形既是中心对称图形又是轴对称图形;③关于中心对称的两个图形是全等形、两个全等图形也一定成中心对称;④若将一个图形绕某点旋转和另一个图形重合,那么这两个图形关于这个定点成中心对称.其中真命题有( )A.①④B.②③C.①D.④9.下列命题假命题是( )A.任何一个具有对称中心的四边形是平行四边形B.平行四边形既是轴对称图形又是中心对称图形C.线段、平行四边形、矩形、菱形、正方形都是中心对称图形D.正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不只一条.10.下列说法正确的是( )A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能重合的两个图形成中心对称三、解答题1.如图4.7-7,已知P为直线 l 上一点及△ABC.(1)求作△A′B′C′,使之与△ABC关于直线 l 对称;(2)求作△A″B″C″,使之与△ABC关于P对称;(要求:不写作法,保留作图痕迹)2.如图4.7-8,已知四边形ABCD和点P,求作四边形A′B′C′D′和四边形ABCD关于点P对称.四、如图4.7-9,在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,ED⊥FD交AB、AC于E、F.求证:①BE=EF;②AE=CF.五、如图4.7-10是一个每边长4m的荷池,O到各顶点距离相等,计划在池中安装13盏灯,使夜景更加漂亮.请你设计一个安装方案.(要求两盏灯的距离d的取值范围为1m≤d≤2m)六、如图4.7-11,矩形ABCD中,AB=20cm,BC=10cm,若在AC、AB上各取一点M、N.使BM+MN 的值最小,求这个最小值.答案:一、1.形状大小旋转180°重合 2.对称中心对称中心平分 3.两个一个中心对称 4.对角线的交点 2 5.相等 6.轴中心 7.中心轴 8.中心轴 9.平行四边 10.矩形二、1.A 2.D 3.D 4.A 5.B 6.A 7.D 8.C 9.B 10.C三、1、2 略四、提示:延长ED到G,使DG=DE,连EF、FG、CG.五、提示:连AO、BO、CO、DO、EO、FO,过O作正六边形的垂线,垂足分别为A1、B1、C1、D1、E1、F1,以O为圆心,以2m为半径画弧交OA、OA1……等12条线段相交,12个交点及中心点为灯的安装处.六、最小值为16cm.。
几何部分一直都是数学学习的重点,一些图形是考试的常考问题。
那么,什么是什么是中心对称图形?什么是轴对称图形?
中心对称图形
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
需要注意中心对称和中心对称图形不是一个概念。
中心对称是在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称
轴对称图形
数学术语,定义为平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。
比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。
中心对称图形和轴对称图形区别
轴对称图形关键抓两点:一是沿某直线折叠,二是两部分互相重合;
中心对称图形关键也是抓两点:一是绕某一点旋转,二是与原图形重合。
实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。
常见的图形归类
既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等。
只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等。
只是中心对称图形的有:平行四边形。
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。
以上就是一些中心对称图形与轴对称图形的相关信息,供大家参考。