模糊数学-模糊集的基本运算共61页
- 格式:ppt
- 大小:7.36 MB
- 文档页数:31
§2.3 模糊集合的运算 2.3.1 模糊集合的基本运算 一、模糊集合并、交、补运算定义2.3.1 模糊集合的包含、相等设A ~、B ~为论域X 上的两个模糊集合,对于X 中每一个元素x ,都有)()(~~x x BAμμ≥,则称A ~包含B ~,记作B A ~~⊇。
如果B A ~~⊇,且A B ~~⊇,则说A ~与B ~相等,记作B A ~~=。
由于模糊集合是通过隶属函数来表征的,模糊集合相等也可用隶属函数来定义。
若对于X 上的所有元素x ,都有)()(~~x x BAμμ=,模糊集合A ~与B ~相等。
定义2.3.2 模糊空集设A ~为论域X 上的模糊集合,对于X 中每一个元素x ,都有0)(~=x Aμ,则称A ~为模糊空集,记作φ=A ~。
定义2.3.3 模糊集合并、交、补基本运算设A ~、B ~为论域X 上的两个模糊集合,令B A ~~ 、B A ~~ 、C A ~分别表示模糊集合A ~与B ~的并集、交集、补集,对应的隶属函数分别为B A~~ μ、B A ~~ μ、C A~μ,对于X 的任一元素x ,定义: )(V )()(B ~A ~B ~A~x x x μμμ∆ (2.3.1) )()()(B ~A~B ~A~x x x μμμΛ∆ (2.3.2)补算子 (2.3.3) 式中“V ”表示取大运算,“Λ”表示取小运算,称其为Zadeh 算子。
在此定义下,两个模糊集合的并、交实质是在做下面的运算①)](,)(max[B ~A ~B ~A~x x μμμ= 并算子 (2.3.4) )](,)(min[B ~A~B ~A~x x μμμ= 交算子 (2.3.5) 为了加深对模糊集合并、交、补基本运算的理解,现在给出模糊集合A ~和B ~,见图2.3.1(a)。
其中A ~为高斯分布,B ~为三角分布,二者的并、交运算结果如图2.3.1(b)的图2.3.1(c)所示,当然模糊集合的并、交运算可以推广到任意个模糊集合。
模糊集概念:一个在区间[0,1]上取值的隶属函数µA (u)所刻画的集合A ,称为论域U 上的一个模糊子集,称为模糊集。
模糊集的表示方法:✧ 向量表示法 A=(µ1, µ2, µ3,µ4,µ5,…, µn )✧ 札德符号表示法 A=(µ1/u 1, µ2/u 2, µ3/u 3,…, µn /u n )✧ 序偶表示法 A={(µ1,u 1), (µ2/u 2), (µ3/u 3),…, (µn /u n )}模糊集合的运算法则✧ 札德算子(∨,∧)µA ∪B =max(µA (u), µB (u))= µA (u)∨µB (u)µA ∩B =min(µA (u), µB (u))= µA (u)∧µB (u)✧ (∨,·)算子µA ∪B =max(µA (u), µB (u))= µA (u)∨µB (u)µA ∩B = µA (u)·µB (u)✧ 概率算子✧ 有界算子(⊕,☉)µA ∪B =min(1,µA (u)+ µB (u))= µA (u)⊕µB (u)µA ∩B =max(0,µA (u)+µB (u)-1)= µA (u)☉µB (u)✧ 其它模糊识别✧ 最大隶属度识别原则设A 1,A 2 ,A 3 …A n 是论域U 上的n 个模糊子集(代表n 种类型),其隶属函数分别为µA1(u), µA2(u), µA3(u),…, µAn (u), u 0是U 中的一个元素,若µAk (u 0)=max(µA1(u 0), µA2(u 0), µA3(u 0),…, µAn (u 0)),则认为u 0相对归属于A k 。