生物化学
- 格式:doc
- 大小:33.00 KB
- 文档页数:3
生物化学技术生物化学技术是一种利用生物体的生化反应制备物质的技术。
生物化学技术涉及到许多方面,包括分子生物学、酶学、基因工程、蛋白质工程等。
本文将从生物化学技术的原理、应用以及未来发展等方面进行探讨。
一、生物化学技术的原理1.1分子生物学的基础分子生物学是生物化学技术的基础之一。
它研究生物体内分子的结构、功能和相互作用等方面。
在生物化学技术中,分子生物学的应用主要包括基因克隆、DNA测序、PCR等技术。
1.2酶学的原理酶是生物体内的一种特殊的蛋白质,具有催化反应的作用。
在生物化学技术中,酶学的原理主要包括酶的选择、酶的活性调控、酶促反应等方面。
1.3基因工程的原理基因工程是指将外源基因引入到宿主细胞中,使宿主细胞产生所需的蛋白质或其他产物的一种技术。
在生物化学技术中,基因工程的原理涉及到外源基因的选择、载体的构建、转染技术等方面。
1.4蛋白质工程的原理蛋白质工程是指通过改变蛋白质的氨基酸序列,从而改变蛋白质的结构和功能的一种技术。
在生物化学技术中,蛋白质工程的原理主要包括选择蛋白质的基因、构建蛋白质的三维结构、鉴定蛋白质的功能等方面。
二、生物化学技术的应用2.1生物医药领域生物化学技术在生物医药领域有着广泛的应用。
例如,基因工程药物、抗体药物、干细胞疗法等都是生物化学技术的应用。
在这些应用中,生物化学技术可以用来生产生物药物、筛选药物靶点、设计新型药物等。
2.2农业领域生物化学技术也在农业领域有着重要的应用。
例如,转基因作物、抗病虫害作物、抗逆作物等都是生物化学技术的应用。
在这些应用中,生物化学技术可以用来改良作物的性状、提高作物的产量、减少农药的使用等。
2.3环境保护领域生物化学技术也在环境保护领域有着重要的应用。
例如,生物降解技术、生物修复技术、生物检测技术等都是生物化学技术的应用。
在这些应用中,生物化学技术可以用来降解污染物、修复受污染土壤、检测环境中的污染物等。
2.4工业生产领域生物化学技术也在工业生产领域有着广泛的应用。
绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。
通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。
3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。
第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。
单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。
3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。
4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。
6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。
7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。
生物化学专业课程科目
1. 生物化学导论,这门课程通常介绍了生物化学的基本概念,包括生物大分子(蛋白质、核酸、多糖和脂质)的结构和功能,生物化学反应和代谢途径等内容。
2. 生物有机化学,这门课程侧重于生物分子的有机化学特性,包括蛋白质、核酸和酶的结构与功能、生物大分子的合成和分解等内容。
3. 生物物理化学,这门课程涉及生物分子的物理化学性质,如蛋白质的结构与功能、生物膜的性质和传递过程等。
4. 生物化学实验,这门课程通常包括实验室操作和技术,学生将学习如何处理生物样本、进行蛋白质纯化、测定酶活性等实验技术。
5. 生物化学方法学,这门课程介绍了生物化学研究中常用的方法和技术,如质谱分析、核磁共振、光谱学等。
6. 生物化学分子生物学,这门课程涵盖了生物分子的生物学功
能和调控机制,包括基因表达调控、蛋白质合成与修饰等内容。
7. 生物化学代谢途径,这门课程重点介绍了生物体内各种代谢
途径,如糖代谢、脂肪代谢、核酸代谢等。
以上列举的课程科目只是生物化学专业中的一部分,实际上还
有许多其他相关的课程,如生物化学工程、生物信息学、生物化学
毒理学等。
这些课程科目共同构成了生物化学专业的全面知识体系,为学生提供了丰富的学术素养和实践技能。
第一章.生物化学绪论1.生命的生物化学定义:生命系统包含储藏遗传信息的核酸和调节代谢的酶蛋白。
但是已知某种病毒生物却无核酸(朊病毒)。
2.生命(生物体)的基本特征:(1)细胞是生物的基本组成单位(病毒除外)。
( 2 ) 新陈代谢、生长和运动是生命的基本功能。
( 3 )生命通过繁殖而延续,DNA是生物遗传的基本物质。
(4)生物具有个体发育和系统进化的历史。
( 5 )生物对外界可产生应激反应和自我调节,对环境有适应性。
3.化学是在原子、分子水平上,研究物质的组成,结构、性质和变化规律的一门基础自然科学。
生物化学就是生命的化学。
4.生物化学:运用化学的原理和方法,研究生物体的物质组成和生命过程中的化学变化,进而深入揭示生命活动的化学本质的一门科学。
5.生命体的元素组成:在地球上存在的92种天然元素中,只有28种元素在生物体内被发现。
第一类元素:包括C、H、O和N四种元素,是组成生命体最基本的元素。
这四种元素约占了生物体总质量的99%以上。
第二类元素:包括S、P、Cl、Ca、K、Na和Mg。
这类元素也是组成生命体的基本元素。
第三类元素:包括Fe、Cu、Co、Mn和Zn。
是生物体内存在的主要少量元素。
第四类元素:包括Al、As、B、Br、Cr、F、Ga、I、Mo、Se、Si等。
偶然存在的元素。
6.生命分子是碳的化合物:生命有机体的化学是围绕着碳骨架组织起来的。
生物分子中共价连接的碳原子可以形成线状的、分支的或环状的结构。
7.生物(生命)分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。
生物分子的主要类型包括:多糖、聚脂、核酸和蛋白质等生物大分子。
维生素、辅酶、激素、核苷酸和氨基酸等小分子。
8 .生物大分子的结构与功能:研究生物分子的结构和功能之间的关系,代表了现代生物化学与分子生物学发展的方向。
9.生物化学的内容:静态生物化学:研究生物有机体的化学组成、结构、性质和功能。
动态生物化学:研究生命现象的物质代谢、能量代谢与代谢调节。
什么是生物化学生物学的分支学科。
它是研究生命物质的化学组成、结构及生命过程中各种化学变化的科学。
生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。
若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。
因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。
研究各种天然物质的化学称为生物有机化学。
研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。
60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。
生物化学发展简史生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。
例如18世纪80年代,A.-L.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是动物呼吸的逆过程。
又如1828年F.沃勒首次在实验室中合成了一种有机物──尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。
1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。
1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进行如发酵这样复杂的生命活动,终于推翻了“生机论”。
生物化学的发展大体可分为3个阶段。
第一阶段从19世纪末到20世纪30年代,主要是静态的描述性阶段,对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。
其中E.菲舍尔测定了很多糖和氨基酸的结构,确定了糖的构型,并指出蛋白质是肽键连接的。
1926年J.B.萨姆纳制得了脲酶结晶,并证明它是蛋白质。
此后四、五年间J.H.诺思罗普等人连续结晶了几种水解蛋白质的酶,指出它们都无例外地是蛋白质,确立了酶是蛋白质这一概念。
通过食物的分析和营养的研究发现了一系列维生素,并阐明了它们的结构。
生物化学名词解释零、绪论1.生物化学:从分子水平来研究生物体内基本物质的化学组成、结构,及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢:生物体与外界环境进行有规律的物质交换,称为新陈代谢。
3.分子生物学:是现代生物学的带头学科,主要研究分子遗传学,生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理和技术,及其在药物研究、药品生产、药物质量监控与药品临床方面应用的基础学科。
一、糖的化学1、糖基化工程:通过增加、删除或调整蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2、单糖:凡不能被水解成更小分子的糖称为单糖。
3、多糖:由许多单糖分子缩合而成的长链结构。
4、寡糖:是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5、结合糖:也称糖复合物或复合糖,是指糖和蛋白、脂质等非糖物质结合的复合分子。
6、同聚多糖:也称均一多糖,由同类型的单糖缩合而成。
7、杂多糖:也称不均一多糖,由不同类型的单糖缩合而成。
8、粘多糖:也称糖胺聚糖,是一类含氮的不均一多糖,其化学组成通常为糖醛酸及氨基己糖或其衍生物,有的还含有硫酸。
9、糖蛋白:是糖与蛋白质以共价键结合的复合分子。
10、肽聚糖:又称胞壁质,是构成细菌细胞壁基本骨架的主要成分,是一种多糖与氨基酸链相连的多糖复合物。
11、蛋白质聚糖:是一类由糖和蛋白质结合形成的非常复杂的大分子糖复合物,其中蛋白质含量一般少于多糖。
12、脂多糖:一般由外层低聚糖链、核心多糖及脂质三部分组成。
13、内切糖苷酶:可水解糖链内部的糖苷键,有的可将长的多糖链切为较短的寡糖片段。
14、外切糖苷酶:只能切下多糖非还原末端的一个单糖,并对单糖组成和糖苷键有专一性要求。
二、脂的化学1、必需脂肪酸:人体不能合成必须从食物获取的脂肪酸。
生物化学(PDF)版
生物化学是研究生物体内化学过程和物质转化的分支学科。
它涉及了生物学和化学两个领域,主要关注生物体内的分子结构、生物体内化学反应的动力学和机制,以及生物体内的代谢过程。
以下是生物化学的主要内容:
1.生物分子结构:生物化学研究生物体内多种生物分子的结构、组成和性质,包括蛋白质、核酸、碳水化合物和脂质等。
2.酶和酶动力学:酶是生物体内的催化剂,生物化学研究酶的结构和功能,以及酶对生物化学反应速率的影响。
3.代谢途径:生物体内的代谢途径是生物化学的重要研究内容,包括碳水化合物的糖酵解、脂肪酸的氧化和合成、蛋白质的合成和降解等。
4.能量代谢:生物体内的能量转化是生命活动的重要过程,生物化学研究生物体内能量产生和转化的机制,如细胞呼吸和光合作用等。
5.信号转导:生物体内的信号分子参与了各种生物过程的调控,生物化学研究信号分子的合成、传递和识别机制。
6.生物化学技术:生物化学也涉及了多种实验和技术方法,包括蛋白质纯化、基因克隆、核酸测序和基因组学等。
总之,生物化学研究了生物体内的化学反应、分子结构和代谢过程,对于理解生物体的功能和调控机制是至关重要的。
什么是生物化学
生物化学是一门研究生物体内化学反应、物质代谢、分子结构与功能的学科。
它在很大程度上依赖于化学、生物学和物理学的原理和方法,旨在揭示生物体生命过程中的化学本质。
生物化学在生物医药、农业、食品科学等领域具有重要意义。
生物化学的研究对象包括蛋白质、核酸、多糖和脂质等生物大分子,以及小分子代谢物和信号分子。
研究者通过分析这些分子的结构、性质、合成与降解途径,探讨它们在生物体生长、发育、繁殖、适应环境等方面的作用。
此外,生物化学家还关注生物体内的酶促反应、膜转运、信号传导等过程,以揭示生命现象背后的化学机制。
生物化学的发展推动了生物科学的研究进展,为人类认识生命本质提供了重要线索。
随着技术的不断创新,生物化学在基因编辑、生物制药、生物能源等领域发挥着越来越重要的作用。
在我国,生物化学研究得到了高度重视,成为国家科技创新和国际竞争力的重要组成部分。
生物化学的研究成果不仅丰富了自然科学的知识体系,还为人类社会带来了实实在在的利益。
例如,通过研究生物化学,科学家们开发出了许多新型药物,有效治疗了许多疾病;生物化学技术在农业领域的应用,提高了作物产量和品质,有助于解决全球粮食安全问题;在环境保护方面,生物化学方法为治理污染提供了新途径。
总之,生物化学在促进人类文明发展和提高人民生活质量方面发挥着不可替
代的作用。
生物化学概述
生物化学是研究生物体的化学成分、化学结构、化学反应和化学过程的科学。
它是化学和生物学的交叉学科,通过研究生物体中的化学反应和分子机制来探索生命的本质。
生物化学的研究内容包括以下几个方面:
生物分子的组成
生物体主要由四种生物大分子构成,包括蛋白质、核酸、多糖和脂质。
蛋白质是由氨基酸组成的长链状分子,核酸则是由核苷酸组成的双链分子。
多糖主要有淀粉和纤维素等,而脂质则是生物体内重要的疏水性分子。
生物分子的结构和功能
不同的生物分子具有不同的结构和功能。
例如,蛋白质通过其特定的氨基酸序列和三维结构来实现其特定的功能,如酶的催化作
用和细胞信号传导等。
核酸则通过遗传密码和基因表达来控制生物
体的遗传信息传递。
代谢反应和能量转化
生物体通过代谢反应获取能量并实现物质的合成和降解。
例如,光合作用是植物利用光能合成有机物的重要反应,而细胞呼吸则是
生物体利用有机物氧化释放能量的过程。
信号传导和调控
生物体内的化学信号传递和调控是生命活动的重要组成部分。
细胞表面受体和信号转导通路参与了细胞对外界刺激的感知和响应,从而调控生物体的生理功能。
生物技术和药物研发
生物化学在生物技术和药物研发领域具有广泛的应用。
通过理
解生物分子的结构和功能,可以设计新的药物分子和开发生物技术
产品,以满足医药和工业上的需求。
生物化学是解析和理解生命现象的强有力的工具,它在许多领域都有重要的应用价值。
它不仅有助于推动基础研究的进展,也为科学家们探索新的解决方案和创新提供了支持。
第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-C O-NH-)。
第一章蛋白质的结构与功能名词解释1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。
2.蛋白质的等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。
3.模体:在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,具有特殊功能,称为模体。
4.蛋白质变性:在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,变成无序的空间结构,导致其理化性质改变和生物活性丧失。
5.电泳:指带电荷的溶质或粒子在电场中向着与其本身所带电荷相反的电极移动的现象。
问答题1. 举例说明蛋白质一级结构与功能的关系1)一级结构是空间结构的基础例:经变性后又复性的核糖核酸酶分子中二硫键的配对方式与天然分子相同。
说明蛋白质一级结构是其高级结构形成的基础和决定性的因素。
2)一级结构与功能(1)一级结构相似的多肽或蛋白质,其空间结构、功能亦相似。
如哺乳动物的胰岛素分子等。
(2)有些蛋白质分子中起关键作用的氨基酸残基缺失或被替代都会影响空间构象及生理功能。
如镰刀型血红蛋白贫血病。
2.蛋白质的α—螺旋结构有何特点?①以肽键平面为单位,右手螺旋;②每螺旋圈3.6个氨基酸残基,螺距0.54nm ;③氢键保持螺旋结构的稳定,氢键的方向与螺旋长轴基本平行;④氨基酸侧链伸向螺旋外侧,并影响α螺旋的形成和稳定。
4.蛋白质变性的机制、对理化性质的影响。
在某些物理和化学因素作用下,其特定的空间构象被破坏,变成无序的空间结构,导致其理化性质改变和生物活性丧失。
如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等,本质为破坏非共价键和二硫键,不改变蛋白质的一级结构。
举例:临床医学上,变性因素常被应用来消毒及灭菌。
此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。
第二章核酸的结构与功能名词解释1 、DNA变性:在某些理化因素作用下,DNA双链解开成两条单链的过程叫DNA 的变性。
生物化学知识点总结第二章一、名词解释1.生物化学:生物化学是研究生物体的化学组成以及生物体内发生的各种化学变化的学科2.肽键:一个氨基酸的α–羧基与另一个氨基酸的α–氨基脱水缩合而成的酰胺键(–CO–NH–)称为肽键3.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质分子解离成阴阳离子的趋势相等,净电荷为零,呈兼性离子状态,此时溶液的PH称为该蛋白质的等电点4.蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构5.二级结构:蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象6.亚基:四级结构中每一条具有独立三级结构的多肽链称为亚基(本章考的最多的名词解释)二、问答1.蛋白质的基本组成单位是什么?其结构特点是什么?基本组成单位:氨基酸结构特点:组成蛋白质的20种氨基酸都属于α–氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L–氨基酸(甘氨酸除外)2.什么是蛋白质的变性?在某些物理或化学因素作用下,蛋白质分子中的次级键断,特定的空间结构被破坏,从而导致蛋白质理化性质改变和生物学活性丧失的现象,称为蛋白质的变性3.什么是蛋白质的二级结构?它主要有哪几种?维持二级结构稳定的化学键是什么?蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象种类:α–螺旋、β–折叠、β–转角、无规卷曲维持蛋白质二级结构稳定的化学键是氢键重点:蛋白质的基本组成单位:氨基酸氨基酸的结构通式维持蛋白质一级结构稳定的是肽键二级结构稳定的化学键是氢键三级结构稳定的是疏水键α–螺旋是蛋白质中最常见最典型含量最丰富的二级结构形式由一条多肽链构成的蛋白质,只有具有三级结构才能发挥生物活性。
如果蛋白质只由一条多肽链构成,则三级结构为其最高级结构只有完整的四级结构才具有生物学功能,亚基单独存在一般不具有生物学功能胰岛素虽然由两条多肽链组成,但肽链间通过共价键(二硫键)相连,这种结构不属于四级结构蛋白质的变构现象例子:老年痴呆症、舞蹈病、疯牛病蛋白质分子表面的水化膜和同种电荷是维持蛋白质亲水胶体稳定的两个因素(填空题)凝固的前提是发生变性,凝固的蛋白质一定发生变性加热使蛋白质变性并凝聚成块状称为凝固第三章一、名词解释1.核苷酸:2.增色效应:由于DNA变性后波长260nm的吸光度值会增加,这种现象称为增色效应3.DNA的变性: DNA的变性是指在某些理化因素作用下,DNA分子中碱基对之间的氢键断裂,使DNA双链结构解开变成单链的过程。
生物化学简介生物化学是研究生物体内分子组成、结构与功能之间关系的学科,它致力于揭示生命现象的化学基础以及生物分子的相互作用。
通过对生物分子的研究,生物化学为我们解开了许多生命奥秘,为生物医学、农业科学和环境保护等领域的发展做出了重要贡献。
一、生物分子的组成和结构生物分子是构成生命体的基本单位。
它们包括蛋白质、核酸、碳水化合物和脂质等多种类别。
蛋白质是生物体内最为重要的有机分子之一,它们由氨基酸组成,通过肽键相连形成多肽链或蛋白质。
核酸则是存储和传递遗传信息的分子,包括DNA和RNA。
碳水化合物是生物体内能量的主要来源,同时也具有结构性作用。
脂质是构成细胞膜的主要成分,同时还参与了许多生物过程。
二、生物分子的功能生物分子在生命过程中具有多种复杂的功能。
蛋白质能够参与到生命体的几乎所有生物过程中,如酶催化反应、结构支持、传递信号等。
核酸则通过DNA复制和转录过程,参与到遗传信息的传递和表达中。
碳水化合物作为能量储存和供应的分子,在细胞呼吸和光合作用等过程中发挥重要作用。
脂质不仅构成了细胞膜的基本骨架,还参与到细胞信号传导和物质转运等过程中。
三、生物化学与生命现象的关联生物化学研究揭示了生命现象的化学基础和分子机制。
通过研究生物分子的结构和功能,我们可以深入了解生命体的生长、发展和繁殖过程。
例如,生物化学研究发现了DNA的双螺旋结构,揭示了DNA复制和遗传信息传递的分子机制,为遗传学的发展奠定了基础。
此外,生物化学还揭示了许多疾病的发生发展机制,为药物设计和治疗提供了理论依据。
四、生物化学的应用领域生物化学的研究成果为许多领域提供了理论和技术支持。
在生物医学领域,生物化学为疾病诊断和治疗提供了重要依据,如药物研发、基因工程和诊断试剂的制备等。
在农业科学领域,生物化学的进展促进了作物良种的选育和育种技术的改进,提高了农作物产量和质量。
另外,生物化学的研究也使得环境科学得以发展,为环境污染治理和新能源的开发做出贡献。
鉴定多肽或蛋白质的N末端氨基酸有哪几种方法?①.二硝基氟苯法(FDNB,DNFB)②氰酸盐法③二甲基氨基萘磺酰氯法何为蛋白质的二级结构?有哪几种类型?各有何特点?6、DNA双螺旋结构模型的要点有哪些?稳定因素有哪些?①两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,且两条链均为右手螺旋。
②嘌呤与嘧啶碱基位于双螺旋的内侧;③内侧碱基呈平面,碱基平面与纵轴垂直,糖环平面与纵轴平行;两个相邻碱基对之间的距离为0.34nm,沿中心轴每旋转一周有10个核苷酸,即螺距为3.4nm;两个核苷酸之间的夹角为36°。
④双螺旋的平均直径为2nm,形成大沟和小沟。
⑤两条核苷酸链依靠碱基之间形成的氢键而结合在一起,即A与T配对,C与G配对;碱基在内(A =T,G≡C)解释信息流动方式即复制、转录翻译。
氢键:互补碱基G-C之间有3个氢键,A-T之间有2个氢键碱基堆积力:(疏水相互作用及范德华力)离子键等: 则DNA变性剂(热、pH、脲/酰胺、有机溶剂)tRNA分子结构有哪些特征?①含有稀有碱基较多,达核苷酸总量的5%-20%。
②不同的tRNA尽管核苷酸组分和排列顺序各异,但其3’端都含有CCA序列,是所有tRNA接受氨基酸的特定位置。
③所有的tRNA分子都折叠成紧密的三叶草二级结构和L 型立体构象,结构较稳定,半衰期均在24小时以上。
9、真核mRNA和原核mRNA各有什么特点?原核生物mRNA 的特点:①半衰期短②多以多顺反子的形式存在③无帽子结构④原核生物常以AUG(有时GUG,甚至UUG)作为起始密码子,真核生物mRNA的特点为:①真核细胞mRNA 的合成和功能表达发生在不同的空间和时间范畴内②以单顺反子形式存在③有帽子结构④几乎永远以AUG作为起始密码子11酶作用机理有哪些学说?其主要内容是什么①趋近效应和定向效应:酶可以将它的底物结合在它的活性部位由于化学反应速度与反应物浓度成正比,若在反应系统的某一局部区域,底物浓度增高,则反应速度也随之提高,此外,酶与底物间的靠近具有一定的取向,这样反应物分子才被作用,大大增加了ES复合物进入活化状态的机率。
②张力作用:底物的结合可诱导酶分子构象发生变化,比底物大得多的酶分子的三、四级结构的变化,也可对底物产生张力作用,使底物扭曲,促进ES进入活性状态。
③酸碱催化作用:酶的活性中心具有某些氨基酸残基的R基团,这些基团往往是良好的质子供体或受体,在水溶液中这些广义的酸性基团或广义的碱性基团对许多化学反应是有力的催化剂。
④共价催化作用:某些酶能与底物形成极不稳定的、共价结合的ES复合物,这些复合物比无酶存在时更容易进行化学反应。
12、什么是酶活力?酶的比活力?酶转换数?酶活力又称酶活性,一般把酶催化一定化学反应的能力称为酶活力,通常以在一定条件下酶所催化的化学反应速度来表示。
酶的比活力:也称为比活性,是指每毫克酶蛋白所具有的活力单位数。
比活性=酶活力单位数/ 毫克蛋白(氮)酶的转换数:当酶被底物完全饱和时,每单位时间内每一活性中心或每分子酶所能转换的底物分子数表示一个酶的转换数14何为酶的抑制作用?有哪几种类型?各有何特点?是指在某个酶促反应系统中,某种低相对分子质量的物质加入后,导致酶活力降低的过程。
酶的可逆性抑制包括可逆和不可逆性两种。
可逆性抑制又包括①竞争性抑制②反竞争性抑制③非竞争性抑制①竞争性抑制特点为:a.竞争性抑制剂往往是酶的底物类似物或反应产物;b.抑制剂与酶的结合部位与底物与酶的结合部位相同;c.抑制剂浓度越大,则抑制作用越大;但增加底物浓度可使抑制程度减小;d.动力学参数:Km值增大,Vm值不变。
②反竞争性抑制特点为:a.抑制剂与底物可同时与酶的不同部位结合;b.必须有底物存在,抑制剂才能对酶产生抑制作用;c.动力学参数:Km减小,Vm降低。
③非竞争性抑制特点为:a.底物和抑制剂分别独立地与酶的不同部位相结合;b.抑制剂对酶与底物的结合无影响,故底物浓度的改变对抑制程度无影响;c.动力学参数:Km值不变,Vm 值降低。
14、试简述有机磷农药杀虫的生化原理?有机磷农药进入体内后迅速与体内的胆碱酯酶结合,生成磷酰化胆碱酯酶,使胆碱酯酶丧失了水解乙酰胆碱的功能,导致胆碱能神经递质大量积聚,作用于胆碱受体,产生严重的神经功能紊乱,特别是呼吸功能障碍,从而影响生命活动。
15、什么是同工酶?同工酶在科学研究和实践中有何应用?同功酶:能催化同一化学反应但结构和性质不同的一类酶。
在生物学中,同工酶可用于研究物种进化、遗传变异、杂交育种和个体发育、组织分化等。
在医学方面,同工酶是研究癌瘤发生的重要手段,癌瘤组织的同工酶谱常发生胚胎化现象,即合成过多的胎儿型同工酶。
17、试述TPP、FAD、FMN、NAD+、DADP+、CoA的组成及生物学功能。
①TPP 组成:a、嘧啶环;b、噻唑环借亚甲基生物学功能:焦磷酸硫胺素(TPP)是脱羧酶的辅酶,催化丙酮酸或α–酮戊二酸的氧化脱羧反应。
②FAD&FMN 组成:核黄素(维生素B2)的衍生物生物学功能:它们在脱氢酶催化的氧化-还原反应中,起着电子和质子的传递体作用。
③NAD+&DADP+ 组成:是维生素烟酰胺的衍生物生物学功能:作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单递氢体。
④CoA 生物学功能:传递酰基,是形成代谢中间产物的重要辅酶。
18、试述维生素A、维生素D、维生素E、维生素K的来源、结构特点生理功能。
维生素A:来源:主要存在与鱼的肝脏;结构特点:维生素A 含有β-白芷酮环的不饱和一元醇;生理功能:维持上皮组织健康及正常视觉,促进年幼动物的正常生长。
维生素D:来源:鱼肝油、蛋黄、牛奶;结构特点:固醇类衍生物;生理功能:协助钙离子运输,有助小孩牙齿及骨骼发育;补充成人骨骼所需钙质,防止骨质疏松。
维生素E:来源:蔬菜、谷物和动物性食品;结构特点:是6-羟基苯并二氢呋喃的衍生物;生理功能:①与植物生理机能有关②抗氧化作用维生素K:来源:蛋黄、苜宿、绿色蔬菜、动物肝脏等;结构特点:是一种萘醌的衍生物;是一种萘醌的衍生物的生理功能:促进凝血酶原、凝血因子7及8等的合成。
12何为三羧酸循环?其有何特点?原核生物一分子葡萄糖经过有氧化能产生多少分子A TP(32或30分子的)三羧酸循环是需氧生物体内普遍存在的代谢途径,因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸,所以叫做三羧酸循环。
特点:(1)在此循环中,最初草酰乙酸因参加反应而消耗,但经过循环又重新生成。
(2)在三羧酸循环中,共有4次脱氢反应,脱下的氢原子以NADH+H+和FADH2的形式进入呼吸链,最后传递给氧生成水,在此过程中释放的能量可以合成ATP。
(3)乙酰辅酶A不仅来自糖的分解,也可由脂肪酸和氨基酸的分解代谢中产生,都进入三羧酸循环彻底氧化。
(4)三羧酸循环既是分解代谢途径,但又为一些物质的生物合成提供了前体分子。
21、为什么说三羧酸循环是几大物质代谢的枢纽?糖代谢与脂代谢、蛋白质代谢有何联系?①三羧酸循环是乙酰CoA最终氧化为H2O和CO2的途径;②糖代谢产生的碳骨架最终进入三羧酸循环氧化;③脂肪分解产生的甘油可通过糖有氧氧化进入三羧酸循环氧化,脂肪酸经β-氧化产生乙酰CoA进入三羧酸循环氧化;④蛋白质分解产生的氨基酸脱氨后碳骨架进入三羧酸循环氧化,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨基后合成非必需氨基酸。
所以说三羧酸循环是几大物质代谢的枢纽,三者都经过三羧酸循环,它们各自的代谢中的中间产物都是丙酮,在三羧酸循环里可以利用它们的中间产实现三者之间的转换以及时补充需要。
22、磷酸戊糖途径有何特点?葡萄糖直接氧化脱氢和脱羧,不必经过糖酵解和三羧酸循环,脱氢酶的辅酶不是NAD+而是NADP+,产生的NADPH作为还原力以供生物合成用,而不是传递给O2,无A TP的产生和消耗。
23、试述脂肪酸的β-氧化过程。
计算一分子软脂酸经过β-氧化作用彻底分解为CO2和H2O时,能产生多少分子ATP(96分子的A TP)。
脂肪酸的β-氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA 和一个少两个碳的新的脂酰CoA。
第一步脱氢反应由脂酰CoA脱氢酶活化,辅基为FAD,脂酰CoA在α和β碳原子上各脱去一个氢原子生成具有反式双键的α,β-烯脂肪酰辅酶A。
第二步加水反应由烯酰CoA水合酶催化,生成具有L-构型的β-羟脂酰CoA。
第三步脱氢反应是在β-羟脂肪酰CoA脱饴酶(辅酶为NAD+)催化下,β-羟脂肪酰CoA脱氢生成β酮脂酰CoA。
第四步硫解反应由β-酮硫解酶催化,β-酮酯酰CoA在α和β碳原子之间断链,加上一分子辅酶A生成乙酰CoA和一个少两个碳原子的脂酰CoA。
25试述饱和脂肪酸从头合成途径。
①乙酰CoA的来源和转运②丙二酸单酰CoA的形成③脂肪酸链的合成26、简述磷脂的代谢特点。
磷脂代谢是磷脂在生物体内可经各种磷脂酶作用水解为甘油、脂肪酸、磷酸和各种氨基醇(如胆碱、乙醇胺、丝氨酸等)。
甘油可以转变为磷酸二羟丙酮,参加糖代谢。
脂肪酸经β-氧化作用而分解。
磷酸是体内各种物质代谢不可缺少的物质。
27、简述乙醛酸循环的特点。
乙醛酸循环和三羧酸循环中存在着某些相同的酶类和中间产物。
但是,它们是两条不同的代谢途径。
乙醛酸循环是在乙醛酸体中进行的,是与脂肪转化为糖密切相关的反应过程。
而三羧酸循环是在线粒体中完成的,是与糖的彻底氧化脱羧密切相关的反应过程。
油料植物种子发芽时把脂肪转化为碳水化合物是通过乙醛酸循环来实现的。
这个过程依赖于线粒体、乙醛酸体及细胞质的协同作用。
28氨基酸降解主要有哪几种方式?有何特点?(1)脱氨基作用:包括氧化脱氨和非氧化脱氨,分解产物为α-酮酸和氨。
(2)脱羧基作用:氨基酸在氨基酸脱羧酶的作用下脱羧,生成二氧化碳和胺类化合物。
(3)羟化作用:有些氨基酸(如酪氨酸)降解时首先发生羟化作用,生成羟基氨基酸,再脱羧生成二氧化碳和胺类化合物。
29、氨基酸脱氨后产生的氨和α-酮酸各有哪些去路?氨的去路:(1)合成尿素(主要去路):尿素通过肾脏随尿排出体外。
(2)合成谷氨酰胺(3)可以氨基化其他的α-酮戊酸以变回另外一种α-氨基酸,这就是体内非必需氨基酸合成的途径。
(4)合成其他含氮化合物如嘌呤碱和嘧啶碱等。
α-酮酸的去路:(1)经还原加氨或转氨生成非必需氨基酸;(2)经三羧酸循环转变成糖、脂肪或酮体。
33二十种氨基酸在合成时,可分为哪几种类型,其碳骨架分别来源与那些代谢途径?①a一酮戊二酸衍生类型;碳骨架来源于TCA中的α-酮戊二酸。
②草酰乙酸衍生类型;碳骨架来源于TCA中的草酰乙酸。
③丙酮酸衍生类型;碳骨架来源于EMP中的丙酮酸。
④3-磷酸甘油酸衍生类型;碳骨架来源于光呼吸乙醇酸途径中的乙醛酸。