OSPF协议配置的主要命令
- 格式:doc
- 大小:45.50 KB
- 文档页数:4
华为ospf配置命令_【总结】:华为、H3C、锐捷三家交换机配置命令详解【转】⼀直以来,对于华为、H3C、锐捷交换机的命令配置,不断的有朋友留⾔,三家交换机的配置命令容易弄混,经常在实际项⽬配置中出错,因此,本期我们将来介绍这三家交换机的基础配置命令,⼤家可以分别来看下他们的命令有什么不同。
为了让⼤家更加清楚,每⾏代码都有解释。
⼀、华为交换机基础配置命令1、创建vlan://⽤户视图,也就是在Quidway模式下运⾏命令。
system-view //进⼊配置视图[Quidway] vlan 10 //创建vlan 10,并进⼊vlan10配置视图,如果vlan10存在就直接进⼊vlan10配置视图[Quidway-vlan10] quit //回到配置视图[Quidway] vlan 100 //创建vlan 100,并进⼊vlan100配置视图,如果vlan10存在就直接进⼊vlan100配置视图[Quidway-vlan100] quit //回到配置视图2、将端⼝加⼊到vlan中:[Quidway] interface GigabitEthernet2/0/1 (10G光⼝)[Quidway- GigabitEthernet2/0/1] port link-type access //定义端⼝传输模式[Quidway- GigabitEthernet2/0/1] port default vlan 100 //将端⼝加⼊vlan100[Quidway- GigabitEthernet2/0/1] quit //回到配置视图[Quidway] interface GigabitEthernet1/0/0 //进⼊1号插槽上的第⼀个千兆⽹⼝配置视图中。
0代表1号⼝[Quidway- GigabitEthernet1/0/0] port link-type access //定义端⼝传输模式[Quidway- GigabitEthernet2/0/1] port default vlan 10 //将这个端⼝加⼊到vlan10中[Quidway- GigabitEthernet2/0/1] quit 3、将多个端⼝加⼊到VLAN中system-view[Quidway]vlan 10[Quidway-vlan10]port GigabitEthernet 1/0/0 to 1/0/29 //将0到29号⼝加⼊到vlan10中[Quidway-vlan10]quit4、交换机配置IP地址[Quidway] interface Vlanif100 // 进⼊vlan100接⼝视图与vlan 100命令进⼊的地⽅不同[Quidway-Vlanif100] ip address 119.167.200.90 255.255.255.252 // 定义vlan100管理IP三层交换⽹关路由[Quidway-Vlanif100] quit //返回视图[Quidway] interface Vlanif10 // 进⼊vlan10接⼝视图与vlan 10命令进⼊的地⽅不同[Quidway-Vlanif10] ip address 119.167.206.129 255.255.255.128 // 定义vlan10管理IP三层交换⽹关路由[Quidway-Vlanif10] quit5、配置默认⽹关:[Quidway]ip route-static 0.0.0.0 0.0.0.0 119.167.200.89 //配置默认⽹关。
H3C路由器OSPF命令一、OSPF概述1.1 OSPF简介1.2 OSPF特点1.3 OSPF网络拓扑类型二、OSPF基础配置2.1 创建OSPF进程2.2 配置路由器ID2.3 配置网络类型2.4 配置区域范围2.5 OSPF接口配置三、OSPF高级配置3.1 OSPF区域间路由器互联3.1.1 配置虚拟链路3.1.2 配置区域边界路由器3.2 OSPF路由策略3.2.1 配置路由过滤3.2.2 配置路由重分布3.3 OSPF特殊功能3.3.1 配置OSPF路由汇总3.3.2 配置OSPF默认路由四、故障排除与监控4.1 OSPF邻居关系4.1.1 OSPF邻居状态4.1.2 OSPF邻居关系异常排查 4.2 OSPF路由表4.2.1 OSPF路由表查看4.2.2 OSPF路由异常排查五、命令参考5.1 OSPF基本命令5.2 OSPF高级命令5.3 OSPF调试命令六、附录6.1 OSPF常见问题解答6.2 OSPF配置示例6.3 OSPF相关资料本文档涉及附件:附件1:OSPF配置示例文件本文所涉及的法律名词及注释:1、OSPF:开放最短路径优先(Open Shortest Path First),是一种基于链路状态的内部网关协议(IGP)。
它通过收集并传播拓扑信息,计算出最短路径,实现路由选择。
2、路由器ID:路由器在同一AS内的唯一标识符,通常通过路由器本地地质或配置指定。
3、网络类型:定义OSPF连接方式的参数,包括点对点、广播、非广播多点、虚拟连接等。
4、区域范围:指定OSPF区域ID的范围。
5、OSPF接口配置:为每个接口指定OSPF相关参数,如区域ID、Hello间隔、认证等。
6、OSPF区域间路由器互联:不同区域的OSPF路由器之间建立互联,通常使用虚拟链路或区域边界路由器实现。
7、路由过滤:通过配置ACL或路由策略控制OSPF路由信息的传播和接收。
8、路由重分布:将其他路由协议的路由信息导入到OSPF 中,实现不同协议间的互联互通。
H3C OSPFv3配置命令(V150104)版本说明目录版本说明 (2)目录 (2)abr-summary (4)area (4)default cost (5)default-cost (5)display ospfv3 (6)display ospfv3 interface (8)display ospfv3 lsdb (9)display ospfv3 lsdb statistic (11)display ospfv3 next-hop (12)display ospfv3 peer (13)display ospfv3 peer statistic (15)display ospfv3 request-list (16)display ospfv3 retrans-list (17)display ospfv3 routing (19)display ospfv3 statistic (20)display ospfv3 topology (21)display ospfv3 vlink (22)filter-policy export (23)filter-policy import (24)import-route (25)log-peer-change (26)maximum load-balancing (26)ospfv3 (27)ospfv3 area (27)ospfv3 cost (28)ospfv3 dr-priority (28)ospfv3 mtu-ignore (29)ospfv3 timer dead (30)ospfv3 timer hello (30)ospfv3 timer retransmit (31)ospfv3 trans-delay (31)preference (32)router-id (33)silent-interface (33)spf timers (34)stub (35)vlink-peer (35)abr-summary【命令】abr-summary ipv6-address prefix-length [ not-advertise ]undo abr-summary ipv6-address prefix-length【视图】OSPFv3区域视图【参数】ipv6-address:聚合路由的目的IPv6地址。
任务说明网络拓扑witch>enSwitch#conf tSwitch(config)#hostname S1S1(config)#vlan 11S1(config-vlan)#exitS1(config)#vlan 12S1(config-vlan)#exitS1(config)#interface range fa 0/1-12 S1(config-if)#switchport access vlan 11 S1(config-if)#exitS1(config)#interface range fa 0/13-20 S1(config-if)#switchport access vlan 12 S1(config-if)#exitS1(config)#interface fa 0/24S1(config-if)#switchport mode trunk S1(config-if)#exitS1(config)#endswitch>enSwitch#conf tSwitch(config)#hostname S2S2config)#vlan 21S2(config-vlan)#exitS2(config)#vlan 22S2(config-vlan)#exitS2config)#interface range fa 0/1-12S2(config-if)#switchport access vlan 21 S2(config-if)#exitS2(config)#interface range fa 0/13-20 S2(config-if)#switchport access vlan 22 S2(config-if)#exitS2(config)#interface fa 0/24S2(config-if)#switchport mode trunk S2(config-if)#exitS2(config)#endR3配置Continue with configuration dialog? [yes/no]: nPress RETURN to get started!Router>enRouter#conf tRouter(config)#hostname R3R3(config)#interface fastEthernet 0/0R3(config-if)#no shutdownR3(config)#interface fastEthernet 0/0.1 // 配置子接口R3(config-subif)#encapsulation dot1Q 11 //在路由器上配置trunk的封装协议R3(config-subif)#ip address 172.20.11.254 255.255.255.0R3(config-subif)#exitR3(config)#interface fastEthernet 0/0.2 // 配置子接口R3(config-subif)#encapsulation dot1Q 12 //在路由器上配置trunk的封装协议R3(config-subif)#ip address 172.20.12.254 255.255.255.0R3(config-subif)#endR3(config)#interface fastEthernet 0/1R3(config-if)#no shutdownR3(config-if)#ip address 172.16.100.2 255.255.255.252 R3(config-if)#exitR3#conf tR3(config)#router ospf 1R3(config-router)#network 172.20.11.0 0.0.0.255 area 0 R3(config-router)#network 172.20.12.0 0.0.0.255 area 0 R3(config-router)#network 172.16.100.0 0.0.0.3 area 0 R3(config-router)#endR4配置Continue with configuration dialog? [yes/no]: n Press RETURN to get started!Router>enRouter#conf tRouter(config)#hostname R4R4(config)#interface fastEthernet 0/0R4(config-if)#no shutdownR4(config)#interface fastEthernet 0/0.1 // 配置子接口R4(config-subif)#encapsulation dot1Q 21 //在路由器上配置trunk的封装协议R4(config-subif)#ip address 172.20.21.254 255.255.255.0R4(config-subif)#exitR4(config)#interface fastEthernet 0/0.2 // 配置子接口R4(config-subif)#encapsulation dot1Q 22 //在路由器上配置trunk的封装协议R4(config-subif)#ip address 172.20.22.254 255.255.255.0R4(config-subif)#endR4(config)#interface fastEthernet 0/1R4(config-if)#no shutdownR4(config-if)#ip address 172.16.100.6 255.255.255.252R4(config-if)#exitR4(config)#router ospf 1R4(config-router)#network 172.20.21.0 0.0.0.255 area 0R4(config-router)#network 172.20.22.0 0.0.0.255 area 0R4(config-router)#network 172.16.100.4 0.0.0.255 area 0R4(config-router)#endR2配置Router>enRouter#conf tRouter(config)#hostname R2R2(config)#interface fastEthernet 0/0R2(config-if)#ip address 172.16.100.1 255.255.255.252 R2(config-if)#no shutdownR2(config-if)#exitR2(config)# interface fastEthernet 0/1R2(config-if)#no shutdownR2(config-if)#ip address 172.16.100.5 255.255.255.252 R2(config-if)#exitR2(config)# router ospf 1R2(config-router)#network 172.16.100.0 0.0.0.3 area 0 R2(config-router)#network 172.16.100.4 0.0.0.3 area 0 R1(config-router)#end。
设置接⼝的络类型。
no ip ospf network-type取消设置。
[ no ] ip ospf network-type { nonbroadcast | point_to_multipoint }【参数说明】nonbroadcast设置接⼝的络类型为⾮⼴播NBMA类型。
point_to_multipoint设置接⼝的络类型为点到多点。
【命令模式】接⼝配置模式【使⽤指南】在没有多址访问能⼒的⼴播上,应该将接⼝配置成NBMA⽅式。
当⼀个NBMA络中,不能保证任意两台路由器之间都是直接可达的话,应将络设置为点到多点的⽅式。
【举例】配置接⼝Serial0为⾮⼴播NBMA类型。
Quidway(config-if-Serial0)#ip ospf network-type nonbroadcast【相关命令】14. ip ospf neighborip ospf pollinterval在NBMA和点到多点接⼝上配置发送轮询HELLO报⽂的时间间隔,no ip ospf pollinterval命令恢复为缺省值。
ip ospf pollinterval timeno ip ospf pollinterval【参数说明】time为发送轮询HELLO报⽂的时间间隔,以秒为单位,合法的范围是0~65535。
【缺省情况】接⼝缺省发送轮询HELLO报⽂的时间间隔为120秒。
【命令模式】接⼝配置模式【使⽤指南】在NBMA和点到多点络中,当⼀台路由器的邻居⼀直没有响应时(时间间隔超过了dead-interval ),仍然有必要继续发送HELLO 报⽂,但发送的频率要降低为以pollinterval的频率发送。
所以pollinterval要远⼤于hello-interval的值,⾄少为两分钟(120秒)。
通过配置轮询间隔以指定该接⼝在与相邻路由器构成邻接关系之前发送轮询HELLO报⽂的时间周期。
【举例】在接⼝Serial0上配置发送轮询HELLO报⽂的时间间隔为130秒。
1.实验目的1.掌握OSPF协议的基本原理和配置;2.熟悉DR的选举原理和配置;3.了解多区域OSPF的原理和配置;4.尝试根据协议原理设计实验过程;5.利用现有的链接完成图示的物理链接2.实验环境(软件条件、硬件条件等)3台MSR3040路由器、一台MSR5060路由器、3台S3610交换机、12台pc;3.实验原理与方法(架构图、流程图等)【OSPF协议】OSPF(Open Shortest Path First开放式最短路径优先)[1]是一个内部网关协议(Interior Gateway Protocol,简称IGP),用于在单一自治系统(autonomous system,AS)内决策路由。
OSPF路由协议是一种典型的链路状态(Link-state)的路由协议,一般用于同一个路由域内。
在这里,路由域是指一个自治系统(Autonomous System),即AS,它是指一组通过统一的路由政策或路由协议互相交换路由信息的网络。
在这个AS中,所有的OSPF路由器都维护一个相同的描述这个AS结构的数据库,该数据库中存放的是路由域中相应链路的状态信息,OSPF路由器正是通过这个数据库计算出其OSPF路由表的。
作为一种链路状态的路由协议,OSPF将链路状态广播数据包LSA(Link State Advertisement)传送给在某一区域内的所有路由器,这一点与距离矢量路由协议不同。
运行距离矢量路由协议的路由器是将部分或全部的路由表传递给与其相邻的路由器。
【OSPF邻居关系】邻接关系建立的4个阶段:1.邻居发现阶段2.双向通信阶段:Hello报文都列出了对方的RID,则BC完成.3.数据库同步阶段:4.完全邻接阶段: full adjacency邻居关系的建立和维持都是靠Hello包完成的,在一般的网络类型中,Hello包是每经过1个HelloInterval发送一次,有1个例外:在NBMA网络中,路由器每经过一个PollInterval 周期发送Hello包给状态为down的邻居(其他类型的网络是不会把Hello包发送给状态为down的路由器的).Cisco路由器上PollInterval默认60s Hello Packet以组播的方式发送给224.0.0.5,在NBMA类型,点到多点和虚链路类型网络,以单播发送给邻居路由器。
OSPF配置命令1.router ospf启动OSPF路由协议进程并进入OSPF配置模式。
若进程已经启动,则该命令的作用就是进入OSPF配置模式。
2.network address mask area area-id配置OSPF运行的接口并指定这些接口所在的区域ID。
OSPF路由协议进程将对每一个network配置,搜索落入address mask范围(可以是无类别的网段)的接口,然后将这些接口信息放入OSPF链路状态信息数据库相应的area-id 中。
OSPF协议交互的是链路状态信息而不是具体路由信息。
OSPF路由是对链路状态信息数据库调用SPF算法计算出来的。
area-id为0的区域为主干区,一个OSPF域内只能有一个主干区。
其他区域维护各自的链路状态信息数据库,非0区域之间的链路状态信息交互必须经过主干区。
同时位于两个区域的路由器称为区域边界路由器,即ABR。
ABR是非0区域的路由出口,在ABR上一般有一个非0区域和一个主干区域的链路状态信息数据库,两个数据库之间交互区域间的链路状态信息。
3.area area-id range address mask{advertise|no-advertise}该命令用于在ABR上将某区域的路由聚合后通告进另一区域,目的是减小路由表的大小。
address mask表示聚合的范围(可以是无类别的网段)。
如果是advertise,落入这一范围的路由将被聚合成一条address mask的路由通告出去,而那些具体路由将不被通告;如果是no-advertise,落入这一范围的路由将不会被通告也不会被聚合后通告。
4.redistribute protocol[metric number][metric-type {1|2}]将非OSPF协议的路由信息重分配进OSPF。
protocol为重分配的路由源,可以是connected、static、rip和bgp。
metric number为被重分配路由的外部度量值,可选项。
华为OSPF配置命令详解网络技术2009-07-11 15:22:36 阅读946 评论0 字号:大中小订阅【命令】ospf network-type { broadcast | nbma | p2mp | p2p }undo ospf network-type { broadcast | nbma | p2mp | p2p }【视图】接口视图【参数】broadcast:设置接口网络类型为广播类型。
nbma:设置接口网络类型为NBMA 类型。
p2mp:设置接口网络类型为点到多点。
p2p:设置接口网络类型为点到点。
【描述】ospf network-type 命令用来设置OSPF 接口网络类型,undo ospfnetwork-type 命令用来删除接口指定的网络类型。
需要注意的是:当接口被配置为新的网络类型后,原接口网络类型将自动取消。
【举例】# 配置接口Serial0 为NBMA 类型。
[Quidway-Serial0] ospf network-type nbma【命令】ospf peer ip-address [ eligible ]undo ospf peer ip-address【视图】接口视图【参数】ip-address:NBMA、点到点和点到多点接口的相邻路由器的IP 地址。
eligible:表明该邻居具有选举权。
【描述】ospf peer 命令用来设定对端路由器IP 地址。
undo ospfpeer 命令用来取消对端路由器IP 地址的设定。
缺省情况下,不设定任何对端路由器IP 地址。
对于NBMA 网络,如X.25 或帧中继等不支持广播方式的网络上,还需要进行一些特殊的配置。
由于无法通过广播Hello 报文的形式发现相邻路由器,必须手工为该接口指定相邻路由器的IP 地址,以及该相邻路由器是否有选举权等,若未指定eligible 关键字时,就认为该相邻路由器没有选举权。
【举例】# 配置接口Serial0 的相邻路由器IP 地址为10.1.1.4。
OSPF协议总结(完整版)OSPF的五个包:1. Hello: 9项内容,4个必要2. DBD:数据库描述数据包(主要描述始发路由器数据库中的一些或者全部LSA 信息),主要包括接口的MTU,主从位MS,数据库描述序列号等);3. LSR:链路状态请求数据包(查看收到的LSA是否在自己的数据库,或是更新的LSA,如果是将向邻居发送请求);4. LSU :链路状态更新数据包(用于LSA的泛洪扩散和发送LSA去响应链路状态请求数据包);5. LSACK :链路状态确认数据包(用来进行LSA可靠的泛洪扩散,即对可靠包的确认)。
Hello包作用:1 .发现邻居;2. 建立邻居关系;3. 维持邻居关系;4. 选举DR,BDR5. 确保双向通信。
Hello包所包含的内容:注:1.“ * ”部分全部匹配才能建立邻居关系。
2. 邻居关系为FULL状态;而邻接关系是处于TWO-WAY状态。
Hello时间间隔:在点对点网络与广播网络中为10秒;在NBMA网络与点对多点网络中为30秒。
注:保持时间为hello时间4倍虚电路传送的LSA为DNA,时间抑制,永不老化.OSPF的组播地址:DR将使用组播地址224.0.0.5泛洪扩散更新的数据包到DRothersDRothers使用组播地址224.0.0.6发送更新数据包组播的MAC 地址分别为:0100.5E00.0005 0100.5E00.0006OSPF的包头格式:| 版本| 类型| 长度| 路由器ID | 区域ID | 验证和| 验证类型| 验证| 数据|| 1 byte | 1 | 2 | 4 | 4 | 2 | 2 | 8 | variance |OSPF 支持的验证类型:OSPF 支持明文和md5 认证,用Sniffer 抓包看到明文验证的代码是“ 1”,md5 验证的代码是“ 2”。
OSPF 支持的网络类型:1.广播2.非广播3.点对点(若MTU 不匹配将停留在EX-START 状态)4.点对多点5.虚电路(虚电路的网络类型是点对点)虚链路必须配置在ABR上,虚链路的配置使用的命令是area transit-area-id virtual-link router-id 虚链路的Metric 等同于所经过的全部链路开销之和DR /BDR 选举:1.优先级(0~255; 0 代表不参加选举;默认为1);2.比较Router-id。
华为OSPF协议基本配置OSPF(Open Shortest Path First)是一种链路状态路由协议,常用于大型网络中的内部网关协议(IGP)。
华为设备支持OSPF协议,并提供丰富的配置选项来进行基本的OSPF协议配置。
1. 配置路由器ID(Router ID):在OSPF协议中,每个路由器都需要一个唯一的路由器ID来标识自己。
华为设备可以使用以下命令配置路由器ID:```[RouterA] ospf router-id 1.1.1.1```2. 配置区域(Area):OSPF使用区域的概念来实现路由器的分层结构,不同区域之间的通信需要经过区域边界路由器(ABR)或自治系统边界路由器(ASBR)。
华为设备可以使用以下命令配置区域:```[RouterA] ospf area 0```3.配置接口:在OSPF中,需要将路由器的接口添加到相应的区域中,以便进行邻居关系的建立和路由信息的交换。
华为设备可以使用以下命令将接口添加到OSPF中:```[RouterA] interface GigabitEthernet 0/0/1[RouterA-GigabitEthernet0/0/1] ospf enable[RouterA-GigabitEthernet0/0/1] ospf area 0```4. 配置路由汇总(Route Summarization):OSPF允许在ABR或ASBR上进行路由汇总,以减少网络中的路由表项数量和路由信息的传输量。
华为设备可以使用以下命令配置路由汇总:```[RouterA] ospf abr-summary 10.0.0.0 255.0.0.0```5. 配置路由过滤(Route Filtering):OSPF允许在路由器上对路由进行筛选,以控制路由的学习和传播。
华为设备可以使用以下命令配置路由过滤:```[RouterA] ospf distribute-list export prefix-list PREFIX-LIST-OUT[RouterA] ospf distribute-list import prefix-list PREFIX-LIST-IN```6. 配置路由聚合(Route Aggregation):OSPF允许在路由器上对多个具有相同前缀的路由进行聚合,以减少路由表项的数量和路由信息的传输量。
思科路由器OSPF协议配置命令大全1.default redistribute cost配置引入外部路由时缺省的花费值,no default redistribute cost命令取消配置。
default redistribute cost costno default redistribute cost【参数说明】cost为花费值,范围1~65535之间的整数。
【命令模式】OSPF协议配置模式【使用指南】在OSPF将路由器上其它路由协议发现的路由引入作为自己的自治系统外部路由信息时,还需要一些额外的参数,包括:路由的缺省花费和缺省的标记等。
【举例】配置OSPF引入外部路由时缺省的花费值为10。
Quidway(config-router-ospf)#default redistribute cost 10【相关命令】default redistribute tagdefault redistribute type2. default redistribute interval配置OSPF引入外部路由的时间间隔,no default redistribute interval命令恢复缺省值。
default redistribute interval timeno default redistribute interval【参数说明】time为引入外部路由的时间间隔,以秒为单位,范围1~65535之间的整数。
【缺省情况】OSPF引入外部路由的时间间隔缺省为1秒。
【命令模式】OSPF协议配置模式【使用指南】由于OSPF总是要不停的引入外部的路由信息并将它们传播到整个自治系统中去,因此,有必要规定协议引入外部路由的时间间隔。
【举例】指定OSPF引入外部路由的时间间隔为2秒。
Quidway(config-router-ospf)#default redistribute interval 2【相关命令】default istribute limit3. default redistribute limit配置OSPF可引入路由数量的上限,no default redistribute limit命令恢复缺省值。
华为技术命令(五)ospf配置命令配置命令【命令】abr-summary ip-address mask mask area area-id [ advertise |ITnotadvertise ]undo abr-summary address mask mask area area-id【视图】OSPF 视图【参数】ip-address 和mask:为网络IP 地址和掩码,点分十进制格式。
area-id:为区域号。
advertise:将到这一聚合网段路由的摘要信息广播出去。
notadvertise:不将到这一聚合网段路由的摘要信息广播出去。
【描述】abr-summary area 命令用来配置OSFP区域间路由聚合,undoITabr-summary area 命令用来取消区域间路由聚合。
缺省情况下,对区域间的路由不进行聚合。
需要注意的是:路由聚合功能只有在ABR 上配置才会生效。
【举例】# 定义聚合网段10.0.0.0 255.0.0.0 加入到区域2 中。
[Quidway-ospf] abr-summary 10.0.0.0 mask 255.0.0.0 area 2【命令】debugging ospf { event | packet [ ack | dd | hello | request | update ] |网络,技术, lsa | spf } undo debugging ospf { event | packet [ ack | dd | hello | request |update ] | lsa | spf }【视图】所有视图【参数】event:打开OSPF 事件信息调试开关lsa:打开OSPF LSA报文信息调试开关。
spf:打开OSPF 最小树计算信息调试开关。
packet:打开OSPF 报文信息调试开关。
ack:打开OSPF 响应报文信息调试开关。
dd:打开OSPF 数据描述报文信息调试开关。
路由器OSPF协议配置命令
1、核心路由器(CE)的配置过程
首先,定义OSPF区域编号(Area ID)和进程ID(Process ID)。
在Router OSPF下配置进程ID(Process ID)和区域编号(Area ID):
router ospf 1
router-id x.x.x.x
其中x.x.x.x代表核心路由器(CE)的全球唯一性IP地址。
接下来,在每个接口(Interface)下输入如下指令:
其中x/x代表接口的IP地址,x代表进程ID(Process ID),x代表区域编号(Area ID)。
再接着,带有静态路由(Static Route)的接口下添加路径(Route):
其中x.x.x.x代表路由表(Routing Table)中带有路由(Route)的IP地址,
x.x.x.x代表COST。
最后,确认路由更新是否能够通过OSPF区域(OSPF Area)进行传输:
# 配置FTP服务器
ip classless
ospf network point-to-multipoint
注意:不要忘记开启OSPF路由(OSPF routing)功能。
igp路由优先的配置命令
在配置IGP(Interior Gateway Protocol)路由时,常见的协议包括OSPF(Open Shortest Path First)和EIGRP(Enhanced Interior Gateway Routing Protocol)。
下面我将分别列出它们的路由优先配置命令。
对于OSPF协议,可以使用以下命令进行路由优先的配置:
1. 在进入OSPF进程配置模式后,使用命令"auto-cost reference-bandwidth"来设置参考带宽,该命令会影响路由优先的计算。
2. 可以使用"ip ospf cost"命令手动设置路由的成本,从而影响路由的优先级。
对于EIGRP协议,可以使用以下命令进行路由优先的配置:
1. 在进入EIGRP进程配置模式后,使用命令"metric weights"来设置各种参数的权重,从而影响路由优先的计算。
2. 可以使用"ip bandwidth-percent eigrp"命令来设置EIGRP 路由所能使用的带宽百分比,也可以通过"delay"命令手动设置路由的延迟,从而影响路由的优先级。
需要注意的是,以上提到的命令只是在配置过程中的一部分,实际的配置可能还涉及到网络拓扑、接口状态等其他因素。
在实际操作中,还需要根据具体网络环境和需求来选择合适的路由优先配置命令,并进行相应的测试和验证。
OSPF(开放式最短路径优先协议)是一种基于链路状态的路由协议,用于实现大型的企业网络中的路由。
本文将介绍如何配置OSPF。
1. 配置OSPF进程
在每个运行OSPF的路由器上配置OSPF进程。
进入路由器的配置模式并输入以下命令:
Router(config)# router ospf process-id
将process-id替换为一个整数值,可以是任何数字,但它应该在整个网络中唯一。
2. 配置区域
将每个路由器分配到一个或多个区域中。
在路由器上,进入配置模式并输入以下命令:
Router(config-router)# area area-id
将area-id替换为一个数字,可以是任何数字,但应该在整个网络中唯一。
3. 配置网络
在每个路由器上,配置与OSPF连接的每个网络。
Router(config-router)# network network-address wildcard-mask area area-id
将network-address替换为网络地址,wildcard-mask替换为反掩码,area-id替换为路由器所在区域的ID。
4. 确认配置
输入以下命令以确认OSPF配置:
Router# show ip protocols
Router# show ip ospf neighbor
使用这些命令可以查看OSPF协议的状态,以及与其他OSPF路由器的领域关系。
以上是配置OSPF的基本步骤。
但在实际操作时,需要考虑到网络的规模和层级结构,以便更好地组织和管理网络。
OSPF 开放式最短路径优先算法Open Shortest Path First(OSPF将时间和距离的资源最优化,这种最优化的结果就是速度的最优化,每个时间片和时系分隔中总有空隙的路径资源存在,使得空隙路径资源被最大化的利用,如果能够将此算法用于“智能交通管理”中,那将是一大突破)(参见:OSPF 开放式最短路径优先算法Open Shortest Path First) 1.router ospf<ProcessID>启动OSPF路由协议进程并进入OSPF配置模式。
若进程已经启动,则该命令的作用就是进入OSPF配置模式。
其中Process ID(PID)是OSPF的进程号,它的范围是1~65535,ID 可以在指定的范围内随意设置,它只对本地路由器内部有意义,不同的路由器PID可以相同,也可以不同。
Router-test(config)#router ospf 10 //路由器启动ospf进程,进程号为102.network address wildmask area area-idNetwork ip<子网号><子网掩码的反码>area<区域号>配置OSPF运行的接口并指定这些接口所在的区域ID。
OSPF路由协议进程将对每一个network配置,搜索落入address wildmask范围(可以是无类别的网段)的接口,然后将这些接口信息放入OSPF链路状态信息数据库相应的area-id中。
(OSPF的SPF 要覆盖全网络的路径,所以使用wildmask,而RIP的V_D只是一个很小的局部范围,因此不能使用wildmask 进行覆盖,其中子网掩码的反码的计算方法为,将子网掩码表示成2进制,然后各位取反,再转换成10进制即可。
如:子网掩码:255.0.0.0的反码为0.255.255.255)OSPF协议交互的是链路状态信息而不是具体路由信息。
OSPF路由是对链路状态信息数据库调用SPF算法(参见:SPF算法)计算出来的。
area-id为0的区域为主干区,一个OSPF域内只能有一个主干区。
其他区域维护各自的链路状态信息数据库,非0区域之间的链路状态信息交互必须经过主干区。
同时位于两个区域的路由器称为区域边界路由器,即ABR。
ABR是非0区域的路由出口,在ABR上一般有一个非0区域和一个主干区域的链路状态信息数据库,两个数据库之间交互区域间的链路状态信息。
Router-test(config)#router ospf 10 //路由器启动ospf进程,进程号为10Router-test(config-router)#network 192.168.1.0 0.0.0.255 area 0 //将192.168.1.0定义为参与OSPF的网络,OSPF覆盖全网设备,设置OSPF主区域号为0Router-test(config-router)#exit //从OSPF协议配置模式退到全局配置模式Router-test(config)#exit //从全局配置模式退到特权用户模式Router-test#_ //路由器处于特权用户模式配置单个IP地址参与OSPFRouter-test(config)#router ospf 10 //路由器启动ospf进程,进程号为10Router-test(config-router)#network 192.168.1.1 0.0.0.0 area 0 //将IP地址为192.168.1.1的设备定义为参与OSPF算法,OSPF覆盖全网设备,设置OSPF主区域号为0(192.168.1.1的子网掩码是广播地址255.255.255.255,其反码是0.0.0.0)Router-test(config-router)#exit //从OSPF协议配置模式退到全局配置模式Router-test(config)#exit //从全局配置模式退到特权用户模式Router-test#_ //路由器处于特权用户模式3.area area-id range address mask {advertise|no-advertise} Area<区域号>rang<子网号><子网掩码>该命令用于在ABR上将某区域的路由聚合后通告进另一区域,目的是减小路由表的大小。
address mask表示聚合的范围(可以是无类别的网段)。
如果是advertise,落入这一范围的路由将被聚合成一条address mask的路由通告出去,而那些具体路由将不被通告;如果是no-advertise,落入这一范围的路由将不会被通告也不会被聚合后通告。
Router-test(config)#router ospf 10 //路由器启动ospf进程,进程号为10Router-test(config-router)#area 0 rang 212.37.123.0 255.255.255.0//将主区域(area0)内的路由汇聚后通告进212.37.123.0的网络区域Router-test(config-router)#exit //从OSPF协议配置模式退到全局配置模式Router-test(config)#exit //从全局配置模式退到特权用户模式Router-test#_ //路由器处于特权用户模式4.passive-interface配置被动接口Router-test(config)#router ospf 10 //路由器启动ospf进程,进程号为10Router-test(config-router)#passive-interface ethernet0//标准以太网环境配置OSPF的被动接口Router-test(config-router)#exit //从OSPF协议配置模式退到全局配置模式Router-test(config)#exit //从全局配置模式退到特权用户模式Router-test#_ //路由器处于特权用户模式另外,第三层的交换机的配置命令如下Router-test(config)#router ospf 60 //路由器启动ospf进程,进程号为60Router-test(config-router)#passive-interface vlan10 //局域网环境配置OSPF的被动接口Router-test(config-router)#end//直接从OSPF协议配置模式退到特权用户模式Router-test#_ //路由器处于特权用户模式5.distribute-list配置路由过滤distribute-list有两种,一种是基于out方向的;一种是基于in方向的;out方向:distribute-list {access-list-number | name } outin方向:distribute-list [access-list-number | name ] | [route-map map-tag] in [interface-type interface-number]Distribute-list在距离矢量路由协议与链路状态协议的不同用法距离矢量协议Rip Eigrp因为距离矢量协议直接传递路由信息,会在运行协议进程接口的in 和out方向控制相应协议路由信息Distribute-list in在协议接口的in方向控制路由信息,只改变自己,其它路由器不改变Distribute-list out在协议接口的out方向控制路由信息,自己不改变,其它路由器会改变。
Router-test(config)#access-list 10 deny any //配置访问控制列表Router-test(config)#router ospf 10 //启动OSPF协议,进程号为10Router-test(config-router)#distribute-list 10 out seria0 //在同步接口模式下将10号访问控制列表中的路由信息更新至本路由器的访问路径中(其中10为已在全局配置模式下配置的访问控制列表,其中定义了路由过滤信息) Router-test(config)#end //end直接退回到特权用户模式Router-test#_ //路由器处于特权用户状态6.distance 配置管理距离该命令用来配置或改变OSPF的管理距离Router-test(config)#router ospf 10 //启动OSPF协议,进程号为10Router-test(config)#distance 100 //配置路由器管理距离为100Router-test(config)#end //end直接退回到特权用户模式Router-test#_ //路由器处于特权用户状态7.redistribute 引入外部路由命令redistribute[metric number] /[tag number] /protocol [metric-type {1|2}]redistribute <引入外部路由的花费值>/<引入外部路由是默认的标记值>/protocol<引入外部路由时外部路由的的类型>将非OSPF协议的路由信息重分配进OSPF。
protocol为重分配的路由源,可以是connected、static、rip和bgp。
metric number为被重分配路由的外部度量值,可选项。
没有配置该选项时,被重分配路由的外部度量值取default metric number配置的值,未配置default metric number时,默认为10。
外部路由被重分配进OSPF后,可能变成OSPF External1类型或者OSPF External2类型。
可以通过metric-type {1|2}来指定被重分配后的类型,默认为OSPF External2类型。
两种类型的区别体现在度量值的计算方法上:OSPF External1类型认为被重分配路由的外部度量值和OSPF域内度量值相当,OSPF域内度量值不可忽略,所以其最终的度量值为外部和OSPF域内之和;OSPF External2类型认为被重分配路由的OSPF域内度量值相对其外部度量值可忽略,所以其最终的度量值即外部度量值。
一旦配置了重分配,路由器即成为自治系统边界路由器,即ASBR。
Router-test(config)#router ospf 10 //启动OSPF协议,进程号为10Router-test(config-router)#redistribute metric 200 //引入外部路由时度量值为200 Router-test(config-router)#redistibute tag 100 //配置外部路由的标记值为100(该命令用来配置引入外部路由时默认的标记值,标记能告诉OSPF,外部路由源于什么路由协议。