膜元件基础知识资料
- 格式:ppt
- 大小:2.52 MB
- 文档页数:32
渗透压可用下式计算π=cRT式中π—渗透压,kPa;C—浓度差,mol/L;R—气体常数,等于8.135J/(mol.K)T—热力学温度,K。
上式是通过热力学定律推导出来的,因此只对极稀薄溶液才是准确的,c为水中离子的浓度,若为非电介质则为分子的浓度.各种盐溶液在含量为1000mg/L,温度25℃时的渗透压如下:氯化钠约为77.5kPa;硫酸钠约为41.2kPa;硫酸镁约为24.5kPa;氯化钙约为56.9kPa;氯化镁约为65.7kPa反渗透膜是一种用特殊材料和加工方法制成的、具有半透性能的薄膜。
它能在外加压力作用下使水溶液某一些组分选择性透过,从而达到淡化、净化或浓缩分离的目的。
反渗透膜性能要求和指标为适应水处理应用的需要,反渗透膜必须具有应用上的可靠性和形成规模的经济性,其一般要求如下(1)对水的渗透性要大,脱盐率要高。
(2)具有一定的强度和坚实程度,不致因水的压力和拉力影响变形、破裂。
膜的被压实性尽可能最小,水通量衰减小,保证稳定的产水量。
(3)结构要匀称,能制成所需要的结构。
(4)能适应较大的压力、温度和水质的变化。
(5)具有好的耐温、耐酸碱、耐氧化、耐水解和耐生物污染侵蚀性能。
(6)使用寿命要长。
(7)成本要低。
在选择膜时或使用膜前应该了解哪些内容膜的使用者在选择膜时或使用膜前应该了解并掌握如下膜的物理、化学稳定性和膜的分离特性指标。
(1)膜的化学稳定性膜的化学稳定性主要是指膜的抗氧化性和抗水解性能,这既取决于膜本身的化学结构,又与要分离流体的性质有关。
通常水溶液中含有如次氯酸钠、溶解氧、双氧水和六价铬等氧化性物质,它们容易产生活性自由基并与高分子膜材料进行链引起反应和链转移反应,造成膜的氧化,影响膜的性能和寿命。
另外,膜的水解与氧化是同时发生的,当制膜用高分子主链中含有水解的化学基团—CONH—,—COOR—,—CN2—O—等时,这些基团在酸或碱的作用下,易产生水解反应,使膜的性能受到破坏。
膜的分类1. 按膜结构分类液膜:按制膜材料形态来分类的一种,即以液态物质为分离介质形成的膜,亦叫液相膜或液膜。
这种膜可以把两种气相,气液两相或两相不互溶的液体进行分隔和促进分离,如乳化液膜和支撑液膜。
固膜:按制膜材料形态来分类的一种以固态物质为分离介质制成的膜,亦叫固相膜或固体膜。
对称膜:一般指膜的各部分具有相同的特性,其孔结构不随深度而变化的膜。
膜的厚度范围为10~200um。
非对称膜:由同种材料制成的,一层为致密分离层,其厚度通常为0.1~0.5um另一层或多层(如无机膜)为支撑层(其厚度为5~10um)。
2. 按化学组成分类不同的膜材料具有不同的化学稳定性、热稳定性、机械性能和亲和性能,对于不同的分有机膜:以有机高分子聚合物为材料制成的具有分离功能的渗透膜。
这类膜的优点是容易加工成型,成本低。
其缺点是在高温,高压和有强吸附组分下,性能不稳定。
无机膜:以无机材料为分离介质制成的具有分离功能的渗透膜,如金属膜、合金膜、陶瓷膜、高分子金属配合物膜、分子筛复合膜、沸石膜和玻璃膜等,它具有化学稳定性好、耐高温、孔径分布窄和分离效率高等特点,可用于气体分离等。
纤维素类是应用最早,也是应用最多的膜材,它主要用于渗透膜、纳滤膜、超滤膜、微滤膜、透析膜中,在气体分离膜和渗透蒸发中也有应用。
由于在较高温度、酸性和碱性条件下纤维素膜易水解,此外易被许多微生物分解,所以纤维素膜的耐久性较差。
金属膜:以金属材料,如钯、银为介质制成的具有分离功能的渗透膜。
可利用其对氢的溶解机理制备超纯氢和进行加氢或脱氢膜反应。
3. 按分离机理分类:根据分离机理,膜大致分为多孔膜、无孔膜和载体膜,多孔膜在处理溶液时根据颗粒大小进行分离,主要用于超滤和微滤;无孔膜利用分离体系中各组分溶解度或扩散系数的差异进行分离,主要用于气体分离、透析、蒸汽渗透等过程;载体膜是通过载体分子对某组分4. 按几何形状分类无论在实验室还是在工业生产中,膜都被制成一定形式的组件作为膜分离装置的分离单元。
第一部分软包装材料之---塑料薄膜基本知识 (1)一.软包装之薄膜的定义 (1)二.塑料阻透性技术介绍 (2)1.塑料的阻透性 (2)2.透过系数 (2)3.常用中高阻透性塑料的透过系数 (2)4.名词解释 (2)5.塑料阻透方式 (3)6.多层复合材料的阻透性公式: (3)7.多层共挤出复合的方式 (3)8.国内外较普遍的阻透复合方式 (4)9.中、高阻隔复合材料的标准 (4)10、无菌包装的物理性能和机械性能指标 (4)三、复合包装材料 (4)四、多层复合技术 (6)五、多层共挤复合高阻隔薄膜 (7)七、常用的阻隔材料 (9)八. 应用实例 (10)十一、塑料的热封性 (12)第二部分共挤吹膜的生产、工艺技术和应用 (12)第一章基本原料介绍 (12)一、常用塑料包装材料简介 (12)二.粘合树脂的介绍(常用粘合性聚合物) (18)1、酸酐改性的乙烯-醋酸乙烯共聚物(简称EV A改性粘合树脂) (18)2、酸酐改性的线形低密度聚乙烯聚合物(简称LLDPE粘合树脂) (19)3、酸酐改性的聚丙烯聚合物(简称PP粘合树脂) (19)4、酸酐改性的高密度聚乙烯聚合物(简称HDPE粘合树脂) (19)5、乙烯和甲基丙烯酸酯的共聚物(主要用于涂布)略 (19)6、粘结性树脂的性能及其在共挤复合中的应用 (20)第三部分塑料原料名称中英文对照表 (21)第一部分软包装材料之---塑料薄膜基本知识一.软包装之薄膜的定义在国家包装通用术语(GB4122—83)中,软包装的定义为:软包装是指在充填或取出内装物后,容器形状可发生变化的包装。
用纸、铝箔、纤维、塑料薄膜以及它们的复合物所制成的各种袋、盒、套、包封等均为软包装。
一般将厚度在0.25mm以下的片状塑料称为薄膜。
塑料薄膜透明、柔韧,具有良好的耐水性、防潮性和阻气性、机械强度较好,化学性质稳定,耐油脂,易于印刷精美图文,可以热封制袋。
它能满足各种物品的包装要求,是用于包装易存、易放的方便食品,生活用品,超级市场的小包装商品的理想材料。
第一章 1.真空的定义及其度量单位 概念:利用外力将一定密闭空间内的气体分子移走,使该空间内的气压小于 1 个大气压,则该空间内的气体的物理状态就被称为真空。
真空,实际上指的是一种低压的、稀薄的气体状态。
目前标准大气压定义:0摄氏度时,水银密度13.59509g/cm 3, 重力加速度 980.665cm/s 2时,760 mm 水银柱所产生的压强为1标准大气压。
1atm=1.01*105Pa=760Torr=1.0133*106 微巴 低真空 105-102 气态空间近似为大气状态,分子以热运动为主,分子之间碰撞频繁。
低真空,可以获得压力差而不改变空间的性质。
中真空102-10-1 中真空,气体分子密度与大气状态有很大差别。
气体分子的流动从黏滞流状态向分子状态过渡,气体对流现象消失。
气体中带电离子在电场作用下, 产生气体导电现象。
(离子镀、溅射镀膜等气体放电和低温等离子体相关镀膜技术) 高真空10-1-10-5 容器中分子数很少,分子平均自由程大于一般容器的线度,分子流动为分子流,分子与容器壁碰撞为主,在此真空下蒸发材料,粒子将按直线飞行。
(拉制单晶、表面镀膜、电子管生产) 超高真空 10-5-10-9 气体分子数更少,几乎不存在分子间碰撞,此时气体分子在固体表面上是以吸附停留为主。
入射固体表面的分子数达到单分子层需要的时间也较长,可以获得纯净表面。
(薄膜沉积、表面分析…) 极高真空 《10-9 气体分子入射固体表面的频率已经很低,可以保持表面洁净。
适合分子尺寸加工及纳米科学的研究。
理想气体状态方程: 1. 最可几速率 讨论速度分布Tn P k =T m PV R M=M RT M RT m kT v m 41.122===2. 平均速率 计算分子运动平均距离 M RT M RT m kT v a 59.188===ππ2.每个气体分子在与其它气体分子连续2次碰撞之间运动经历的路程称为分子自由程。
第一部分软包装材料之---塑料薄膜基本知识1一.软包装之薄膜的定义1二.塑料阻透性技术介绍21.塑料的阻透性22.透过系数23.常用中高阻透性塑料的透过系数24.名词解释25.塑料阻透方式36.多层复合材料的阻透性公式:37.多层共挤出复合的方式38.国内外较普遍的阻透复合方式49.中、高阻隔复合材料的标准410、无菌包装的物理性能和机械性能指标4三、复合包装材料4四、多层复合技术6五、多层共挤复合高阻隔薄膜7七、常用的阻隔材料9八. 应用实例9十一、塑料的热封性11第二部分共挤吹膜的生产、工艺技术和应用12第一章基本原料介绍12一、常用塑料包装材料简介12二.粘合树脂的介绍(常用粘合性聚合物)181、酸酐改性的乙烯-醋酸乙烯共聚物(简称EVA改性粘合树脂)182、酸酐改性的线形低密度聚乙烯聚合物(简称LLDPE粘合树脂)183、酸酐改性的聚丙烯聚合物(简称PP粘合树脂)194、酸酐改性的高密度聚乙烯聚合物(简称HDPE粘合树脂)195、乙烯和甲基丙烯酸酯的共聚物(主要用于涂布)略196、粘结性树脂的性能及其在共挤复合中的应用19第三部分塑料原料名称中英文对照表20第一部分软包装材料之---塑料薄膜基本知识一.软包装之薄膜的定义在国家包装通用术语(GB4122—83)中,软包装的定义为:软包装是指在充填或取出内装物后,容器形状可发生变化的包装。
用纸、铝箔、纤维、塑料薄膜以及它们的复合物所制成的各种袋、盒、套、包封等均为软包装。
一般将厚度在0.25mm以下的片状塑料称为薄膜。
塑料薄膜透明、柔韧,具有良好的耐水性、防潮性和阻气性、机械强度较好,化学性质稳定,耐油脂,易于印刷精美图文,可以热封制袋。
它能满足各种物品的包装要求,是用于包装易存、易放的方便食品,生活用品,超级市场的小包装商品的理想材料。
以塑料薄膜为主的软包装印刷在包装印刷中占有重要地位。
据统计,从1980年以来,世界上一些先进国家的塑料包装占整个包装印刷的32.5%~44%。
光学薄膜复习要点第四章光学薄膜的制造工艺1.光学薄膜器件的质量要素光学性能:●膜层厚度d●膜层折射率n折射率误差的三个主要来源:------膜层的填充密度(聚集密度)------膜层的微观组织物理结构------膜层的化学成分机械性能:硬度:膜层材料的本身硬度和膜层内部的填充密度牢固度:是指膜层对于基底的附着力、黏结程度膜层与基底之间结合力的性质(范德华力、分子间作用力、经典吸引)成膜粒子的迁移能环境稳定性:希望薄膜器件的光学性能和机械性能在经历恶劣环境较长时间后仍然不变。
恶劣环境:盐水盐雾、高湿高温、高低温突变、全水浴半水浴、酸碱腐蚀提高方法:1.选用化学稳定性好的材料2.制作结构致密无缝可钻的膜层后果:1.结构致密:酸碱盐水对膜层的腐蚀为单一面腐蚀,速度慢,耐久性强2. 结构疏松:酸碱盐水对膜层的腐蚀是深入内部的体腐蚀,速度快,耐久性差。
填充密度:膜层的实际体积与膜层的几何体积之比。
后果:高的填充密度对应着优良的机械性能和光学性能的环境稳定性。
低:机械性能:膜层与基底之间吸附能小,膜层结构疏松牢固度差膜层表面粗糙,摩擦因数较大,抗摩擦损伤能力差非密封仪器内部,面腐蚀变为深入内部的体腐蚀光学性能:光线在粗糙表面散射损大空隙对环境气体的吸收导致膜层的有效光学厚度随环境、温度的变化而变化。
折射率不稳定。
提高膜层的填充密---基片温度、沉积速率、真空度、蒸汽入射角、离子轰击影响膜层质量的工艺要素:1.真空镀制光学薄膜的基本过程清洗零件---清洁真空室/装零件---抽真空和零件加温---膜厚仪调整---离子轰击---膜料预熔---镀膜---镀后处理---检测。
2.影响薄膜器件质量的工艺要素及其作用机理●真空度:影响折射率,散射,机械强度,不溶性后果:真空度低,使膜料蒸汽分子与剩余气体分子碰撞的几率增加,蒸汽分子的动能大大减小,与基片的吸附能间隙,从而导致沉积的膜层疏松,机械强度差,聚集密度低,化学成分不纯,膜层折射率,硬度变差。
膜组件名词解释
膜组件是一种复杂的机械结构,由多种材料,如塑料、绝缘套管、铝合金、机械元件等组成。
它们包含有气体管道、闸阀、液位计、温度回路等组件。
膜组件的功能由其结构和材料的组合决定。
它可以在不同的工况条件下,压力、温度、流量等参数发生变化时,帮助工程师精确控制和调节系统的运行。
膜组件是由一系列结构单元组成,如支架单元、发界单元、控制单元等。
支架单元是膜组件的基本结构,它由金属铸件、铝合金和玻璃钢等多种材料制成。
发界单元是膜组件的核心结构,它主要由内膜和外膜组成,它们之间有缝隙,用来夹住电路、气缸和电磁阀等调节部件。
控制单元是膜组件的基本元件,它可以根据系统运行状况,控制和调节发界单元的运行。
膜组件的功能可以充分发挥,只有当它能够在系统工况条件变化时迅速反应并调节时才可以。
其中,膜片起着非常重要的作用,膜片材料必须选择密度最大、有最好的耐疲劳性、耐腐蚀性特性的材料,例如橡胶、聚四氟乙烯、丙烯酸等。
此外,膜组件的使用也受到环境的影响,如温度、湿度、压力等恶劣环境条件,如高温、高压、湿度高等环境条件也会影响膜组件的使用寿命和精度。
因此,在使用膜组件时,必须注意在规定的环境条件下使用,以保证系统的正常工作。
总之,膜组件是一种复杂的机械结构,它由多种材料和结构构成,能够在不同的工况条件下,精确控制和调节系统的运行。
而膜片材料、
环境条件,以及调节元件的正确安装也是保证膜组件正常运行的关键因素。
膜的基础知识一、膜技术概述:膜过程是一门新兴的多种学科交叉的新技术,已经成为工业上气体分离、水溶液分离、化学产品和生化产品的分离与纯化的重要过程,广泛应用于食品、饮料加工、水处理、大规模空气分离、湿法冶金技术、气体和液体燃料的生产以及石油化工制品生产等。
膜从广义上讲可以定义为两相之间的一个不连续区间,它可以是固相,液相,甚至气相的。
从分离的意义上来讲,膜可以定义为: Membranes are thin barriers across which physical and/or chemical gradients can be established to produce differential flows of one or more components 。
大多数的分离膜都是固体膜,目前,无论是从产量、产值、品种、功能或是应用对象上来讲,固体膜都占 99% 以上,其中尤以有机高分子聚合物材料制备成的膜和其过程为主。
无机膜近年来发展迅速。
液膜也有其特点,但尚待发展。
物质选择透过膜的推动力可分为两类:一是外界能量,物质发生由低位到高位的转移;二是化学位差,物质由高位向低位转移。
膜分离过程的特点:高效;能耗(功耗)低;膜分离设备操作维护方便,运行稳定;规模和处理能力范围很大。
二、膜材料与膜组件1.膜材料及分类具有分离功能的固体膜目前主要以有机高分子聚合物为膜材料。
以无机膜为膜材料的分离膜近年来发展迅速。
膜的分类主要有四种方法:膜的分类主要有四种方法按膜的结构分类按膜的用途分类按膜的作用机理分类天然膜多孔膜气相系统中用膜吸附性膜合成膜微孔介质气 - 液系统中用膜扩散性膜无机膜大孔膜液 - 液系统用膜离子交换膜高分子膜非多孔膜气 - 固系统用膜选择渗透膜无机膜液 - 固系统用膜非选择性膜聚合物膜固 - 固系统用膜液膜2.膜组件膜面积愈大,单位时间透过量愈多,因此,当膜分离技术实际应用时,要求开发在单位体积内具有最大膜面积的组件。
膜材基础知识膜材是指膜结构工程中所使用的材料,由高强度的织物基材和聚合物涂层构成的复合材料。
以下是由店铺整理关于膜材知识的内容,希望大家喜欢!膜材材料组成1.醋酸纤维素: 醋酸纤维素(CA)膜是由二醋酸纤维素和三醋酸纤维素的铸膜液及二者混合物浇铸而成。
随着乙酰基含量的增加,盐截留率与化学稳定性增加而水通量下降。
Loeb-Sourirajan 不对称结构是使用一“医用刮刀”(“doctor blade”)把CA、乙醇或乙醚溶液浇铸在一多孔基片(如帆布)上,表面经空气干燥产生一薄皮层而形成。
在较大孔层之上的致密表皮是由约0.2μm厚的薄层组成,膜的总厚度约100μm.该技术也可用于管状的和中空纤维状膜的浇铸。
CA膜的化学稳定性差,在运转期间会发生水解, 其水解速度与温度及pH条件有关。
醋酸纤维素膜可在温度0~30℃及pH值4.0~6.5下连续操作。
这些东丽膜产品也会被生物侵蚀, 但由于它们具有可连续暴露在低含氯量环境下的能力,故可以消除生物侵蚀。
膜稳定性差的结果导致膜截留率随操作时间增长而下降。
然而, 这些材料的普及是由于它们具备广泛的来源和低廉的价格。
2.芳香聚酰胺:不对称芳香聚酰胺(Aramid)膜(Richter和Hoehn 1971)以中空纤维形式为所首创。
这些纤维是由溶液纺丝而成。
由控制纺丝液溶剂的蒸发在纤维外表面形成约0.1~1.0μm的致密表皮层。
余下的纤维结构是约26μm厚的一层多孔支撑结构。
盐的截流作用发生在致密层。
为了进一步提高截留性能,当中空纤维膜用于苦咸水脱盐时,对膜采用聚乙烯基甲基醚(PT-A)进行后处理,用于海水脱盐则用PT-A与鞣酸(PT-A)作后处理。
与纤维素膜相比,芳香聚酰胺膜的特点是具有优良的化学稳定性。
它们能在温度0~30℃ pH4~11件连续操作,且不会被生物侵蚀。
然而芳香聚酰胺膜若连续暴露在含氯环境中,则易受氯侵蚀,因此,对他们处理的进料液进行脱氯是重要的。
膜元件的保存方法
膜元件的保存方法主要包括以下几点:
1. 膜元件必须一直保持在湿润状态,以防止干燥导致膜元件性能下降。
2. 膜元件最好保存在5~10℃的低温下,以防止温度过高导致膜元件损坏。
在温度超过10℃的环境中保存时,应选择通风良好的场所,并避免阳光直射。
同时,保存温度不应超过35℃,以免损坏膜元件。
3. 如果膜元件发生冻结,会导致物理破损,因此应采取保温措施,避免冻结。
4. 堆放膜元件时,包装箱不要超过5层,并要确保纸箱保持干燥。
5. 对于旧膜元件,应将其保存在阴暗的场所,保存温度不要超过35℃,并
避免阳光直射。
当温度低于0℃时,应采取防冻结措施。
如果需要保存的膜元件进行重新包装,其保存条件应与新的膜元件一致。
总的来说,膜元件的保存方法需要特别注意温度和湿度的控制,以及防止阳光直射和物理损伤。
以上信息仅供参考,如有需要,建议咨询专业人士。
膜元件结构设计-概述说明以及解释1.引言1.1 概述概述部分的内容可以从以下方面展开:膜元件是一种关键性的结构,广泛应用于各种工业领域中,如化工、环境工程、食品饮料等。
膜元件的设计对于膜分离技术的有效应用至关重要。
膜元件是膜分离过程中的核心组成部分,它能够通过选择性地分离液体或气体的成分,实现物质的分离和纯化。
相较于传统的分离方法,膜分离具有操作简便、投资费用低、节能环保等优势。
随着科学技术的进步,膜分离领域的研究也不断发展。
膜元件的结构设计作为膜分离技术的重要环节,不仅需要考虑膜的选择和性能,还需要关注膜元件的结构参数和设计原则。
膜元件的结构设计主要包括膜材料的选择、膜形状的确定、膜尺寸的合理配置等方面。
膜材料的选择需要考虑其分离性能、耐腐蚀性、机械强度等因素。
膜形状的确定需要根据具体的分离要求来选择,一般常见的膜形状有螺旋型、平板型、中空纤维型等。
膜尺寸的合理配置对于膜分离的效果和经济性具有重要影响,需要综合考虑通量、分离效果以及生产成本等因素。
通过合理的膜元件结构设计,可以提高膜分离的效率和稳定性,降低生产成本,实现工业化应用的可行性。
因此,研究和优化膜元件的结构设计具有重要的理论和实际意义。
本文将重点探讨膜元件结构设计的要点和原则,并结合实际案例进行分析和讨论。
希望通过本文的探讨,能够为膜分离技术的研究和应用提供一定的理论依据和实践指导。
1.2 文章结构文章结构部分的内容:本文将按照以下结构来进行介绍和讨论膜元件结构设计。
首先,在引言部分,我们将对膜元件结构设计的背景和意义进行概述,并介绍整篇文章的结构。
接着,在正文部分,我们将详细探讨膜元件的定义和作用,阐述膜元件结构设计的重要性和要点。
最后,在结论部分,我们将对整篇文章进行总结,并对未来膜元件结构设计的发展进行展望。
通过这样的结构布局,我们希望能够全面深入地探讨膜元件结构设计的相关问题,为相关领域的研究和应用提供一定的指导和借鉴。
目的部分的内容可以按照以下方式编写:1.3 目的本文的主要目的是探讨膜元件结构设计的重要性以及设计要点。