二次函数在闭区间上的最值
- 格式:ppt
- 大小:168.00 KB
- 文档页数:10
函数专题:二次函数在闭区间上的最值问题一、二次函数的三种形式1、一般式:()()20=++≠f x ax bx c a2、顶点式:若二次函数的顶点为(),h k ,则其解析式为()()()20=-+≠f x a x h k a 3、两根式:若相应一元二次方程20++=ax bx c 的两个根为1x ,2x ,则其解析式为()()()()120=--≠f x a x x x x a二、二次函数在闭区间上的最值二次函数在区间上的最值,核心是函数对称轴与给定区间的相对位置讨论, 一般为:对称轴在区间的左边、中间、右边三种情况.设()()20=++≠f x ax bx c a ,求()f x 在[],∈x m n 上的最大值与最小值。
将()f x 配方,得顶点为24,24⎛⎫-- ⎪⎝⎭b ac b a a ,对称轴为2=-b x a (1)当[],2-∈bm n a时, ()f x 的最小值为2424-⎛⎫-=⎪⎝⎭b ac bf a a , ()f x 的最大值为()f m 与()f n 中的较大值; (2)[],2-∉bm n a时, 若2-<bm a,由()f x 在[],m n 上是增函数,则()f x 的最小值为()f m ,最大值为()f n ;若2->bn a,由()f x 在[],m n 上是减函数,则()f x 的最小值为()f n ,最大值为()f m ;三、二次函数在闭区间上的最值类型1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。
第三讲 二次函数在闭区间上的最值问题 一.知识点介绍1.区间的概念设a 、b 是两个实数,且a<b ,规定:说明:① 对于[a,b],(a,b),[a,b),(a,b]都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;②在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;③实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的全体分别表示为[a,+∞)、(a,+∞)、(-∞,b]、(-∞,b)。
我们把以上区间记为A ,若x 是A 中的一个数,就说x 属于A ,记作x ∈A 。
否则就说x 不属于A ,记作x ∉A 。
2. 二次函数f(x)=ax 2+bx+c(a≠0)在x ∈[α,β]上的最值: 当a>0时,有三种情况:从上述a>0的三种情况可得结论:(1)若[,]2baαβ-∈,则当2b x a =-时,2min4()24b ac b y f a a-=-=,它的最大值为()f α与()f β中较大的一个。
(2) 若[,]2baαβ-∉,则最大值为()f α与()f β中较大的一个,另一个即为最小值。
当a<0可作同样处理。
二.例题讲解:类型一“轴定区间定”例1:已知f(x)=x 2-x+2,当x 在以下区间内取值时,求f(x)的最大值与最小值。
(1) x ∈[-1,0] (2) x ∈[0,1] (3) x ∈[1,2]变式1:求y =的最值。
变式2:已知0≤x≤1,求y =的最值。
变式3:求函数y x =+的最小值。
类型二“轴变区间定”例2:求函数f(x)=2x 2-2ax+3在区间[-1,1]上的最小值。
二次函数在闭区间上的最值(详解)二次函数在闭区间上的最值一、知识要点:一元二次函数在闭区间上的最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般分为对称轴在区间的左边,中间,右边三种情况。
设函数f(x)=ax^2+bx+c(a≠0),求f(x)在x∈[m,n]上的最大值与最小值。
分析:将f(x)配方,得顶点为(-b/2a,f(-b/2a)),对称轴为x=-b/2a。
当a>0时,它的图像是开口向上的抛物线,数形结合可得在[m,n]上f(x)的最值:1)当-b/2a∈[m,n]时,f(x)的最小值是f(-b/2a),f(x)的最大值是max{f(m),f(n)}。
2)当-b/2a∉[m,n]时,若-b/2a<m,由f(x)在[m,n]上是增函数则f(x)的最小值是f(m),最大值是max{f(-b/2a),f(n)};若n<-b/2a,由f(x)在[m,n]上是减函数则f(x)的最大值是f(m),最小值是min{f(-b/2a),f(n)}。
当a<0时,可类比得结论。
二、例题分析归类:一)、正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1.轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。
例1.函数y=-x^2+4x-2在区间[0,3]上的最大值是6,最小值是-2.练.已知函数f(x)=x^2+x+1(x≤3),求函数f(x)的最值。
2、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
例2.如果函数f(x)=-x^2+2x+t在区间[t+1,t+2]上,求f(x)的最值。
例3.已知f(x)=-x^2-4x+3,当x∈[t,t+1](t∈R)时,求f(x)的最值。
二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。
一般分为对称轴在区间左侧、中间和右侧三种情况。
例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。
分析:将函数f(x)配方,得到其顶点为(-b/2a。
c - b^2/4a)。
因此,对称轴为x = -b/2a。
当a。
0时,函数f(x)的图像为开口向上的抛物线。
结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。
2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。
当a < 0时,情况类似。
二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。
例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。
t+1]上的最值为f(t)和f(t+1)中的较大者。
二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般分为:对称轴在区间的左边,中间,右边三种情况.设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。
分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b aac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:(1)当[]-∈b am n 2,时,f x ()的最小值是f b a ac ba f x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。
(2)当[]-∉ba m n 2,时 若-<b am 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n ()若n ba<-2,由f x ()在[]m n ,上是减函数则f x ()的最大值是f m (),最小值是f n ()当a <0时,可类比得结论。
二、例题分析归类: (一)、正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。
例1.函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。
解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。
中考热点,二次函数区间范围的最值问题二次函数最值问题的重要性毋庸置疑,其贯穿了整个中学数学,是中学数学的重要内容之一,也是学好中学数学必须攻克的极为重要的问题之一。
二次函数在闭区间上的最值问题是二次函数最值问题的典型代表,其问题类型通常包括不含参数和含参数二次函数在闭区间上的最值问题、二次函数在闭区间上的最值逆向性问题以及可转化为二次函数在闭区间上最值的问题,在此类问题的解决过程中,涉及数形结合、分类讨论等重要数学思想与方法。
中考中多涉及到含参数二次函数在闭区间上的最值问题,很多学生不习惯数形结合及分类讨论思想的运用,导致解题失误或错误。
类型1 求解自变量在不同区间里二次函数最值1.(2019•大兴区一模)已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.【解析】先根据二次函数的已知条件,得出二次函数的图象开口向上,再根据变量x在﹣2≤x≤1的范围内变化,再分别进行讨论,即可得出函数y的最大值.∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该抛物线的对称轴为x=1,且a=1>0,∴当x=1时,函数有最小值2,当x=﹣1时,二次函数有最大值为:(﹣1﹣1)2+2=6,故答案为6.2.(2019•新华区校级自主招生)已知函数y=x2﹣2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是()A.m≥1 B.0≤m≤2 C.1≤m≤2 D.m≤2【解析】:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),与y轴的交点为(0,3).其大致图象如图所示:由对称性可知,当y=3时,x=0或x=2,∵二次函数y=x2﹣2x+3在闭区间[0,m]上有最大值3,最小值2,∴1≤m≤2.故选:C.3.(2019•郑州模拟)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.【解析】:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.4.(2019•邯郸模拟)对于题目“二次函数y=3/4(x﹣m)2+m,当2m﹣3≤x≤2m时,y的最小值是1,求m的值.”甲的结果是m=1,乙的结果是m =﹣2,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【解析】根据对称轴的位置,分三种情况讨论求解即可求得答案,然后判断即可.二次函数的对称轴为直线x=m,①m<2m﹣3时,即m>3,y的最小值是当x=2m﹣3时的函数值,此时3/4(2m﹣3﹣m)2+m=1,因为方程无解,故m值不存在;②当2m﹣3≤m≤2m时,即0≤m≤3时,二次函数有最小值1,此时,m=1,③当m>2m时,即m<0,y的最小值是当x=2m时的函数值,此时,3/4(2m﹣m)2+m=1,解得m=﹣2或m=2/3,∵m<0,∴m=﹣2,所以甲、乙的结果合在一起正确,故选:C.类型2 二次函数区间最值解决实际问题利用二次函数解决实际问题,最常见的为利润问题和费用最低等问题,首先根据题中常见的等量关系建立二次函数模型,然后利用二次函数确定最值,注意要考虑自变量在实际问题中的取值范围。
二次函数在闭区间的最值教案参赛单位:康定中学数学组课件制作:周江讲授教师:刘瑞彬 02.04.一、教学目的:1、掌握二次函数在闭区间的图象性质2、进一步理解分类讨论的思想与数形结合的思想3、进一步培养学生的观察问题、分析问题和解决问题的能力二、教学工具:几何画板软件、PowerPoint、音频解霸、计算机、大屏幕、高亮度投影仪三、教学过程:(一)通过几何画板演示图观察、归纳出二次函数在闭区间的最值性质1、问题引入:二次函数在实数范围的最值是怎样的?在闭区间的最值又是怎样的呢?2、用几何画板演示二次函数在闭区间的最值问题,让学生观察归纳出其性质最值在顶点处或端点处取得,并弄清楚其由来。
(二)应用例举:1、例1:求下列函数的最值:f(x)=x2+2x-3 x∈[0,2]f(x)=x2+2x-3 x∈[-3,-2]f(x)=x2+2x-3 x∈[-2,2]再一次利用几何画板演示,让学生找出破题思路,进而解决问题。
2、例2:求下列函数的最值:f(x)=x2-2ax+5, x∈[-2,3] ,a∈Rf(x)=x2-2x+1 x ∈[t,t+1] 两道题两种不同类型,其一为过(0,5)的一族抛物线,其二为一不变抛物线但区间随t的变化而变化。
同样通过几何画板演示、教师的引导,让学生找出破题思路。
注意分类的根据是函数的单调性,关键是抛物线的对称轴与区间端点的位置关系正确处理好对称轴位于区间内在端点处的最值是哪一个点。
同时应注意解题的书写规范性和条理性。
(三)小结:1、二次函数在闭区间上的最值在顶点处或端点处取得.2、含参二次函数在闭区间上的最值应注意对称轴与闭区间左右端点的位置. 谢谢各位评委!谢谢各位老师光临指导!感谢数学组的陈长川老师、欧德荣老师、马东老师、对本课件的关心和指导,感谢数学组的全体老师对本课件的讲授提出了许多宝贵的修改意见。
含参二次函数在闭区间上最值问题的解题策
略
含参二次函数在闭区间上最值问题是高中数学中比较常见的一类
应用题型,解题需要一定的技巧和策略。
以下是解决这类问题的步骤
和方法:
一、列出含参二次函数的解析式
在解决含参二次函数在闭区间上最值问题前,首先要列出函数的
解析式。
一般来说,含参二次函数可表示为 f(x)=ax^2+bx+c(a≠0)。
其中,a、b、c为常数,x为自变量,f(x)为函数值。
二、确定闭区间
在这一步骤中,需要根据问题描述,确定函数所在的闭区间,常
见的闭区间如[0,1],[1,2]等,不同的闭区间对所求的解有直接影响。
三、确定函数的最值
确定函数的最值是整个求解过程中最重要的一步,需要按照以下
几个步骤来处理:
1. 求出函数的极值点
通过求导数并将函数的导数等于0来计算函数的极值点。
即
f'(x)=2ax+b=0。
解出x的值,即可得到函数的极值点。
2. 判断极值点是否在所求的闭区间内
将极值点带入原函数来计算函数值,判断函数的最值是否在所求
的闭区间内。
3. 比较区间端点和极值点的函数值
求出闭区间端点的函数值f(a)和f(b),并将它们与极值点的函
数值进行比较。
找出函数值最大或最小的点,即为所求的最值。
四、解答问题
最后,将求得的函数最值带入题目中,解答出最终问题。
总结:在解决含参二次函数在闭区间上最值的问题时,需要先列
出含参二次函数的解析式,确定闭区间,进而求出函数的最值,最后将所求的函数最值带入题目中进行解答。
二次函数在闭区间上的最值一.知识点精讲1 二次函数的三种形式(1)一般式 c bx ax x f ++=2)(; (2)交点式))(()(21x x x x a x f --=; (3)顶点式k h x a x f +-=2)()( 2.二次函数的基本性质(1)开口方向 0>a 时,开口向上, 0<a 时,开口向上,(2)对称轴方程ab x 2-= (3)02=++c bx ax 根的判别式 ac b 42-=∆(4)02=++c bx ax 的求根公式 aac b b x 2422,1-±-=(5)02=++c bx ax 两根和,两根积 a b x x -=+21 ac x x =21 3 解决二次函数问题的常用方法——数形结合法二次函数()0)(2≠++=a cbx ax x f 的图像为抛物线,具有许多优美的性质,如对称性、单调性、凹凸性等。
结合这些图像特征解决有关二次函数的问题,可以化难为易,形象直观。
因为二次函数()0)(2≠++=a cbx ax x f 在区间]2,(a b --∞和区间),2[+∞-ab上分别单调,所以函数()x f 在闭区间上的最大值、最小值必在区间端点或顶点处取得;函数)(x f 在闭区间上的最大值必在区间端点或顶点处取得。
4 二次函数c bx ax x f ++=2)(在区间[p ,q ]上的值域求法方法:讨论或分析对称轴和区间的位置关系。
由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质。
二 典型例题1 求函数22)(2+-=x x x f 在]1,[+m m 上的最小值 解析:二次函数的对称轴为1=x ,(1)当11<+m 时,即0<m ,12m in +=m y(2)当1>m 时,1)1(2m in +-=m y (3)当10≤≤m 时,1m in =y变式1:求函数22)(2+-=x x x f 在]1,[+m m 上的最大值 解析:(1)当21≤m 时,1)1(2m ax +-=m y (2)当21>m 时,12max +=m y变式2 求函数22)(2+-=ax x x f 在]1,1[-上的最小值 解析:二次函数的对称轴为a x =, (1)当1-<a 时, 12m in +=a y (2)当1>a 时,1)1(2m in +-=a y (3)当10≤≤a 时,1m in =y变式3:求函数22)(2+-=ax x x f 在]1,1[-上的最大值 解析:(1)当0≤a 时, a y 24m ax -=(2)当0>a 时,a y 24m ax +=二次函数是个筐,什么东西都能往里装变式4求124)(1+-=+x xx f ,]2,1[-∈x 的值域解析:xt 2=]4,21[∈t ,22)1(12)(-=+-=t t t t g ,当1=t 时,即0=x ,0)(m in =t g 当4=t 时,即2=x ,9)(m ax =t g ,∴]9,0[)(∈t g 即]9,0[∈y变式5 求1log log )(222++=x x x f ]2,81(∈x 的值域 注意:22)(log log x x a a =解析:x t 2log =,]1,3(-∈t ,43)21(1)(22++=++=t t t t g ,当21-=t 时,即22=x 时,43)(min =t g 当3-=t 时,即81=x ,7)(m ax =t g ,∴]7,43()(∈t g 即]9,0[∈y 当4=t 时,即2=x ,9)(m ax =t g ,∴]9,0[)(∈t g 即]7,43[∈y变式6 (2009福建理)函数2()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称。
一、 题型:求最值,含参求最值,已知最值求参数
(一)、正向型
是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括(1)轴定区间定;(2)轴定区间动;(3)轴动区间定;
1. 轴定区间定
例1. 函数y x x =-+-2
42在区间[0,3]上的最大值是_________,最小值是_______。
练习1. 已知232x x ≤,求函数f x x x ()=++21的最值。
练习2. 已知x 21≤,且a -≥20,求函数f x x ax ()=++23的最值。
2、轴动区间定
例2. 求2
f (x )x 2ax 1=++在区间[-1,2]上的最大值。
练. 求函数)(a x x y --=在]1,1[-∈x 上的最大值。
3、轴定区间动
例3. 如果函数f x x ()()=-+112
定义在区间[]R t t t x ∈+∈,1,上,求f x ()的最小值。
、
练. 已知()322
+-=x x x f ,当[]R t t t x ∈+∈,1,时,求f x ()的最大值.
(二)、逆向型:是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。
例4. 已知函数2
()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。
例5.已知函数2
()2
x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。