2016安徽高考数学文理科选考题相同
- 格式:doc
- 大小:22.50 KB
- 文档页数:1
2016年安徽省高考文科数学试卷分析周大海2016年的高考数学已经落下帷幕,整体来看试题比较新颖,难度中等,基本达到稳中求变,量变达到质变。
概率变函数,几何落在投影上。
对于学生整体数学素质的要求相比去年有所提高,对于数学成绩不是很稳定的学生来说是个不小的挑战。
这次高考数学经过前面几年的积累完成了质的飞跃,1、选择题部分:基本沿袭了以往新课标的出题模式和难易程度,知识模块上加强了对于函数的考察,三角函数,解三角形,导数单调性等典型题型都体现在选择题部分,这些题型都是我们平时在模拟练习时重点练习的题目,所以学生相对还是比较好拿分的。
选择题在立体几何部分,对于学生的空间想象力提出后了更高的要求,第7题和第11题都是立体几何部分,需要同学准确的画出几何体识别出线面角的关系,是解题的关键,也是文科学生薄弱的部分。
需要我们在今后的教学中加强这部分的练习。
这次考试在运算的准确度对学生提出更高的要求,出题人设置了不少的陷阱等待学生去注意,也是拿到理想分数的关键。
2、填空题部分:难度和选择题的难度基本一致,第15题考核的是必修2的直线与圆部分,通过垂径定理求解圆的面积,是本章的基本题型但是由于题干中含有参数,导致很多同学不敢下手,勾股定理后发现第16题考核是线性规划的截距类,需要认真审题,挖掘出题目的不等关系,确定目标函数。
这是我们在平时的练习中忽略的一点,也是很多同学容易错误的点。
3、解答题部分第17题与前几年一样考察的数列基本量的运算,难度不大,只要公式记忆准确,拿满分还是没有问题的。
第18题立体几何考核的投影问题,不是我们平时模拟练习的平行垂直的证明,但是只要知道投影的本质是线面垂直,我们通过线面垂直的判断和正棱锥的定义即可得证。
第19题概率相信是很多学生原本最有信心拿满分的题目,但是这道题目由于背景的原因很多需要花费一定的时间才能分析清楚题目的意思,而且由于又结合了函数的解析式,无形中又增加了题目的分析难度。
2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016•新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)(2016•新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.23.(5分)(2016•新课标Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5分)(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,xx在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)(2016•新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3) B.(﹣1,)C.(0,3) D.(0,)6.(5分)(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17π B.18πC.20πD.28π7.(5分)(2016•新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)(2016•新课标Ⅰ)若a>b>1,0<c<1,则()A.ac<bcB.abc<bacC.alogbc<blogac D.logac<logbc9.(5分)(2016•新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)(2016•新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5分)(2016•新课标Ⅰ)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2016•新课标Ⅰ)(2x+)5的xx中,x3的系数是.(用数字填写答案)15.(5分)(2016•新课标Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.16.(5分)(2016•新课标Ⅰ)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)(2016•新课标Ⅰ)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的xx值.19.(12分)(2016•新课标Ⅰ)某公司计划购买2xx机器,该种机器使用三年后即被淘汰.机器有一xx零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个xx零件,为此搜集并整理了100xx这种机器在三年使用期内更换的xx零件数,得如图柱状图:以这100xx机器更换的xx零件数的频率代替1xx机器更换的xx零件数发生的概率,记X表示2xx机器三年内共需更换的xx零件数,n表示购买2xx机器的同时购买的xx零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买xx零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)(2016•新课标Ⅰ)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)(2016•新课标Ⅰ)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙Oxx,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.(2016•新课标Ⅰ)在直角坐标系xOyxx,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系xx,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3xx,求a.[选修4-5:不等式选讲]24.(2016•新课标Ⅰ)已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016•新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.xx优网版权所有【专题】11 :计算题;4O:定义法;5J :集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)(2016•新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【考点】A8:复数的模.xx优网版权所有【专题】34 :方程思想;4O:定义法;5N :数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)(2016•新课标Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【考点】83:等差数列的性质.xx优网版权所有【专题】11 :计算题;4O:定义法;54 :等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{an}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,xx在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.xx优网版权所有【专题】5I :概率与统计.【分析】求出xx等车时间不超过10分钟的时间xx,代入几何概型概率计算公式,可得答案.【解答】解:设xx到达时间为y,当y在7:50至8:00,或8:20至8:30时,xx等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)(2016•新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3) B.(﹣1,)C.(0,3) D.(0,)【考点】KB:双曲线的标准方程.xx优网版权所有【专题】11 :计算题;35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17π B.18πC.20πD.28π【考点】L!:由三视图求面积、体积.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;35 :转化思想;5F :空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)(2016•新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.xx优网版权所有【专题】27 :图表型;48 :分析法;51 :函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣ex,∴f′(x)=4x﹣ex=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)(2016•新课标Ⅰ)若a>b>1,0<c<1,则()A.ac<bc B.abc<bacC.alogbc<blogac D.logac<logbc【考点】72:不等式比较大小;4M:对数值大小的比较.xx优网版权所有【专题】33 :函数思想;35 :转化思想;4R:转化法;51 :函数的性质及应用;5T :不等式.【分析】根据已知xxa>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=xc在(0,+∞)上为增函数,故ac>bc,故A错误;函数f(x)=xc﹣1在(0,+∞)上为减函数,故ac﹣1<bc﹣1,故bac<abc,即abc>bac;故B错误;logac<0,且logbc<0,logab<1,即=<1,即logac>logbc.故D错误;0<﹣logac<﹣logbc,故﹣blogac<﹣alogbc,即blogac>alogbc,即alogbc <blogac,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)(2016•新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.xx优网版权所有【专题】11 :计算题;28 :操作型;5K :算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(2016•新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】KJ:圆与圆锥曲线的综合;K8:抛物线的简单性质.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;35 :转化思想;5D :圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,xA==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)(2016•新课标Ⅰ)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;35 :转化思想;5G :空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【考点】H6:正弦函数的奇偶性和对称性.xx优网版权所有【专题】35 :转化思想;4R:转化法;57 :三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m= ﹣2 .【考点】9O:平面向量数量积的性质及其运算.xx优网版权所有【专题】11 :计算题;29 :规律型;35 :转化思想;5A :平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2016•新课标Ⅰ)(2x+)5的xx中,x3的系数是10 .(用数字填写答案)【考点】DA:二项式定理.xx优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5P :二项式定理.【分析】利用二项xx的通项公式求出第r+1项,令x的指数为3,求出r,即可求出xxxxx3的系数.【解答】解:(2x+)5的xx中,通项公式为:Tr+1==25﹣r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)(2016•新课标Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为64 .【考点】8I:数列与函数的综合;87:等比数列的性质.xx优网版权所有【专题】11 :计算题;29 :规律型;35 :转化思想;54 :等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…an,然后求解最值.【解答】解:等比数列{an}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…an=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)(2016•新课标Ⅰ)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000 元.【考点】7C:简单线性规划.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;33 :函数思想;35 :转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.xx优网版权所有【专题】15 :综合题;35 :转化思想;49 :综合法;58 :解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABCxx,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)(2016•新课标Ⅰ)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的xx值.【考点】MJ:与二面角有关的立体几何综合题.xx优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5H :空间向量及应用;5Q :立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的xx值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的xx值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)(2016•新课标Ⅰ)某公司计划购买2xx机器,该种机器使用三年后即被淘汰.机器有一xx零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个xx零件,为此搜集并整理了100xx这种机器在三年使用期内更换的xx零件数,得如图柱状图:以这100xx机器更换的xx零件数的频率代替1xx机器更换的xx零件数发生的概率,记X表示2xx机器三年内共需更换的xx零件数,n表示购买2xx机器的同时购买的xx零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买xx零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.xx优网版权所有【专题】11 :计算题;35 :转化思想;49 :综合法;5I :概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P(X≤n)≥0.5xxn的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5xx,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.4=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)(2016•新课标Ⅰ)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】KL:直线与椭圆的位置关系;J2:圆的一般方程.xx优网版权所有【专题】34 :方程思想;48 :分析法;5B :直线与圆;5D :圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用xx定理xx长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆xx的定义,考查直线和椭圆方程联立,运用xx定理xx长公式,以及直线xx相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】6D:利用导数研究函数的极值;51:函数的零点.xx优网版权所有【专题】32 :分类讨论;35 :转化思想;4C :分类法;4R:转化法;51 :函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)ex+a(x﹣1)2可得:f′(x)=(x ﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g (x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0xx成立,即g(1+m)>g(1﹣m)xx成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)ex+a(x﹣1)2,∴f′(x)=(x﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),①若a=0,那么f(x)=0⇔(x﹣2)ex=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么ex+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,ex<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)ex+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x ﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在Rxx至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,故函数f(x)在Rxx单调递增,函数f(x)在Rxx至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在Rxx至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)xx成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)(2016•新课标Ⅰ)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙Oxx,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.xx优网版权所有【专题】14 :证明题;35 :转化思想;49 :综合法;5M :推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.(2016•新课标Ⅰ)在直角坐标系xOyxx,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系xx,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3xx,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.xx优网版权所有【专题】11 :计算题;35 :转化思想;4A :数学模型法;5S :坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3xx,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.(2016•新课标Ⅰ)已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.xx优网版权所有【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,。
2016安徽高考数学
2016年安徽高考数学试卷共分为卷一和卷二,卷一为选择题,共60分;卷二为非选择题,共40分。
下面是2016年安徽高考数学试卷的部分内容:
卷一选择题(共60分):
1. 若函数f(x)=2x^3-3x^2-12x+5,则f(x)的对称轴为()
A. x=-1
B. x=1
C. x=2
D. x=3
2. 已知函数f(x)=ax^2+bx+c的图像经过点(1,4),则a+b+c的值为()
A. 2
B. 4
C. 6
D. 8
3. 若直线y=2x+k与曲线y=x^2交于两个不同的点,则k的取值范围是()
A. k≤1
B. 1<k≤2
C. 2<k≤3
D. k>3
卷二非选择题(共40分):
1. 已知函数f(x)=x^3-2x^2+ax+b,其中a、b为常数,且f(-1)=0,f(1)=4,则a+b的值为多少?
2. 设集合A={x | 2x-3>0},集合B={x | x-1<4},则集合A∪B的取值范围是?
3. 已知函数f(x)=ax^2+bx+c的图像经过点(0,1),斜率为2,则a、b、
c的值分别是多少?
这是部分内容,2016年安徽高考数学试卷的具体内容可以在相关的教育部门或网站上进行查询。
文科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项 是符合题目要求的。
1。
设集合{}{}0,2A x x B x x =≥=<,则AB =()A .{02}x x <≤B .{02}x x ≤<C .RD .{02}x x x <≥或2。
已知复数z 满足2017(2)i z i +=(其中i 为虚数单位),则z 的虚部为( )A .15i - B .15- C .25i - D .25-3。
若函数2()(2)f x xa x a =+-+是偶函数,2()1xg x b e =++是奇函数,则a b -=( )A .-3B .—2C .—1D .34。
若(,)2a ππ∈,且cos 2sin()4παα=-,则sin 2α的值为( )A .12- B .12C .1D .—15。
如图为教育部门以辖区内某学校的50名儿童的体重(kg )作为样本进行分析而得到的频率分布直方图,则这50名儿童的体重的平均值为( )A .27.5B .26。
5C .25。
6D .25.76.已知向量(1,2)m =-,(,1)n a = ()a R ∈相互垂直,则()()m n m n +•-=( )A .2B .-1C .0D .17.某几何体的三视图如图所示,则该几何体的体积为( ) A .223B .203C .6D .1038。
执行如图所示的程序框图,如果输入的,m n 分别是72,30,则输出的n =()A .5B .6C .7D .89。
若实数,x y 满足303001x y x y y +-≥⎧⎪--≤⎨⎪≤≤⎩,则2x yz x y +=+的最小值为( )A .53B .2C .35D .1210。
祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等,已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为h ),其中:三棱锥的底面是正三角形(边长为a ),四棱锥的底面是有一个角为060的菱形(边长为b ),圆锥的体积为V ,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积总相等,那么,下列关系式正确的是( ) A.a =,b = B.a =b =C.a =b = D.a =b =11。
高考数学文理科数学一样吗区别在哪
有很多的同学是非常的想知道文理科数学是不是一样的,小编整理了相
关信息,希望会对大家有所帮助!
高考文理科数学区别
学文科考文科数学,选理科考理科数学。
高考文理科数学题目相似度在60%左右,一般大题第一问相同,第二问不同,文科会比理科题目简单一些。
文理
科大题题目类似,但考法不同。
从难度上看,理科数学难度明显高于文科,理科考120分的难度相当于文
科考满分。
从内容上看,理科考查知识点更全面,文科考查知识点相对少一
些,但具体还得看考试大纲。
文理科数学考试难度和范围都是不一样的,复习是也要区别对待,最好是
做相应的历年真题加以训练。
真题不能做对了就不看了,要反复研究出题人
考查知识点、所设陷阱、答案解题思路等等。
理科数学比文科难多少
理科数学比文科数学难很多,虽然有人说理科考120分相对于文科考150 分,但各个地区试卷不同,也不能草率的下定论。
理科数学大题第一问和文科数学第一问一般是相同的,难的是第二问,理
科生做题时要在深度上下功夫。
文科生则可以少花些时间研究数学难题,但
要把数学基础知识都掌握牢了。
理科数学虽然比文科数学难,但只要大家学会了理性思维,掌握了理科数
学做题思路,即便是理科数学也会变简单了。
所以大家不要有畏难情绪,其。
2016安徽高考文科数学真题及答案注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )。
(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【参考答案】B【答案解析】集合A 与集合B 公共元素有3,5,故{}35A B ⋂=,选B 。
【试题点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=( )。
(A )-3(B )-2(C )2(D )3 【参考答案】A【答案解析】设i a a i a i )21(2))(21(++-=++,由已知,得a a 212+=-,解得3-=a ,选A. 【试题点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 (A )13(B )12(C )13(D )56【参考答案】A【答案解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有2种,故概率为31,选A. 【试题点评】本题在高考数学(理)提高班讲座 第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=( )。
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016年高考数学试卷一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.327.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A . 1+B . 2+C . 1+2D . 28.(5分)(2015•安徽)△ABC 是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( )A . ||=1B . ⊥C . •=1D . (4+)⊥9.(5分)(2015•安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c <010.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( )A . f (2)<f (﹣2)<f (0)B . f (0)<f (2)<f (﹣2)C . f (﹣2)<f (0)<f (2)D . f (2)<f (0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:计算题;数系的扩充和复数.分析:先化简复数,再得出点的坐标,即可得出结论.解答:解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.点评:本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1考点:函数的零点;函数奇偶性的判断.专题:函数的性质及应用.分析:利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.解答:解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选A.点评:本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用指数函数的单调性,结合充分必要条件的定义,即可判断.解答:解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.点评:本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.解答:解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.点评:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.解答:解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.点评:本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.32考点:极差、方差与标准差.专题:概率与统计.分析:根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.解答:解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.点评:本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.点评:本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1D.(4+)⊥考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意,知道,,根据已知三角形为等边三角形解之.解答:解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.点评:本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c <0考点:函数的图象. 专题:函数的性质及应用. 分析:分别根据函数的定义域,函数零点以及f (0)的取值进行判断即可. 解答:解:函数在P 处无意义,即﹣c >0,则c <0, f (0)=,∴b >0,由f (x )=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a <0,综上a <0,b >0,c <0,故选:C点评:本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f (0)的符号是解决本题的关键.10.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( )A . f (2)<f (﹣2)<f (0)B . f (0)<f (2)<f (﹣2)C . f (﹣2)<f (0)<f (2)D . f (2)<f (0)<f(﹣2)考点:三角函数的周期性及其求法. 专题:三角函数的图像与性质. 分析: 依题意可求ω=2,又当x=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=Asin (2x+),利用正弦函数的图象和性质及诱导公式即可比较大小. 解答:解:依题意得,函数f (x )的周期为π, ∵ω>0,∴ω==2.(3分)又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,(5分)∴f(x)=Asin(2x+2kπ+)=Asin(2x+).(6分)∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0f(0)=Asin=Asin>0又∵>﹣4+2π>>,而f(x)=Asin(2x+)在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0)故选:A.点评:本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是35(用数字填写答案)考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.解答:解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为4考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.解答:解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.考点:等比数列的性质;等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.解答:解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.点评:本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.解答:解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.点评:本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.解答:解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.解答:解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X 200 300 400PEX=200×+300×+400×=350.点评:本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.考点:利用导数研究曲线上某点切线方程;数列的求和.专题:导数的概念及应用;点列、递归数列与数学归纳法.分析:(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.解答:解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为=所以T n综上所述,可得对任意的n∈N+,均有点评:本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.考点:二面角的平面角及求法;直线与平面平行的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD 的一个法向量的夹角的余弦值的绝对值,计算即可.解答:(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵A1D⊥平面A1B1CD,∴=(0,1,1)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos(,)==,∴二面角E﹣AD﹣B1的余弦值为.点评:本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.解答:解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.点评:本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.考点:二次函数的性质.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)设t=sinx,t∈[﹣1,1],求得|f(t)﹣f0(t)|,设g(t)=|﹣t(a﹣a0)+(b﹣b0)|,讨论g(1),g(﹣1)取得最大值;(Ⅲ)由(Ⅱ)讨论ab≥0时,ab≤0时,D的取值,求得点(a,b)所在区域,求得s=b﹣的最大值.解答:解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)设t=sinx,t∈[﹣1,1],|f(t)﹣f0(t)|=|﹣t(a﹣a0)+(b﹣b0)|,易知t=±1时,取得最大值,设g(t)=|﹣t(a﹣a0)+(b﹣b0)|,而g(1)=|﹣(a﹣a0)+(b﹣b0)|,g(﹣1)=|(a﹣a0)+(b﹣b0)|,则当(a﹣a0)(b﹣b0)≥0时,D=g(t)max=g(﹣1)=|(a﹣a0)+(b﹣b0)|;当(a﹣a0)(b﹣b0)≤0时,D=g(t)max=g(1)=|﹣(a﹣a0)+(b﹣b0)|.(Ⅲ)由(Ⅱ)得ab≥0时,D=|a+b|,当ab≤0时,D=|a﹣b|.即有或,点(a,b)在如图所示的区域内,则有s=b﹣,当b取最大值1时,取最小值0时,s max=1.点评:本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.参与本试卷答题和审题的老师有:刘长柏;changq;双曲线;maths;742048;w3239003;qiss;孙佑中;雪狼王;cst(排名不分先后)菁优网2015年6月13日。
安徽省2016年高考将使用“全国卷”
各教研组、年级备课组要加强相关研究
根据可靠消息,省政府日前会议已经同意2016年我省高考使用全国卷,包括所有的科目。
届时,全国将有25个省在高考中使用由教育部考试中心统一命题的试卷。
分省自主命题始于1989年,上海市率先进行自主命题试点。
2004年,教育部要求11个省区市进行自主命题。
2014年,全国高考共有来自国家考试中心和自主命题省区市共计16套命题。
从统一命题到分省自主命题,再回到以统一命题为主,并不是一个“简单的反复过程”。
有关专家认为,这次“回归”最为关键的作用在于保证高考试题科学性和整体水平,推动形成以统一命题为主,少数有条件的省份继续实行分省命题的大格局,最终目标是达到公平和效率的最大化。
有关专家指出,根据往年的经验,“全国卷”一直注重学生的基本能力,突出考察教学过程中的主干知识,较为科学。
而国家统一命题将能保证试题的稳定性,真正发挥高考指挥棒的作用。
统一命题不等于“一张试卷”,而是强调“一纲多卷”,即教育部和省级教育行政部门协商,根据国家考纲和教育教学基本要求,以及各省市基本教学情况,由教育部考试中心负责命制一套相对独立的试卷。
现有统一命题的15个省也不是同一张卷子。
教育部相关负责人也明确表示,今年以后更多的省份加入进来后,由统一的命题机构(教育部考试中心)统一出多套卷子,供各省选用。
试题统一之后,阅卷工作仍由各省组织。
我校有关教研组、年级备课组要加强有关研究,以更好地应对2016年以后的高考。
2016年高考数学新课标Ⅰ〔文〕试题及答案解析〔使用地区山西、河南、河北、湖南、湖北、江西、安徽、福建、广东〕一、选择题,本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的.【2016 新课标Ⅰ〔文〕】1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7}【答案】B【解析】取A ,B 中共有的元素是{3,5},故选B【2016 新课标Ⅰ〔文〕】2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( )A .-3B .-2C .2D . 3【答案】A【解析】(1+2i )(a+i )= a -2+(1+2a )i ,依题a -2=1+2a ,解得a=-3,故选A【2016 新课标Ⅰ〔文〕】3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .56【答案】C【解析】设红、黄、白、紫4种颜色的花分别用1,2,3,4来表示,则所有基本领件有 (12,34),(13,24),(14,23),(23,14),(24,13),(34,12),共6个,其中1和4不在同一花坛的事件有4个, 其概率为P=4263=,故选C 【2016 新课标Ⅰ〔文〕】4.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3a c A ===,则b=( )A .B C .2 D .3【答案】D 【解析】由余弦定理得:5=4+b 2-4b ×23, 则3b 2-8b -3=0,解得b =3,故选D【2016 新课标Ⅰ〔文〕】5.直线l 经过椭圆的一个顶点和一个焦点,假设椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34【答案】B【解析】由直角三角形的面积关系得bc=124⨯12c e a ==,故选B【2016 新课标Ⅰ〔文〕】6.假设将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为( )A .y =2sin(2x +4π) B .y =2sin(2x +3π) C .y =2sin(2x –4π) D .y =2sin(2x –3π) 【答案】D【解析】对应的函数为y =2sin[ 2(x -14π⨯)+6π],即y =2sin(2x –3π),故选D【2016 新课标Ⅰ〔文〕】7283π, 则它的外表积是( )A .17πB .18πC .20πD .28π【答案】A【解析】依图可知该几何体是球构成截去了八分之一,其体积34728383V R ππ=⨯=,解得R=2,外表积227342+21784S πππ=⨯⨯⨯=,故选B 【2016 新课标Ⅰ〔文〕】8.假设a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <logc b C .a c <b c D .c a >c b【答案】B【解析】取特值a =1,b ,c ,可排除A ,C ,D ,故选B【2016 新课标Ⅰ〔文〕】9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )【解析】当0≤x ≤2时,y'=4x –e x ,函数先减后增,且y'|x >0,最小值在(0,0.5)内.故选D【2016 新课标Ⅰ〔文〕】10则输出x ,y 的值满足( )CA .y =2xB .y =3xC .y =4xD .y =5x 【答案】C 【解析】运行程序,循环节内的n ,x ,y 依次为 (1,0,1),(2,0.5,2),(3,1.5,6), 输出x ,y= 6, 故选C 【2016 新课标Ⅰ〔文〕】11.平面α过正方体ABCD -A 1B 1 α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1则m ,n 所成角的正弦值为( )A B .2 C D .13【答案】A【解析】平面A 1B 1C 1D 1∩平面CB 1D 1= B 1D 1与m 平行,平面CDD 1C 1∩平面CB 1D 1= CD 1与n 平行,所以m ,n 所成角就是B 1D 1与CD 1所成角,而ΔCB 1D 1是等边三角形,则所成角是60°,故选A【2016 新课标Ⅰ〔文〕】12.假设函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .[-1,13] C .[-,13] D .[-1,-13] 【答案】C 【解析】2()sin cos sin 3f x x -x x a x =+,222'()1(cos sin )cos 3f x -x x a x ∴=-+, 依题f'(x )≥0恒成立,即a cos x ≥2cos213x -恒成立,而(a cos x )min =-|a |,21111cos21||[]33333x a a -≤-∴-≥-∈-,,解得,,故选C二、填空题:本大题共4小题,每题5分,共20分.把答案填在横线上.【2016 新课标Ⅰ〔文〕】13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = . 【答案】23- 【解析】依题x +2(x +1)=0,解得x=23- 【2016 新课标Ⅰ〔文〕】14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 【答案】43- 【解析】依题θ+π4是第一象限角,cos(θ+π4)=45,tan(θ-π4)=- tan(π4-θ) =- tan[π2-(θ+π4)]=- sin[π2-(θ+π4)]/cos[π2-(θ+π4)]=- cos(θ+π4)/ sin(θ+π4)=43- 【2016 新课标Ⅰ〔文〕】15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,假设|AB |=C 的面积为 .【答案】4π【解析】圆方程可化为x 2+ (y -a )2=a 2+2,圆心C 到直线距离dd 2+3=a 2+2, 解得a 2=2,所以圆半径为2,则圆面积为4π【2016 新课标Ⅰ〔文〕】16.某高科技企业生产产品A 和产品BA 需要甲材料,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料,乙材料,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产A 、B 两种产品各x 件、y 件,利润之和是z =2100x +900y ,约束条件是 1.50.51500.390536000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩,即3300103900536000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩ 作出可行域四边形OABC ,如图.画出直线l 0:7x +3y =0,平移l 0到l , 当l 经过点B 时z 最大,联立10x+3y=900与5x+3y=600 解得交点B (60,100),所以 z max =126000+90000=216000.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.【2016 新课标Ⅰ〔文〕】17.〔此题总分值12分〕已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.【解析】(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为31的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313nn --=-⨯- …12分 【2016 新课标Ⅰ〔文〕】18.〔此题总分值12分〕如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明G 是AB 的中点;(Ⅱ)在答题卡第〔18〕题图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 【解析】(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB . 又DE ⊥平面P AB ,∴DE ⊥AB .∴AB ⊥平面PDE . 又PG ⊂平面PDE ,∴AB ⊥PG .依题P A=PB ,∴G 是AB 的中点.…6分(Ⅱ)在平面P AB 内作EF ⊥P A 〔或EF // PB 〕垂足为F ,则F 是点E 在平面P AC 内的正投影. …7分理由如下:∵PC ⊥P A ,PC ⊥PB ,∴ PC ⊥平面P AB . ∴EF ⊥PC作EF ⊥P A ,∴EF ⊥平面P AC .即F 是点E 在平面P AC 内的正投影.…9分连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .易知DE// PC,PC=PB=P A= 6,∴DE=2,PE=223222 33PG=⨯=.则在等腰直角ΔPEF中,PF=EF=2,∴ΔPEF的面积S=2.所以四面体PDEF的体积1433V S DE=⨯=. …12分【2016 新课标Ⅰ〔文〕】19.〔本小题总分值12分〕某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用〔单位:元〕,n表示购机的同时购买的易损零件数.(Ⅰ)假设n=19,求y与x的函数解析式;(Ⅱ)假设要求“需更换的易损零件数不大于n”的频率不小于,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【解析】(Ⅰ)当x≤19时,y=3800;当x>19时,y=3800+500(x-19)=500x-5700.所以y与x的函数解析式为3800,19(*)5005700,19xy x Nx x≤⎧=∈⎨->⎩…3分(Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n的最小值为19. …6分(Ⅲ)假设每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的平均数为1100(3800×70+4300×20+4800×10)=4000. …9分假设每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的平均数为1100(4000×90+4500×10)=4050. …11分比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分【2016 新课标Ⅰ〔文〕】20.〔本小题总分值12分〕在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求OH ON; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【解析】(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .所以除H 以外,直线MH 与C 没有其它公共点. …12分【2016 新课标Ⅰ〔文〕】21.〔本小题总分值12分〕已知函数f (x )=(x -2)e x +a (x -1)2.(Ⅰ)讨论f (x )的单调性; (Ⅱ)假设有两个零点,求a 的取值范围.【解析】(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①假设a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②假设a >2e -,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增.③假设a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,假设取b <0且b <ln2a ,e b <2a . 从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;假设a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.假设a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a 的取值范围是(0,1). …12分【2016 新课标Ⅰ〔文〕】22.〔本小题总分值10分〕选修4-1:几何证明选讲如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.证明:(Ⅰ)设E是AB的中点,连接OE,因为OA=OB,∠AOB =120°. 所以OE⊥AB,∠AOE=60°. …3分在Rt ΔAOE 中,OE=12OA. 即圆心O到直线AB的距离等打半径,所以直线AB与⊙O相切. …5分(Ⅱ)因为OD=12OA,所以O不是A,B,C,D四点共圆的圆心,故设其圆心为O',则O'在AB的垂直平分线上.又O在AB的垂直平分线上,作直线O O',所以O O'⊥AB.…8分同理可证O O'⊥CD.所以AB∥CD. …10分【2016 新课标Ⅰ〔文〕】23.〔本小题总分值10分〕选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为cos1sinx a ty a t=⎧⎨=+⎩〔t为参数,a>0〕.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,假设曲线C1与C2的公共点都在C3上,求a.【解析】(Ⅰ)消去参数t得到C1的普通方程x2+(y-1)2=a2.所以C1是以(0,1)为圆心a为半径的圆. …3分将x=cos,y=sin代入可得C1的极坐标方程为2-2 sin+1-a2=0. …5分(Ⅱ)联立2-2 sin+1-a2=0与ρ=4cosθ消去ρ得16cos2-8sin cos+1-a2=0,由tanθ=2可得16cos2-8sin cos=0. 从而1-a2=0,解得a=1. …8分当a=1时,极点也是C1与C2的公共点,且在C3上,综上a=1. …10分【2016 新课标Ⅰ〔文〕】24.〔本小题总分值10分〕,选修4—5:不等式选讲已知函数f(x)=| x+1| -|2x-3|.(Ⅰ)在答题卡第24题图中画出y=f(x)的图像;(Ⅱ)求不等式| f(x)|>1的解集.【解析】(Ⅰ)4,13 ()32,1234,2x xf x x xx x⎧⎪-<-⎪⎪=--≤<⎨⎪⎪-+≥⎪⎩y =f (x )的图像如下图. …5分(Ⅱ)由f (x )的图像和表达式知,当f (x )=1时,解得x =1或x =3.当f (x )=-1时,解得x =13或x =5. …8分 结合f (x )的图像可得| f (x )|>1的解集为{x |x <13或1< x <3或x >5}. …10分2016年全国高考新课标1卷文科数学试题第Ⅰ卷一、选择题,本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7}2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( )A .-3B .-2C .2D . 33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .564.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3a c A ===, 则b=( )A .BC .2D .35.直线l 经过椭圆的一个顶点和一个焦点,假设椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .346.假设将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为 ( )A .y =2sin(2x +4π)B .y =2sin(2x +3π)C .y =2sin(2x –4π)D .y =2sin(2x –3π) 7.如图,某几何体的三视图是三个半径相等的圆及每个283π,则它的外表积是( )A .17πB .18πC .20πD .28π8.假设a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )10.执行右面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.2 B.2 C.3 D .13 12.假设函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B .[-1,13] C .[-13,13] D .[-1,-13]第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分,共20分.把答案填在横线上.13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,假设|AB|=则圆C 的面积为 .16.某高科技企业生产产品A 和产品BA 需要甲材料,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料,乙材料,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.〔此题总分值12分〕已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.B E G P DC A 18.〔此题总分值12分〕如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(Ⅰ)证明G 是AB 的中点;(Ⅱ)在答题卡第〔18〕题图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.〔本小题总分值12分〕某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用〔单位:元〕,n 表示购机的同时购买的易损零件数.(Ⅰ)假设n =19,求y 与x 的函数解析式;(Ⅱ)假设要求“需更换的易损零件数不大于n ”的频率不小于,求n 的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.〔本小题总分值12分〕在直角坐标系xoy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.〔本小题总分值12分〕已知函数f(x)=(x -2)e x+a(x -1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)假设有两个零点,求a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.〔本小题总分值10分〕选修4-1:几何证明选讲如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.EG PFDC A23.〔本小题总分值10分〕选修4—4:坐标系与参数方程在直线坐标系xoy 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩〔t 为参数,a >0〕.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,假设曲线C 1与C 2的公共点都在C 3上,求a .24.〔本小题总分值10分〕,选修4—5:不等式选讲已知函数f (x )=| x +1| -|2x -3|.(Ⅰ)在答题卡第24题图中画出y =f (x )的图像;(Ⅱ)求不等式| f (x )|>1的解集.2016年全国高考新课标1卷文科数学试题参考答案一、选择题,本大题共12小题,每题5分,共60分.1B 2A 3C 4D 5B 6D 7A 8B 9D 10C 11A 12C二、填空题:本大题共4小题,每题5分,共20分.13.23- 14.43- 15.4π 16.216000 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.【解析】(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为31的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313n n --=-⨯- …12分18.【解析】(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB .又DE ⊥平面P AB ,∴DE ⊥AB .∴AB ⊥平面PDE . …3分又PG ⊂平面PDE ,∴AB ⊥PG .依题P A=PB ,∴G 是AB 的中点.…6分(Ⅱ)在平面P AB 内作EF ⊥P A 〔或EF // PB 〕垂足为F ,则F 是点E 在平面P AC 内的正投影. …7分理由如下:∵PC ⊥P A ,PC ⊥PB ,∴ PC ⊥平面P AB . ∴EF ⊥PC作EF ⊥P A ,∴EF ⊥平面P AC .即F 是点E 在平面P AC 内的正投影.…9分连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .易知DE // PC ,PC=PB=P A = 6,∴DE =2,PE =2233PG =⨯=. 则在等腰直角ΔPEF 中,PF=EF=2,∴ΔPEF 的面积S=2.所以四面体PDEF 的体积1433V S DE =⨯=. …12分 19.【解析】(Ⅰ)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700. 所以y 与x 的函数解析式为3800,19(*)5005700,19x y x N x x ≤⎧=∈⎨->⎩ …3分 (Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n 的最小值为19. …6分(Ⅲ)假设每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的 平均数为1100(3800×70+4300×20+4800×10)=4000. …9分 假设每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的 平均数为1100(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分20.【解析】(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .所以除H 以外,直线MH 与C 没有其它公共点. …12分21.【解析】(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①假设a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②假设a >2e -,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增.③假设a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,假设取b <0且b <ln2a ,e b <2a . 从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;假设a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.假设a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a 的取值范围是(0,1). …12分。
2016年高考数学(文科、理科)真题汇总及答案详解文科数学(全国甲卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( )A .{-2,-1,0,1,2,3}B .{-2,-1,0,1,2}C .{1,2,3}D .{1,2}解析:选D.先化简集合B ,再利用交集定义求解.∵x 2<9,∴-3<x <3,∴B ={x |-3<x <3}.又A ={1,2,3},∴A ∩B ={1,2,3}∩{x |-3<x <3}={1,2},故选D.2.设复数z 满足z +i =3-i ,则z =( )A .-1+2iB .1-2iC .3+2iD .3-2i解析:选C.先求复数z ,再利用共轭复数定义求z .由z +i =3-i 得z =3-2i ,∴z =3+2i ,故选C. 3.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝⎛⎭⎫2x -π6 B .y =2sin ⎝⎛⎭⎫2x -π3 C .y =2sin ⎝⎛⎭⎫x +π6D .y =2sin ⎝⎛⎭⎫x +π3 解析:选A.根据图象上点的坐标及函数最值点,确定A ,ω与φ的值.由图象知T 2=π3-⎝⎛⎭⎫-π6=π2,故T =π,因此ω=2ππ=2.又图象的一个最高点坐标为⎝⎛⎭⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z ),故φ=2k π-π6(k ∈Z ),结合选项可知y =2sin ⎝⎛⎭⎫2x -π6.故选A.4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323π C .8π D .4π解析:选A.先利用正方体外接球直径等于正方体体对角线长求出球的半径,再用球的表面积公式求解.设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π,故选A.5.设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A.12B .1 C.32D .2 解析:选D.根据抛物线的方程求出焦点坐标,利用PF ⊥x 轴,知点P ,F 的横坐标相等,再根据点P 在曲线y =k x上求出k . ∵y 2=4x ,∴F (1,0).又∵曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴, ∴P (1,2).将点P (1,2)的坐标代入y =k x(k >0)得k =2.故选D. 6.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .2解析:选A.将圆的方程化为标准方程,根据点到直线距离公式求解.圆x 2+y 2-2x -8y +13=0的标准方程为(x -1)2+(y -4)2=4,由圆心到直线ax +y -1=0的距离为1可知|a +4-1|a 2+12=1,解得a =-43,故选A. 7.右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C.根据三视图特征,将三视图还原为直观图,根据直观图特征求表面积. 由三视图可知,该几何体是由一个圆柱和一个圆锥组成的组合体,上面是一个圆锥,圆锥的高是23,底面半径是2,因此其母线长为4,下面圆柱的高是4,底面半径是2,因此该几何体的表面积是S =π×22+2π×2×4+π×2×4=28π,故选C.8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310解析:选B.利用几何概型的概率公式求解.如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B. 9.。
绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试 1文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致.2。
第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3。
考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(—4,-3),则向量BC=(A)(—7,-4)(B)(7,4) (C)(-1,4) (D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2—I (B)-2+I (C)2—I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1。
从2016年起,安徽省普通⾼考将使⽤教育部考试中⼼统⼀命题的试卷,结束⾃2005年开始的⼗年⾃主命题“安徽卷”。
“安徽卷”与“全国卷”的考点内容差异何在?⾼三考⽣备考时,如何快速掌握新的试卷结构?11⽉30⽇,安徽省教育厅发布《安徽省2015-2016年度⾼三语⽂等九个学科教学指导意见》,对⽐两卷的同与不同。
语⽂阅读新增选考题型 相同:1.第Ⅰ卷阅读题和第Ⅱ卷表达题;2.全卷分值为150分;3.必修课程“语⽂1”⾄“语⽂5” 不同: 安徽卷 第Ⅰ卷阅读题,包括必修课程模块和指定选修课程,选修课程内容考查约占全卷总分值的16% 全卷题量21题 古代诗歌阅读为8分 语⾔⽂字运⽤为24分 对选修课程考查的范围为“诗歌与散⽂”“⼩说与戏剧”两个系列的散⽂和⼩说部分 对选修内容及相应能⼒层级的考查,只限于“⽂学类⽂本阅读” 全国卷 第Ⅰ卷阅读题,包括必考题和选考题,选考题考⽣只能从⽂学类⽂本阅读和实⽤类⽂本阅读中选择⼀类作答,选修课程内容考查约占全卷总分值的17% 全卷题量20题 古代诗歌阅读为11分 语⾔⽂字运⽤为20分 对选修课程考查的范围为“诗歌与散⽂”“⼩说与戏剧”“新闻与传记”“语⾔⽂字应⽤”“⽂化论著研读”五个系列 对选修内容及相应能⼒层级的考查,包括“⽂学类⽂本阅读”和“实⽤类⽂本阅读”两类,考⽣只能从中任意选择⼀类作答 教学建议: 全国卷依据《考试⼤纲(语⽂)》所规定的语⽂选修课程为诗歌与散⽂、⼩说与戏剧、新闻与传记、语⾔⽂字应⽤、⽂化论著研读五个系列;依据《考试⼤纲(语⽂)》所规定的“选考内容”为⽂学类⽂本阅读和实⽤类⽂本阅读。
鉴于此,各普通⾼中如果⾼⼆年级选修课程,尚未开设有关⼩说阅读鉴赏和传记作品阅读的选修模块,建议在⾼三年级开设相应的选修课。
数学⽂科难度等同于“安徽卷”理科 相同:⾼中数学必修1-5册为必考内容,理科还包括选修2-1、2-2、2-3三册,⽂科还包括选修1-1、1-2两册。
2016安徽高考数学
摘要:
一、引言
二、2016 年安徽高考数学试卷结构
三、试卷难度及特点
四、考生反馈及专家评价
五、结论
正文:
一、引言
2016 年安徽高考数学试题在万众瞩目中终于揭开了神秘的面纱。
作为高考的重要组成部分,数学试题的难度和特点每年都备受关注。
本文将对2016 年安徽高考数学试卷的结构、难度及特点进行分析,并总结考生反馈和专家评价,以期为新一届考生提供参考。
二、2016 年安徽高考数学试卷结构
2016 年安徽高考数学试卷分为选择题和非选择题两部分。
选择题共12 题,每题5 分,满分60 分;非选择题共10 题,包括填空题、解答题等,满分90 分。
整张试卷共16 题,满分150 分。
试题涵盖了函数与导数、三角函数、解析几何、立体几何、概率与统计等多个模块,全面考察了考生的数学素养和应用能力。
三、试卷难度及特点
1.试卷整体难度适中,与往年相比变化不大。
2.注重基础知识和基本技能的考察,如函数性质、数列求和等。
3.强调数学思维能力的考查,如逻辑推理、分析解决问题的能力等。
4.注重实际应用,如统计与概率问题,需要考生将理论知识运用到实际生活中。
四、考生反馈及专家评价
1.考生普遍认为试卷难度适中,但也有一部分题目较有难度,需要深入思考和灵活运用知识点。
2.专家评价试卷结构合理,内容全面,既考察了基础知识,又体现了选拔性考试的特点。
同时,试卷还注重了数学文化、数学思维和数学素养的考查。
五、结论
综上所述,2016 年安徽高考数学试卷在结构、难度和特点方面都较为合理,得到了考生和专家的认可。
2016合肥⾼考⼆模试题解析:数学区分度⽐较⾼,选做题难度⼩ 此次“⼆模”考试理科数学的难度⽐⼀模试卷难度略有增加,但依然注重基础知识考查与能⼒考查的结合,主要突出数学的理性思维,考查学⽣数学基本素养。
例如选择题与填空题分别涉及集合与逻辑、复数,数列,函数及其导数、三视图、⽴体⼏何、不等式与线性规划、圆锥曲线(圆、双曲线与抛物线)、算法初步、概率、平⾯向量等知识点;解答题重点考查解三⾓形、统计(线性回归⽅程)、⽴体⼏何、圆锥曲线、导数及其应⽤;选做题考查⼏何证明、坐标系与参数⽅程、绝对值不等式。
试卷命题风格贴近全国卷,试卷整体难度呈阶梯型分布,难度主要集中在解析⼏何、函数与导数这两⽅⾯知识。
“⼆模”理科试卷注重对考⽣能⼒的考查。
如考试⼤纲要求的空间想象能⼒、抽象概括能⼒、推理论证能⼒、运算求解能⼒、数据处理能⼒在试卷中都有考查且⽐“⼀模”试卷有进⼀步加强。
“⼆模”⽂科数学试题是全国卷的⼀份⾼仿真试卷,试题以2016全国统⼀考试⼤纲为依据,以能⼒⽴意为主导,题型、题量都与2015年全国卷1卷⾼考题相同,试卷知识覆盖⾯⼴,重点突出,稳中有新,考点分布合理,有很好的区分度和适当的难度,突出了全国卷的特点。
试题紧扣教材,注重基础,注重在知识的形成过程,突出逻辑推理能⼒和思维的灵活性,严谨性的考查。
⽂科数学有⼀定的计算量,重点题型(导数等)重点把关,分散难点,很好地体现了“模拟和检测”特点。
解答题中,第17题对三⾓函数的知识考查⾮常全⾯,向量作为载体命题,给范围求单调区间等考点考查了基础知识,难度不⼤。
第18题考查统计,彰显了对基础知识基本概念的考查。
第19题⽴体⼏何题是学⽣熟悉的知识点,求四棱锥表⾯积有新意,告知学⽣复习⾯要宽,不留复习死⾓。
第20题解析⼏何题⼊⼿较宽,阶梯上升,让不同层次同学都有得分空间,但第⼆问有⼀定的计算量,也可以导数作为⼯具来处理,体现了⼀题多解和在知识的交汇命题思想。
第21题和全国卷⼀样导数压轴,对学⽣能⼒的要求较⾼,多数考⽣⼊⼿容易,深⼊较难,想得⾼分不容易,从⽽加⼤区分度。
2016安徽高考数学文理科选考题相同
高考大纲高考改革高考政策高考真题高考复习资料2016年的高考,安徽省将告别实施了11年的安徽卷,使用全国统一卷。
不论是内容与范围,还是试卷结构,全国卷与安徽卷都有一些差异。
11月30日,省教育厅发布了《2015~2016年度高三语文等九个学科教学指导意见》,类似于以往的安徽省高考《考试说明》,以下是出国留学网为大家提供的2016安徽高考数学文理科选考题相同,大家可以参考一下!
2016安徽高考数学文理科选考题相同
数学
文理科选考题相同
不变:高中数学必修1-5册为必考内容,理科还包括选修2-1、2-2、2-3三册,文科还包括选修1-1、1-2两册。
全面考查高中数学主干知识,重点考查六大知识领域。
变化:国家公布的考试大纲考查范围要大于安徽卷,且有些内容的考查层次也更高。
以往安徽卷中,对选修系列4的考查,理科指定考查4-4、4-5两个模块,文科没有选考内容。
全国卷则是对选修系列4的考查,在4-1、4-4、4-5三个专题进行三选一型的选考,文理科选考试题相同。