水力学-消能
- 格式:ppt
- 大小:1.56 MB
- 文档页数:33
(十三)消能池实验一、实验目的要求1.掌握消能池模型试验的实验技能。
2.观察坝下游设置消能工前后的水流衔接型式,并检验设置消能池的必要性。
3.通过实验检验消能池设计方法的可靠性。
二、实验设备实验基本设备如图11.1所示,图中宽顶堰更换成WES 实用堰。
更换后的局部装置如图13.1所示。
图13.11.水槽底;2.WES 堰模型;3.活动模块;4.下游河床;5.坝下衔接底板本实验装置在堰下游渠底设有可拆装的活动板块3与4,以提供下列三种实验条件:①3和4均设,演示坝后未开挖消力池时原渠槽流态;②拆3设4,形成消力池流态;③3和4均拆,量测坝下游为池底高程时的临界水跃共轭水深coh '和co h ''。
本模型设计上游堰高15cm ,消能池深2.0cm ,长45cm ,但因安装误差,实验时均以实测为准。
三、实验原理图13.2 消能池量测计算示意图1.已知参数 给定实验参数如表13.1所列,包括池深与池长的设计流量Q d 1与Q d 2、渠宽b 、下游水深h t 、池长L B 、坝面与池末的流速系数ϕ与ϕ'、池中水跃淹没度设计值σ,另有实验常数▽0、▽2、▽4、▽6,需实验前由学生测定。
2.消能池水力设计【池深s 的确定】 计算公式如下:2222cocoo o h g q h s T T '+'=+'=ϕ (13.1))181(232-'+'='coco t h g q h h σ (13.2) 2222222t t h g q h g q z '-'=∆ϕ (13.3) z h h s t t ∆--'= (13.4)式中各量定义参图13.2。
【池深L B 的确定】 计算公式如下:j B L L )8.0~7.0(= (13.5)coj h L ''=1.6 (13.6) 各计算结果汇总于表13.2,表中0T ''是设消能池前的计算值,由下式确定:0.5)(m )()]2/([603/20可取-∇∇+='g mb Q T (13.7)式13.1~13.4是多元隐函数方程组。
1溢流坝、溢洪道、隧洞、水闸、……):上游的势能大部分转化为下游的动能>>下游天然水流的能量→对下游河床的冲刷,且威胁建筑物本身的安全底流型衔接消能(Energy dissipation by hydraulic jump 在泄水建筑物下游修建消能池(Stilling basin),池内形成水跃,其主流在底部,漩滚位于表层。
理论、技术比较成熟,适用于低水头的泄水建筑物,应用广泛。
漩滚在底部,主流在表层以免直接冲刷河床(有一定涌浪)。
由于衔接段主流在表层,故称为面流型衔接消能。
要求较高且比较稳定的下游水位.戽流型衔接消能(Energy dissipation by roller bucket )与面流型衔接消能相比,增加一消能戽斗,形成戽旋滚和下游次生的表面旋滚,兼有底流型和面流型的水流特点。
利用高于下游水位的挑流鼻坎将水流向空中抛射至远离建筑物的下游,通过冲刷坑水垫中形成的旋滚和水舌与空气摩擦消除余能。
适用于岩基上的中、高水头泄水建筑物,应用广泛。
78第一节底流型衔接与消能一、底流型水流衔接与消能的原则1.泄水建筑物下游收缩断面的水深和流速图形ϕ0.85~0.9514二、泄水建筑物下游衔接形式h c 的跃后水深()⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=′′18121812322c c cccgh q h Frh h h t =h c ",临界式水跃衔接。
h t <h c ",远驱(离)式水跃衔接h t >h c ",淹没式水跃衔接远离式水跃要求过长的护坦临界水跃不稳定17降低护坦后的收缩断面水深为h c1,其相应的跃后水深为h c1″消能池末端水深h =σh ″h c1满足方程与d 有关21221002c c h g q h d E E φ+=+=′在升坎两侧列能量方程(以下游水面为基准面):gv g v z 2)1(22221ζ+=+Δ池的轮廓尺寸。
H = 5 m ,h t = 3 m 。
台阶式溢洪坝的消能 ̄当水流经泄水建筑物下泄时,由于上下游的水位落差和集中泄流,单宽流量剧增,使得下泄水流具有很高的流速和紊动性,从工程观点看,应尽可能使下泄水流的巨大动能在较短的距离内消耗掉,以保护枢纽建筑物的安全,使下泄水流与下游水流顺利安全衔接,减轻和防止下游河床的冲刷。
常见的消能方式有地流式消能、挑流式消能、面流式消能、底孔消能,本文介绍的是台阶式消能。
台阶式溢流坝是一种古老而又全新的泄水建筑物形式。
其工作原理就是利用溢流坝台阶段对水流的阻力,使下泄水流在台阶之间形成水平轴旋滚,并与坝面主流发生强烈的混掺作用,迫使水流产生强烈地紊动,大量掺入空气,从而达到消能的目的.台阶式溢流坝的应用已经有3000 多年的历史181,公元前1300多年,古希腊就曾在Akarnania修建了一座土质溢流堰,并将堰的表面用块石砌护成台阶形式。
在19世纪和20世纪初以前,世界上就建造了很多台阶式的溢流坝,但随着利用水跃消能的消力池的发展,其逐渐淡出人们视野191。
近二十多年来,随着碾压式混凝土(RCC)筑坝技术的兴起,由于台阶式溢流坝中台阶高度的设置能很好的适应碾压混凝土(RCC)筑坝分层施工的要求以及台阶段具有较高的消能效率,台阶式溢流坝的应用产生了飞跃式的发展,得到了国内外水利界科研人员和工程技术人员的广泛重视,并对此进行了大量的试验研究1101.近几十年间,在世界各地的水利工程中修建了许多台阶式溢流坝,其中以美国的上静水坝(Upper Stillwater Dam)为代表.到目前为止,世界上已建成RCC台阶式溢流坝60余座,而且有数座正在施工兴建中。
下表为部分在建或者已建的国内国外工程实例。
由此可见,台阶式消能在现在的水工建筑物中的应用还是很广泛的。
一改传统溢流坝在出口处集中消能的形式,使得水流在下泄过程中将能量逐渐消散,不仅有效的避免了建筑物发生空蚀破坏的危险,而且简化了下游的消能设施,节省了工程造价。
第七章 水 跃第一节 水跃现象及分类一、水跃现象水跃是明渠水流从急流状态过渡到缓流状态时发生的水面突然跃起的局部水力现象。
闸、坝下泄的急流与天然河道的缓流相衔接时,都会出现水跃现象。
水跃区的水流可分为两部分:一部分是急流冲入缓流所激起的表面旋滚,翻腾滚动,饱掺空气,叫做表面水滚。
另一部分是表面水滚下面的主流,流速由快变慢,水深由小变大。
但主流与表面水滚并不是截然分开的,因为两者的交界面上流速梯度很大,紊动混掺非常强烈,两者之间不断地进行着质量交换。
在发生水跃的突变过程中,水流内部产生强烈的摩擦混掺作用,水流的内部结构要经历剧烈的改变和再调整,消耗大量的机械能,有的高达能量的60%~70%,因而流速急剧下降,水流很快转化为缓流状态。
由于水跃的消能效果较好,所以常常被采用作为泄水建筑物下游水流衔接的一种有效消能方式。
在确定水跃范围时,通常将表面水滚开始的断面称为跃前断面或跃首,相应的水深称为跃前水深;表面水滚结束的断面称为跃后断面或跃尾,相应的水深称为跃后水深。
表面水滚的位置是不稳定的,它沿水流方向前后摆动,量测时取时段内的平均位值。
跃后水深与跃前水深之差称为跃高。
跃前断面与跃后断面之间的距离称为水跃长度,简称跃长。
二、水跃的分类水跃的形式与跃前断面水流的佛汝得数1Fr 有关。
为此,根据跃前断面佛汝得数1Fr 的大小对水跃作一分类,具体如下。
7.111<<Fr ,水跃表面将形成一系列起伏不平的波浪,波峰沿流降低,最后消失,种形式的水跃称为波状水跃。
由于波状水跃无旋滚存在,混掺作用差,消能效果不显著,波动能量要经过较长距离才衰减。
当7.11>Fr 时,水跃成为具有表面水滚的典型水跃,具有典型形态的水跃称为完全水跃。
此外,根据跃前断面佛汝得数1Fr 的大小,还可将完全水跃再作细分。
但这种分类只是水跃紊动强弱表面现象上有所差别,看不出有什么本质上的区别。
5.27.11<≤Fr ,称为弱水跃。
第四节消能与防冲通过坝体的下泄水流具有很大的能量,当水位差为40m时,单宽流量q=50秒立方米,一米宽河床内的水流动能可达24000匹马力,如此巨大的能量主要消耗于两个方面:1、水流的内部损耗,如摩擦、冲击、紊动、漩涡;2、水流与固体边界作用,如摩擦、冲刷等;当冲刷扩展到坝基时,就会危及坝体安全;消能设计原则:1°尽量增加水流的内部紊动, 2°限制水流对河床的冲刷范围消能方式:(底流消能、挑流消能、面流消能、消力戽消能)1、底流消能1°工作原理在坝趾下游设消力池、消力坎等,促使水流在限定范围内产生水跃,通过水流的内部摩擦、掺气和撞击消耗能量。
见图5.62°产生底流消能的条件3°岩基上护坦的构造要求:护坦厚度应满足稳定要求,在扬压力和脉动压力作用下不浮起。
荷载:①水重集度②平均脉动压强③动水压力 (比较复杂,由试验确定)④扬压力强度(设排水时,仅有浮托力,不设排水时, 除考虑浮托力外还有渗透压力) .图5.6 底流消能措施图5.7所示为设计底流消能时, 水跃第二共轭水深与下游水深的关系.2、挑流消能1°工作原理利用鼻坎将水流挑向空中,并使其扩散,掺入大量空气,然后落入下游河床水垫,形成旋滚,消耗能量约20%。
起初冲刷河床,形成冲坑,达一定深度后,水垫加厚冲坑趋于稳定。
见图5.8.图5.7 水跃第二共轭水深与下游水深的关系.图 5.8挑流消能示意图2°设计内容选择鼻坎型式, 反弧半径, 鼻坎高程, 挑射角度.3°连续式挑坎R增加水流转向容易,但鼻坎向下游延伸较长,工程量增加;减小水流转向困难,一般取(8~10)hc;θ↑挑射距离远,入水角大,冲坑深;θ↓挑射距离近,入水角小,冲坑浅;θ=20~35°, 鼻坎高程一般高出下游最高水位1~2m。
4°对坝体安全的评估挑距: L, 冲坑: tk5°差动式挑坎使水流通过高低坎分为两股射出,在垂直方向有较大的扩散,水舌入水宽度增加,减少了单位面积上的冲刷能量,两股水流在空中互相撞击、掺气加剧。