测试方法7.1 热分析
- 格式:ppt
- 大小:4.75 MB
- 文档页数:74
第七章 热应力分析当一个结构加热或冷却时,会发生膨胀或收缩。
如果结构各部分之间膨胀收缩程度不同,和结构的膨胀、收缩受到限制,就会产生热应力。
7.1热应力分析的分类ANSYS提供三种进行热应力分析的方法:在结构应力分析中直接定义节点的温度。
如果所以节点的温度已知,则可以通过命令直接定义节点温度。
节点温度在应力分析中作为体载荷,而不是节点自由度间接法:首先进行热分析,然后将求得的节点温度作为体载荷施加在结构应力分析中。
直接法:使用具有温度和位移自由度的耦合单元,同时得到热分析和结构应力分析的结果。
如果节点温度已知,适合第一种方法。
但节点温度一般是不知道的。
对于大多数问题,推荐使用第二种方法—间接法。
因为这种方法可以使用所有热分析的功能和结构分析的功能。
如果热分析是瞬态的,只需要找出温度梯度最大的时间点,并将此时间点的节点温度作为荷载施加到结构应力分析中去。
如果热和结构的耦合是双向的,即热分析影响结构应力分析,同时结构变形又会影响热分析(如大变形、接触等),则可以使用第三种直接法—使用耦合单元。
此外只有第三种方法可以考虑其他分析领域(电磁、流体等)对热和结构的影响。
7.2间接法进行热应力分析的步骤热单元结构单元LINK32 LINK1LINK33 LINK8PLANE35 PLANE2PLANE55 PLANE42SHELL57 SHELL63PLANE67 PLANE42LINK68 LINK8SOLID79 SOLID45MASS71 MASS21PLANE75 PLANE25PLANE77 PLANE82PLANE78 PLANE83PLANE87 PLANE92PLANE90 PLANE95SHELL157 SHELL63表7-1热单元及相应的结构单元首先进行热分析。
可以使用热分析的所有功能,包括传导、对流、辐射和表面效应单元等,进行稳态或瞬态热分析。
但要注意划分单元时要充分考虑结构分析的要求。
热分析聚合物转变温度测试方法1.范围1.1本测试方法包括了用DSC测试聚合物的转化温度、热焓和结晶焓。
备注1:与结构有关的真正的热熔的测定常常需要专门的结晶条件。
1.2本测试方法适用于颗粒状或任何形状的聚合物制成的适合的试样。
1.3正常的操作温度范围是从低温到600℃。
某些设备允许超出该温度范围。
1.4数值以SI制(国际单位制)单位为准。
备注2:本测试方法不适用于该类型聚合物(见6.8)。
1.5此标准并非旨在解决与它的使用有关的所有的安全问题。
这是本标准的使用者有责任建立适当的安全和健康措施,并确定使用前建立适用的规章限制。
备注3:本标准类似但不等同于ISO11357-1-2-3。
ISO标准的程序中提供了一些额外的信息,但是本测试方法未提供。
2.参考文献2.1ASTM标准E473热分析和流变学的相关标准术语E691-为测定试验方法精密度开展的实验室间的研究的标准E967-DSC和DTA的温度校准的测试方法E968-DSC的热流量校准标准实施规程E1142与热物理性能相关的标准术语E1953热分析设备和流变设备描述规程标准2.2ISO标准ISO11357-1塑料DSC法第一部分总则ISO11357-2塑料DSC法第二部分玻璃化转变温度的测定ISO11357-3塑料DSC法第三部分熔融和结晶的温度和热焓的测定3.术语本测试方法中的具体技术术语在标准E473和E1142中被定义。
4.测试方法概要4.1本测试方法是在控制了流速的指定的气氛中加热和冷却测试样品,用合适的传感装置不断的检测记录样品和参比样之间的能量变化。
试样由于能量的吸收和释放,在升温或冷却曲线上以相应的吸热和放热峰或者以基线移动的形式表现出转变。
5.意义和使用5.1热分析在一定的温度范围内升温和降温对测量聚合物的形态和化学改变提供了一个快速的方法。
具体的升温能力、升温速率和温度下测得的改变作为这些转变。
通过DSC 测得的热转变可以用于帮助鉴定具体的聚合物、聚合物合金和一定的有化学转变聚合添加剂。
热分析1.什么是热分析?热分析程序温度下,测物质的物理性质与温度关系的一类技术只要将总定义中的物理性质代换成诸如质量、温差等物理量,就很容易得到各种热分析方法的定义热重法程序温度下,测量物质的质量与温度关系的技术差热分析程序温度下,测物质和参比物的温度差与温度关系的技术2.热分析包括:差示扫描热量法差热分析热重法3.热重(TG)基本原理在程序温度(升/降/恒温及其组合)过程中,观察样品的质量随温度或时间的变化过程。
应用:质量变化热稳定性分解温度组分分析脱水腐蚀/氧化还原反应动力学4.同步热分析的优势样品的TG(质量变化) 和DSC(热量) 效应可以在一次测量中完成•缩短测试时间•确保了测试结果的可比性不会受测试条件的影响不会受样品制备的影响不会受材料的不均一性的影响5.常规 DTA测量方法恒定加热速率时,测样品温度的变化速率通常T稳速上升,熔化或吸/放热反应T平台参比物:在所测范围内不发生任何热效应记录样品与参比物之间的温差Al2O36.DSC 基本原理及应用在程序温度(升/降/恒温及其组合)过程中,测量样品与参考物之间的热流差,以表征所有与热效应有关的物理变化和化学变化。
7.第一次升温 :● 玻璃化转变在转变区域往往伴随有应力松弛峰● 热固性树脂:若未完全固化,第一次升温Tg 较低,伴有不可逆的固化放热峰 ● 部分结晶材料:计算室温下的原始结晶度 ● 吸水量大的样品(如纤维等):往往伴有水分挥发吸热峰,可能掩盖样品的特征转变高分子材料的二次升温● 玻璃化转变:消除了应力松弛峰,曲线形状应用:• 玻璃化转变 • 熔融、结晶 • 熔融热、结晶热 • 共熔温度、纯度 • 物质鉴别 • 相容性• 热稳定性、氧化稳定性 • 反应动力学 • 热力学函数 • 液相、固相比例典型而规整●热固性树脂(未完全固化):玻璃化温度一般会提高。
●部分结晶材料:经过特定冷却条件(结晶历史)研究结晶度、晶体熔程/熔融热焓与结晶历史关系。
热分析方法东方科技,结构设计室1.热分析的目的温度过高会造成电子产品的损坏。
任何元器件、封装在一定温度下都有一定的失效率,温度越高失效率越大,按指数增长。
通过热分析使分配给每一个元器件的失效率一致,并且使元器件工作在要求的温度范围之内。
换言之,热分析可以确保电子产品工作可靠,各个元器件温度分布均匀。
2.术语温升零部件、元器件温度与环境温度的差值。
热耗又叫损耗,指元器件或设备工作时产生的热量。
热耗不同于功耗,功耗是元器件或设备的输入功率。
一般电子器件效率比较低,大部分功耗转化为热量。
热流密度单位面积上的热耗,单位W/m2。
热阻1W热量引起的温升大小,反映介质传热能力的大小,单位℃/W。
导热系数1m厚的材料,两侧表面的温差为1℃,在1秒内,通过1平方米面积传递的热量,单位W/m∙K。
对流换热系数流体与壁面的温差为1℃时,在单位时间通过单位面积的热量,表示流体与固体表面之间的换热能力,单位W/m2∙K。
系统阻力流体经过设备或机柜风道、散热器风道、进风系统过滤网等通道产生的静压差,单位Pa。
风机特性表示风机主要性能参数(风量、风压、功率、效率)之间的关系的曲线。
风机运行点系统阻力曲线与风机特性曲线的交点。
表示风机实际的工作状态。
壳温指元器件安装接触面的温度,如IGBT与散热器接触底面的温度。
结温指元器件内部的温度,如IGBT芯片或二极管芯片的温度。
3.IGBT热耗热分析前必须计算元器件的热耗,热耗计算错误必将导致错误的分析结果,严重的会使设备温升过大,当环境温度较高时设备无法运行或损坏。
表1. IGBT热耗计算参数其中,壳温按80℃,最大结温查询IGBT手册。
此外,计算参数还包括环境温度T a,及每桥臂对应散热器热阻R th。
3.1.热耗计算根据[表1]中的数据可以算出IGBT芯片及二极管芯片的导通损耗P cond,开关损耗P SW,总损耗P cond+P SW;引脚损耗P RCC′EE′。
引脚损耗通过接线端子可以散发出去,为了使分析结果更接近真实值,一般热分析时不考虑这部分热量,但时,在极端条件下引脚损耗的热量也会进入IGBT基板,增加散热器的负荷。