主成分分析与因子分析详细的异同和SPSS软件 主成分分析得分计算步骤
- 格式:xls
- 大小:24.00 KB
- 文档页数:2
主成分分析和因子分析的SPSS实现比较主成分分析和因子分析是多元统计方法中关系密切的两种方法,应用范围十分广泛,可以解决经济、教育、科技、社会等领域中的综合评价问题。
主成分分析采用降维的思想,将研究对象的多个相关变量(指标)综合为少数几个不相关的变量,反映原变量提供的主要信息。
因子分析是主成分分析的推广和发展,它将具有错综复杂关系的变量综合为数量较少的几个因子,以再现原始变量与因子之间的相互关系,同时根据不同因子还可以对变量进行分类,它属于多元分析中处理降维的一种统计方法。
但是,在许多论文中用SPSS进行综合分析时,出现这两种方法运用混淆的错误。
比如,主成分分析中对变量进行了因子旋转,因子分析的公因子系数错误等问题。
本文就此对主成分分析和因子分析的异同进行比较,并在SPSS和DPS软件上如何实现给予说明。
一、主成分分析与因子分析的异同点两者的相同点:1、思想一致:都是降维的思想;2、应用范围一致:都要求变量之间具有不完全的相关性;3、数据处理过程一致:数据的无量纲化,求相关系数矩阵的特征值和特征向量,通过累计贡献率确定主成分个数、因子个数;4、合成方法一致:都没有考虑原始变量之间的关系,直接用线性关系处理变量与主成分和因子之间的关系。
两者的不同点:1、方差损失上:主成分解释了原始变量的全部方差,无方差损失;因子模型中除了有公因子外还有特殊因子,公因子只解释了部分信息,有方差损失;2、唯一性:主成分分析不存在因子旋转,主成分是唯一的;因子分析进行因子旋转,解不唯一;3、实际意义:主成分没有实际意义;公因子有实际意义;4、应用:主成分侧重信息贡献、影响力综合评价;因子分析侧重成因清晰性的综合评价。
二、SPSS上的实现1、主成分分析在SPSS上的实现(1)将原始数据无量纲化。
传统主成分分析进行无量纲化处理的方法是“中心标准化”,这在SPSS中通过Analyse-DescriptiveStatistics-Descriptive中Save standardized values as variables执行。
主成分分析与因子分析的异同比较及应用一、相似之处:1.降低数据维度:主成分分析和因子分析都是降维方法,通过将原始变量进行线性组合,生成一组新变量,减少原始数据的维度。
2.揭示变量之间的关系:主成分分析和因子分析都可以揭示数据中变量之间的相关性和潜在结构,更好地理解变量之间的关系。
3.数据依赖:主成分分析和因子分析都依赖原始数据的线性关系。
二、主成分分析的特点和应用:1.数据探索:主成分分析可以用于对数据进行探索性分析,揭示数据中的模式和变量之间的关系。
2.特征选择:主成分分析可以用于提取最相关的变量,帮助选择最能代表数据信息的特征。
3.数据压缩:通过保留主要的主成分,主成分分析可以将数据压缩成较低维度,减少存储和计算的开销。
4.降噪:主成分分析可以通过去除与主成分相关较小的维度,减少噪声的影响。
三、因子分析的特点和应用:因子分析的目标是通过找到能够解释原始变量间共同方差的不可观测因子,来揭示变量背后的潜在结构。
因子分析的原理是通过将多个变量通过线性函数关系表示为少数几个潜在因子的和。
因子分析可以用于以下场景:1.变量间关系建模:因子分析可以用于建立变量之间的概念模型,识别变量的共同因子、独特因子和测量误差。
2.假设测试:因子分析可以用于检验变量之间的因果关系,以验证一些假设。
3.变量缩减:通过识别共同的因子,并组合成新的因子变量,因子分析可以减少数据集的维度。
4.数据恢复:因子分析可以通过基于因子提取的结果,恢复原始变量的丢失信息。
四、主成分分析与因子分析的区别:1.目标:主成分分析的目标是将原始变量转化为一组新的不相关的维度,以解释数据方差最大化;而因子分析的目标是将原始变量转化为一组潜在因子,以解释变量间的共同方差。
2.变量假设:主成分分析假设所有变量是观测变量的线性组合,而因子分析假设所有变量既有观测变量,也有不可观测的因子变量。
3.因素解释:主成分分析的主要解释对象是方差,因而主成分的解释目标是能够包含尽可能多的方差;而因子分析的解释对象是共同方差,因而因子的解释目标是能够解释原始变量之间的共同方差。
基于SPSS的主成分分析与因子分析的辨析主成分分析和因子分析是两种常用的多元统计分析方法,用于处理多个变量之间的关系和结构。
尽管它们在一些方面相似,但它们有着不同的目标、假设和应用领域。
主成分分析(PCA)是一种降维技术,旨在将多个相关的变量转化为较少数量的互相无关的新变量,称为主成分。
主成分是原始变量线性组合的结果,它们按照方差的大小递减排序,第一个主成分解释了尽可能多的方差,第二个主成分解释了剩余的方差,依此类推。
主成分分析的目标是找到最重要的成分,以减少数据维度并保留尽可能多的信息。
因子分析(FA)是一种探索性分析方法,旨在找到观察到的变量背后潜在的隐藏因子及其之间的关系。
它假设每个观察到的变量受到几个潜在因子的影响,并通过解释方差-共方差矩阵来确定这些因子。
因子分析的目标是解释数据的系统结构,并识别变量之间的潜在关系。
下面是主成分分析和因子分析的几个区别:1.假设:主成分分析假设所有的变量都是线性相关的,而因子分析假设变量之间存在潜在的隐藏因子。
2.目标:主成分分析的目标是减少数据的维度,使用少量的主成分来解释尽可能多的方差。
因子分析的目标是找出潜在因子,并解释数据的结构。
3.变量解释:在主成分分析中,每个主成分解释了数据中的方差,而在因子分析中,每个因子代表了一个潜在原因,描述了观察到的变量之间的共同性。
4.变换:在主成分分析中,通过线性组合原始变量来创建主成分。
在因子分析中,每个观察到的变量都被假设为由潜在因子和特定的误差项组合而成。
5.前提要求:主成分分析对变量之间的线性关系没有特定的要求,可以处理混合类型的数据。
因子分析假设线性关系是必需的,且数据应满足正态分布。
尽管主成分分析和因子分析在一些方面不同,但它们也有一些共同之处。
它们都可以用于数据降维和构建新的变量,以更好地解释和理解数据。
此外,它们都是无监督学习方法,不需要以前的假设。
在实际应用中,选择主成分分析还是因子分析取决于具体的研究目标和数据属性。
主成分分析与因子分析详细的异同和SPSS软件摘要:主成分分析与因子分析(R-型)应用十分广泛,但一些论文和一些SPSS软件教科书(见附文)出错。
本文指出了这些错误及其成因,指出了出错造成的危害,从原理上给出了主成分分析与R-型因子分析数学模型详细的异同,给出了避免出错的方法, 并对SPSS软件及有关教科书提出了一些建议。
关键词:主成分分析;因子分析;SPSS软件;出错;避免设=(X1,…,X P为标准化随机向量(p≥2),R为相关系数矩阵, =(F1 ,…,F m为主成分向量,=(Z1 ,…,Z m为因子向量,m≤p,为方便,因子、因子估计、因子得分用同一记号。
一、问题的提出与结论主成分分析与R-型因子分析是多元统计分析中的两个重要方法,同是降维技术,应用范围十分广泛,但通过流行甚广的SPSS软件调用这两种方法的过程命令,使用者容易出错,是什么原因造成这些错误呢?主成分分析与R-型因子分析到底有何异同呢?出错会造成什么危害呢?由于SPSS软件在经济、医学、管理等领域中的广泛流行使用,解决这些问题尤其必要。
经过对一些论文和一些SPSS软件教科书(见附文)仔细查证分析、比较、研究得出:出错原因:有些使用者和书作者对主成分分析与R-型因子分析的原理、异同与解题步骤掌握不透,现行SPSS软件及其书中没有完善这两种方法的研究(对高校师生出错影响很大)。
结论:主成分分析与R-型因子分析有10处主要的不同,致使主成分分析与因子分析的定量综合评价体系不同,混淆在一起是不同定量值交替错误,综合评价必须分开进行。
出错带来的危害:企业经济效益、竞争力等的综合评价会带来误评,医学诊断会带来误诊,决策会带来误断等。
二、一些使用者出现的错误及其成因分析经过仔细查证分析,有下列错误:使用主成分分析时①对主成分分析的原理没有掌握, 如叙述主成分分析概念出错。
②主成分F求解出错,如=中(为单位矩阵,的意义见表1)。
③不知主成分F的命名依据,对主成分F命名出错。
基于SPSS的主成分分析与因子分析的辨析一、本文概述随着统计学的快速发展和广泛应用,主成分分析(Principal Component Analysis, PCA)和因子分析(Factor Analysis, FA)作为两种重要的降维和变量整合技术,在社会科学、医学、经济学等众多领域得到了广泛应用。
SPSS作为一款强大的统计分析软件,为这两种分析方法提供了便捷的操作平台和丰富的功能支持。
然而,尽管PCA和FA在理论上具有一定的相似性,但它们的核心理念、适用场景、解释方式等方面都存在显著差异。
因此,本文旨在通过辨析基于SPSS的主成分分析与因子分析的不同点,帮助研究者更加准确地理解和运用这两种方法,以便更有效地提取信息、简化数据结构,并提升研究的科学性和准确性。
本文首先将对主成分分析和因子分析的基本概念进行简要介绍,明确它们各自的核心思想和理论基础。
随后,将重点分析这两种方法在SPSS软件中的实现过程,包括数据准备、参数设置、结果解读等关键步骤。
在此基础上,文章将详细比较PCA和FA在SPSS应用中的不同点,包括适用范围、前提条件、分析结果解释等方面。
本文还将结合实例分析,展示如何在具体研究问题中选择合适的方法,并对分析结果进行有效解读和应用。
通过本文的辨析和讨论,期望能够帮助研究者更深入地理解主成分分析和因子分析的基本原理及其在SPSS中的应用方法,从而为实证研究提供有力的统计工具和方法支持。
二、主成分分析(PCA)主成分分析(Principal Component Analysis,简称PCA)是一种广泛应用的多元统计方法,其目标是通过降维技术来揭示数据中的内部结构。
PCA通过将多个原始变量转换为少数几个主成分,这些主成分能够最大限度地保留原始数据中的变异信息,并且彼此之间互不相关。
PCA的基本原理是通过对原始变量的协方差矩阵或相关矩阵进行特征值分解,得到一系列的主成分。
每个主成分都是原始变量的线性组合,其权重由特征向量决定。
s p s s进行主成分分析及得分分析This manuscript was revised by the office on December 22, 2012spss进行主成分分析及得分分析1将数据录入spss1. 2数据标准化:打开数据后选择分析→描述统计→描述,对数据进行标准化,选中将标准化得分另存为变量:2.3进行主成分分析:选择分析→降维→因子分析,3.4设置描述性,抽取,得分和选项:4.5查看主成分分析和分析:相关矩阵表明,各项指标之间具有强相关性。
比如指标GDP总量与财政收入、固定资产投资总额、第二产业增加值、第三产业增加值、工业增加值的相关系数较大。
这说明他们之间指标信息之间存在重叠,适合采用主成分分析法。
(下表非完整呈现)5.6由 TotalVarianceExplained(主成分特征根和贡献率)可知,特征根λ1=9.092,特征根λ2=1.150前两个主成分的累计方差贡献率达93.107%,即涵盖了大部分信息。
这表明前两个主成分能够代表最初的11个指标来分析河南各个城市经济综合实力的发展水平,故提取前两个指标即可。
主成分,分别记作F1、F2。
6.7指标X1、X2、X3、X4、X5、X6、X7、X8、X9、X10在第一主成分上有较高载荷,相关性强。
第一主成分集中反映了总体的经济总量。
X11在第二主成分上有较高载荷,相关性强。
第二主成分反映了人均的经济量水平。
但是要注意:这个主成分载荷矩阵并不是主成分的特征向量,也就是说并不是主成分1和主成分2的系数,主成分系数的求法是:各自主成分载荷向量除以各自主成分特征值的算术平方根。
7.8成分得分系数矩阵(因子得分系数)列出了强两个特征根对应的特征向量,即各主要成分解析表达式中的标准化变量的系数向量。
故各主要成分解析表达式分别为:F1=0.32ZX11+0.33ZX12+0.31ZX13+0.31ZX14+0.32ZX15+0.32ZX16+0.32ZX17+0.32ZX 18+0.32ZX19+0.21ZX110+0.15ZX111F2=8.46ZX21+0.02ZX22-0.02ZX23-0.20ZX24-0.23Z25-0.04ZX26-0.15ZX27-0.02ZX28+0.10ZX29+0.47ZX210+0.78ZX2118.9主成分的得分是相应的因子得分乘以相应的方差的算术平方根。
主成分分析与因子分析的比较一、主成分分析方法1、主成分分析介绍主成分分析是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析。
在实际问题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。
但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。
人们自然希望变量个数较少而得到的信息较多。
在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。
主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映问题的信息方面尽可能保持原有的信息。
信息的大小通常用离差平方和或方差来衡量。
主成分分析的基础思想是将数据原来的p 个指标作线性组合,作为新的综合指标(123,,,p F F F F )。
其中1F 是“信息最多”的指标,即原指标所有线性组合中使()1Var F 最大的组合对应的指标,称为第一主成分;2F 为除1F 外信息最多的指标,即()'12,j i Cov F F a a =∑且()2Var F 最大,称为第二主成分;依次类推。
易知123,,,p F F F F 互不相关且方差递减。
实际处理中一般只选取前几个最大的主成分(总贡献率达到85%),达到了降维的目的。
2、主成分确定的原则假设某个总体共有n 个样本,而每个样本测得p 项指标:X 1,X 2,X 3……X p ,得到原始数据()11121212221212p p p n n np x x x x x x X X X X x x x ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦其中11211n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 1,2,3,i p = 。
将数据矩阵X 的p 个向量12p X X X 作线性组合'111121211'212122222'1122,,,p p p p p p p pp p p F a X a X a X a X F a X a X a X a X F a X a X a X a X ⎧==++⎪==++⎪⎨⎪⎪==++⎩简写成'1122,i i i pi p i F a X a X a X a X ==++ 其中1,2,3,i p =设均值()E X u =,协方差阵()D X =∑。
主成分分析在SPSS中的操作应用(1)一、引言主成分分析和因子分析在社会经济统计综合评价中是两个常被使用的统计分析方法。
现在SPSS SAS等统计软件使用越来越普遍,但SPSS并未像SAS—样,将主成分分析与因子分析作为两个独立的方法并列处理[注:主成分分析与因子分析二者是又有着区别与联系,最主要的不同在于它们的数学模型的构建上,具体区别请见参考文献2] ,而是根据二者之间的关系有机地将主成分分析嵌入到因子分析之中,这样虽然简化了分析程序,却为主成分分析的计算带来不便。
且国内许多SPSS教程并没有详细讲解如果应用SPSS进行主成分分析,如何使用SPSS对主成分分析进行计算呢?为使读者能够正确使用SPSS^件进行主成分分析,本文将通过一个实例来详细介绍如何用SPSS做主成分分析。
接下来先简单介绍主成分分析原理与模型,以便读者对主成分分析有个大致的了解。
二、主成分分析原理和模型[1]一)主分成分析原理主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。
通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。
最经典的做法就是用F i(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F I)越大,表示F i包含的信息越多。
因此在所有的线性组合中选取的F i应该是方差最大的,故称F i 为第一主成分。
如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F i已有的信息就不需要再出现再F2中,用数学语言表达就是要求CoV(F i, F 2)=0 ,则称F2为第二主成分,依此类推可以构造出第三、第四,,,,第P个主成分。
二)主成分分析数学模型F2=a i2ZX+a22ZX2 ........... +aZχ0F p= a i m ZX i + a2m ZX2+ , , + a pm ZX p其中a ii, a 2i, ,,,a pi(i=i,,,,m)为X的协方差阵Σ的特征值多对应的特征向量,ZX i, ZX 2, ,,, ZXp 是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[ 注:本文指的数据标准化是指Z标准化]。
主成分分析与因子分析的比较与应用在数据分析领域,主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是常用的降维技术。
它们可以帮助我们理解数据之间的关系、提取相关特征以及简化数据集。
本文将比较主成分分析和因子分析的不同之处,并探讨它们在实际应用中的具体用途。
一、主成分分析主成分分析是一种无监督学习方法,用于将高维数据转换为低维数据。
主成分分析的目标是找到一组新的低维变量,称为主成分,它们能够解释原始数据中最大的方差。
主成分分析的基本思想是将数据投影到方差最大的方向上,以便保留尽可能多的信息。
主成分分析的步骤如下:1. 标准化数据:将原始数据进行标准化处理,使得各个特征的均值为0,方差为1。
2. 计算协方差矩阵:通过计算特征之间的协方差矩阵,了解各个特征之间的相关性。
3. 计算特征值和特征向量:通过对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
4. 选择主成分:按照特征值从大到小的顺序,选择最大的k个特征值对应的特征向量作为主成分。
5. 数据转换:将原始数据投影到所选主成分上,得到降维后的数据集。
主成分分析在实际应用中具有广泛的用途。
例如,在图像处理中,主成分分析可用于图像压缩和降噪;在金融领域,主成分分析可用于投资组合优化和资产定价;在生物科学中,主成分分析可用于基因表达数据的分析等。
二、因子分析因子分析也是一种常用的无监督学习方法,其目标是通过观察变量之间的共同变异性,识别潜在的影响因素或隐含变量。
因子分析的基本思想是将多个观测变量解释为少数几个潜在因子的线性组合,从而减少原始数据的维度。
因子分析的步骤如下:1. 建立模型:选择适当的因子分析模型,包括确定因子个数和选择因子旋转方法。
2. 估计参数:使用最大似然估计等方法,对模型中的参数进行估计。
3. 因子旋转:为了使得因子更易于解释,通常需要对因子进行旋转,常见的旋转方法有方差最大旋转和直角旋转等。
主成分分析和因子分析的区别一、二者在SPSS中的实现(一)、因子分析在SPSS中的实现进行因子分析主要步骤如下:1. 指标数据标准化(SPSS软件自动执行);2. 指标之间的相关性判定;3. 确定因子个数;4. 综合得分表达式;5. 各因子Fi命名;例子:对沿海10个省市经济综合指标进行因子分析(一)指标选取原则本文所选取的数据来自《中国统计年鉴2003》中2002年的统计数据,在沿海10省市经济状况主要指标体系中选取了10个指标:X1——GDP X2——人均GDPX3——农业增加值X4——工业增加值X5——第三产业增加值X6——固定资产投资X7——基本建设投资X8——国内生产总值占全国比重(%)X9——海关出口总额X10——地方财政收入图1:沿海10个省市经济数据(二)因子分析在SPSS中的具体操作步骤运用SPSS统计分析软件Factor过程[2]对沿海10个省市经济综合指标进行因子分析。
具体操作步骤如下:1. Analyzeà Data Reductionà Factor Analysis,弹出Factor Analysis对话框2. 把X1~X10选入Variables框3. Descriptives: Correlation Matrix框组中选中Coefficients等选项,然后点击Continue,返回Factor Analysis对话框4. 点击“OK”图2:Factor Analyze对话框与Descriptives子对话框SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。
我们可以通过Analyze-Descriptive Statistics- Descriptives对话框来实现:弹出Descriptives对话框后,把X1~X10选入Variables框,在Save standardized values as variables前的方框打上钩,点击“OK”,经标准化的数据会自动填入数据窗口中,并以Z开头命名。
(X1)(X2)(X3)(X4)
歌华有线43.317.398.7354.89
五粮液17.1112.1317.2944.25
用友软件21.11 6.03789.37
太太药业29.558.6210.1373
浙江阳光118.4111.8325.22
烟台万华17.6313.8615.4136.44
方正科技 2.73 4.2217.169.96
红河光明29.11 5.44 6.0956.26
贵州茅台20.299.4812.9782.23
中铁二局 3.99 4.649.3513.04
红星发展22.6511.1314.350.51
伊利股份 4.437.314.3629.04
青岛海尔 5.48.912.5365.5
湖北宜化7.06 2.79 5.2419.79
雅戈尔19.8210.5318.5542.04
福建南纸7.26 2.99 6.9922.72
Z标准化(X1)(X2)(X3)(X4)F1系数F2系数歌华有线 2.35759-0.10782-0.707970.420240.531-0.412五粮液0.06194 1.34717 1.30164-0.016040.5940.404用友软件0.41242-0.52528-1.11412 1.834040.2610.72太太药业 1.151940.26974-0.3793 1.162810.546-0.383浙江阳光-0.473420.205280.01981-0.79634
烟台万华0.1075 1.878210.86028-0.33628
方正科技-1.19805-1.08088 1.27112-1.42206
红河光明 1.11338-0.70639-1.327760.47641
贵州茅台0.340570.533730.28744 1.54128
中铁二局-1.08764-0.95196-0.56242-1.29577
红星发展0.54735 1.040210.599690.24064
伊利股份-1.04909-0.135450.61377-0.63971
青岛海尔-0.96410.355690.184150.85528
湖北宜化-0.81865-1.51983-1.52731-1.01899
雅戈尔0.299390.85603 1.59745-0.10666
福建南纸-0.80112-1.45844-1.11647-0.89885
F1= 0.531zx1+0.594zx2+0.261zx3+0.546zx4
F2= -0.412zx1+0.404zx2+0.720zx3-0.383zx4
排序结果
F1F2F系数F F
歌华有线 1.232506-1.685580.47429-0.06843烟台万华 1.14228五粮液 1.164079 1.4620620.38741.118514五粮液 1.118514用友软件0.617579-1.88673-0.43801雅戈尔 1.034286太太药业 1.307803-1.084080.200306红星发展0.774464浙江阳光-0.559080.597244-0.03379贵州茅台0.551519烟台万华 1.213663 1.462704 1.14228青岛海尔0.235693方正科技-1.72289 1.516776-0.22955太太药业0.200306红河光明0.085184-1.88255-0.6889伊利股份0.020305贵州茅台 1.414439-0.308040.551519浙江阳光-0.03379中铁二局-1.997280.154853-0.8873歌华有线-0.06843红星发展 1.1964360.5343480.774464方正科技-0.22955伊利股份-0.82661 1.0644270.020305用友软件-0.43801青岛海尔0.2143890.3459240.235693红河光明-0.6889湖北宜化-2.29248-0.98612-1.46932中铁二局-0.8873雅戈尔 1.026156 1.413502 1.034286福建南纸-1.26206福建南纸-2.07388-0.71875-1.26206湖北宜化-1.46932 F=0.47429F1+0.3874F2。