勾股定理拓展提高题
- 格式:doc
- 大小:337.50 KB
- 文档页数:7
(完整版)勾股定理拓展提高题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)勾股定理拓展提高题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)勾股定理拓展提高题的全部内容。
(完整版)勾股定理拓展提高题编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)勾股定理拓展提高题这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)勾股定理拓展提高题> 这篇文档的全部内容。
B A6cm3cm1cmCBA勾股定理拓展提高题1、如图,长方体的底面边长分别为1cm 和3cm,高为6cm .①如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要__________cm ;②如果从点A 开始经过4个侧面缠绕3圈到达点B , 那么所用细线最短需要__________cm .2、如图1,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数_________图1 图2 图33、如图2,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积4、如图3,数轴上的点A 所表示的数为x,则x 2-10的立方根为5、如图4,一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到顶点B,则它走过的最短路程为图4 图56、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图5所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b,那么()2b a +的值为( )(A )13 (B)19 (C)25 (D )169• •ABADEBC7、已知△ABC 的三边长满足18,10==+ab b a ,8=c ,则为 三角形8、如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA⊥AB 于A ,CB⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?9、已知:正方形ABCD 的边长为1,正方形ABCD 的边长为1,正方形EFGH 内接于ABCD ,AE=a,AF=b ,且32=EFGH S 正方形。
勾股定理提升训练1一.选择题(共16小题)1.下列长度的三条线段能组成直角三角形的是()A.9,7,12B.2,3,4C.1,2,D.5,11,12 2.如图,在Rt△ABC中,∠BAC=90度,以Rt△ABC的三边为边分别向外作等边三角形△A'BC,△AB'C,△ABC',若△A'BC,△AB'C的面积分别是8和3,则△ABC'的面积是()A.33B.43C.53D.53.如图,在直角三角形ABC中,AC=8,BC=6,∠ACB=90°,点E为AC的中点,点D在AB上,且DE⊥AC于E,则CD=()A.3B.4C.5D.64.下列数据中不能作为直角三角形的三边长的是()A.1,,2B.7,24,25C.D.1,,5.如图,已知在Rt△ABC中,E,F分别是边AB,AC上的点,AE=AB,AF=AC,分别以BE、EF、FC为直径作半圆,面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S3=2S2B.S1+S3=4S2C.S1=S3=S2D.S2=(S1+S3)6.已知△ABC的边长分别为5,7,8,则△ABC的面积是()A.20B.10C.10D.287.在△ABC中,AB=BC=2,O是线段AB的中点,P是射线CO上的一个动点,∠AOC =60°,则当△P AB为直角三角形时,AP的长为()A.1,,7B.1,,C.1,D.1,3,8.如图,在四边形ABCD中,AB=BC=2,AD=2,AB⊥BC,CD⊥AD,连接AC,点P是在四边形ABCD边上的一点;若点P到AC的距离为,这样的点P有()A.0个B.1个C.2个D.3个9.如图,Rt△ADC,Rt△BCE与Rt△ABC按如图方式拼接在一起,∠ACB=∠DAC=∠ECB =90°,∠D=∠E=45°,AB=16,则S Rt△ADC+S Rt△BCE为()A.16B.32C.160D.12810.如图是边长为1的3×3的正方形网格,已知△ABC的三个顶点均在正方形格点上,则AC边上的高是()A.3B.C.D.11.若△ABC中,AB=13,BC=5,AC=12,则下列判断正确的是()A.∠A=90°B.∠B=90°C.∠C=90°D.△ABC是锐角三角形12.如果a,b,c是直角三角形的三边长,那么2a,2b,2c为边长的三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不确定13.直角三角形的两条直角边为a、b,斜边为c,斜边上的高为h,下列结论:①a2+b2=c2;②ab=ch;③.其中正确的是()A.①B.①②③C.①②D.①③14.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,则CD的长为()A.4B.12﹣4C.12﹣6D.615.如图,公园里有一块草坪,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB ⊥BC,这块草坪的面积是()A.24平方米B.36平方米C.48平方米D.72平方米16.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=16,AD⊥BC,垂足为D,∠ACB 的平分线交AD于点E,则AE的长为()A.B.4C.D.6二.填空题(共3小题)17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C 的面积和是9,则正方形D的边长______.18.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为______.19.如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为______.三.解答题(共7小题)20.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D为AC边上的个动点,点D从点A出发,沿边AC向C运动,当运动到点C时停止,设点D运动时间为t秒,点D运动的速度为每秒1个单位长度的.(1)当t=2时,求CD的长;(2)求当t为何值时,线段BD最短?21.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.(1)求AD的长;(2)求AE的长.22.(1)勾股定理的证法多样,其中“面积法”是常用方法,小明发现:当四个全等的直角三角形如图摆放时,可以用“面积法”来证明勾股定理.(写出勾股定理的内容并证明)(2)已知实数x,y,z满足:,试问长度分别为x、y、z的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.23.如图,在四边形ABCD中,AB=4,AD=3,BC=12,CD=x,x>0,AB⊥AD.(1)求BD的长;(2)当x为何值时△BDC为直角三角形?(3)在(2)的条件下,求四边形ABCD的面积.24.如图,在四边形ABCD中,AB=BC=3,CD=,DA=5,∠B=90°,求∠BCD的度数.25.如图所示,每个小正方形的边长为1cm(1)求四边形ABCD的面积;(2)四边形ABCD中有直角吗?若有,请说明理由.26.小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图2,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a2+b2=c2.勾股定理提升训练1参考答案与试题解析一.选择题(共16小题)1.解:A、∵72+92≠122,∴三条线段不能组成直角三角形,故A选项不符合题意;B、∵22+32≠42,∴三条线段不能组成三角形,不能组成直角三角形,故B选项不符合题意;C、∵12+()2=22,∴三条线段能组成直角三角形,故C选项符合题意;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项不符合题意;故选:C.2.解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,设AC=b,BC=a,AB=c,∵△ABC是直角三角形,且∠BAC=90度,∴c2+b2=a2,∴c2+b2=a2.又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,∴S1+S2=S3,∵S3=8,S2=3,∴S1=S3﹣S2=8﹣3=5,故选:D.3.解:∵点E为AC的中点,DE⊥AC于E,∴AD=CD,∴∠A=∠ACD,∵∠ACB=90°,∴∠A+∠B=∠ACD+∠BCD=90°,∴∠DCB=∠B,∴CD=BD,∵AC=8,BC=6,∴AB=10,∴CD=AB=5,故选:C.4.解:A、∵12+()2=22,∴以1、、2为边能组成直角三角形,故本选项不符合题意;B、∵72+242=252,∴以7、24、25为边能组成直角三角形,故本选项不符合题意;C、∵()2+()2≠()2,∴以、、为边不能组成直角三角形,故本选项符合题意;D、∵12+()2=2,∴以1、、为边能组成直角三角形,故本选项不符合题意;故选:C.5.解:∵在Rt△ABC中,AE=AB,AF=AC,∴AE=BE,AF=CF,EF2=AE2+AF2,∴EF2=BE2+CF2.∴π•EF2=π•(BE2+CF2),即S2=(S1+S3).∴S1+S3=4S2.故选:B.6.解:如图,∵AB=5,AC=7,BC=8,过A作AD⊥BC于D,∴AB2﹣BD2=AC2﹣CD2=AD2,∴52﹣BD2=72﹣(8﹣BD)2,解得:BD=,∴AD==,∴△ABC的面积=10,故选:C.7.解:如图1,当∠APB=90°时,∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=2,∴AP=AB•sin60°=2×=;如图2,当∠ABP=90°时,∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===,在直角三角形ABP中,AP==;如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=1,故选:C.8.解:∵AB=BC=2,AD=2,AB⊥BC,CD⊥AD,∴∠BAC=∠ACB=45°,∠DAC=60°,∠ACD=30°,∵点P到AC的距离为,∴AP=CP=,∴在AB和BC边上存在这样的P点,∵AD=2,∴D到AC的距离为,∴当点P与点D重合时,P到AC的距离为,∴这样的点P有3个,故选:D.9.解:∵∠ACB=90°,AB=16,∴AC2+BC2=256,∵∠DAC=∠ECB=90°,∠D=∠E=45°,∴AD=AC,BC=CE,∴S Rt△ADC+S Rt△BCE=256×=128.故选:D.10.解:∵AC==,△ABC的面积=3×3﹣×2×3﹣×2×1﹣×3×1=,∴则AC边上的高==;故选:C.11.解:∵52+122=169,132=169,∴52+122=132,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.故选:C.12.解:∵a,b,c是直角三角形的三边长,设c为斜边,∴a2+b2=c2,又∵(2a)2+(2b)2=4(a2+b2),(2c)2=4c2,∴(2a)2+(2b)2=(2c)2,即2a,2b,2c为边长的三角形是直角三角形,故选:A.13.解:∵直角三角形的两条直角边为a、b,斜边为c,斜边上的高为h,∴由勾股定理可知:a2+b2=c2,①正确;这个直角三角形的面积=ab=ch,∴ab=ch,②正确;∴a2b2=c2h2,∴====,③正确.故选:B.14.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=BC×sin45°=12×=12CM=BM=12,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=4,∴CD=CM﹣MD=12﹣4.故选:B.15.解:则由勾股定理得AC=5米,因为AC2+DC2=AD2,所以∠ACD=90°.这块草坪的面积=S Rt△ABC+S Rt△ACD=AB•BC+AC•DC=(3×4+5×12)=36米2.故选:B.16.解:在Rt△ABD中,∵∠ADB=90°,AB=16,∠B=45°,∴BA=DA=8,在Rt△ADC中,∵∠ADC=90°,∠ACD=60°,AD=8,∴CD=,∵CE平分∠ACD,∴∠ECD=30°,∴DE=CD•tan30°=,∴AE=AD﹣DE=8﹣=,故选:C.二.填空题(共3小题)17.解:根据勾股定理的几何意义得:S D=S A+S B+S C=9,可知,D的边长为=3.故答案为:3.18.解:根据勾股定理,AB==,BC==2,AC==3,∵AC2+BC2=AB2=26,∴△ABC是直角三角形,∵点D为AB的中点,∴CD=AB=×=.故答案为:.19.解:在Rt△BAC中,∠BAC=90°,AB=3,BC=5,由勾股定理得:BC==5,所以阴影部分的面积S=×π×()2+×()2+×3×4﹣×π×()2=6.故答案为:6.三.解答题(共7小题)20.解:(1)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∴AC==10,当t=2时,AD=2,∴CD=8;(2)当BD⊥AC时,BD最短,∵BD⊥AC,∴∠ADB=∠ABC=90°,∵∠A=∠A,∴△ABD∽△ADB,∴=,∴=,∴AD=,∴t=,∴当t为时,线段BD最短.21.解:(1)如图所示:∵在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=10,∵DE垂直平分AB,∴AD=BD=5.(2)∵DE垂直平分AB,∴BE=AE,设EC=x,则AE=BE=8﹣x,故62+x2=(8﹣x)2,解得:x=,∴AE=8﹣=.22.(1)证明:∵S五边形面积=S梯形面积1+S梯形面积2=S正方形面积+2S直角三角形面积,即:(b+a+b)b+(a+a+b)a=c2+2×ab,即ab+a2+b2ab=c2+ab,即:a2+b2=c2;(2)解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,z=4,∵32+42=52,∴可以组成三角形,且为直角三角形,面积为6.23.解:(1)如图,∵AB=4,AD=3,AB⊥AD.∴BD===5,即BD的长度是5;(2)在直角△BCD中,BD=5,BC=12.①当CD为斜边时,由勾股定理知:CD===13.②当CD、BD为直角边时,由勾股定理知:BC=,即12=,则CD=.综上所述,CD的长度是13或.即x为13或时△BDC为直角三角形;(3)①当CD为斜边时,S四边形ABCD的面积=S△ABD+S△BCD=AB•AD+BD•BC=+×5×12=36.②当CD、BD为直角边时,S四边形ABCD的面积=S△ABD+S△BCD=AB•AD+BD•CD=+×5×=6+.综上所述,四边形ABCD的面积是36或6+.24.解:∵在Rt△ABC中,AB=BC=3,∠B=90°,∴由勾股定理得:AC2=AB2+BC2=32+32=18,∵CD=,DA=5,∴CD2+AC2=DA2,∴∠ACD=90°,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∴∠BCD=∠ACB+∠ACD=45°+90°=135°.25.解:(1)如图,∵四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD=5×5﹣×1×5﹣×2×4﹣×1×2﹣×(1+5)×1=14;(2)四边形ABCD中有直角.理由:连结BD,BC=2,CD=,CD=5,∵CD2=BC2+CD2,∴∠C=90°,∴四边形ABCD中有直角.26.解:∵AE=a,DE=b,AD=c,∴S正方形EFGH=EH2=(a+b)2,S正方形EFGH=4S△AED+S正方形ABCD=4×+c2,∴(a+b)2=2ab+c2,∴a2+b2=c2.。
勾股定理能力提高训练题一.勾股定理中方程思想的运用例题1.如左图所示,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD的长为()二.勾股定理中分类讨论思想的运用例题2.已知△ABC中,AB=20,AC=15,BC边上的高为12,求△ABC的面积。
三.勾股定理中类比思想的运用例题3.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个等边三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明四.勾股定理中整体思想的运用例题4.在直线l上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_____.五.勾股定理中数型结合思想的运用例题5.在一棵树的10m 高处有两只猴子,其中一只爬下树直奔离树20m 的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?练习题1、已知Rt △ABC 中,∠A ,∠B ,∠C ,的对边长分别为a ,b ,c ,设△ABC 的面积为S ,周长为L. (1)(2)、仔细观察上表中你填写的数据规律,如果a ,b ,c 为已知的正实数,且a+b-c=m ,那么S/L= (用含m 的式子表示) (3)、请说明你写的猜想的推理过程。
2、在Rt △ABC 中,∠ACB=900,AC=4,BC=3.在Rt △ABC 外部拼接一个合适的三角形, 使得拼成的图形刚好是一个等腰三角形。
要求画出图形并计算出边长。
《勾股定理》能力提升训练一、以下列各组数为边长,能组成直角三角形的是( )A .32,42,52B .34,5,C .2,3,5,, D .1,2,3 2. 下列说法中, 不正确的是 ( )A. 三个角的度数之比为1:3:4的三角形是直角三角形B. 三个角的度数之比为3:4:5的三角形是直角三角形C. 三边长度之比为3:4:5的三角形是直角三角形D. 三边长度之比为5:12:13的三角形是直角三角形3、若直角三角形的三边长别离为2,4,x ,则x 的可能值有( )A .1个B .2个C .3个D .4个 4、如图,在平面直角坐标系中,点P 坐标为(-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( )A .-4和-3之间B .3和4之间C .-5和-4之间D .4和5之间五、如图,小亮将升旗的绳索拉到旗杆底端,绳索结尾恰好接触到地面,然后将绳索结尾拉到距离旗杆8m 处,发觉现在绳索结尾距离地面2m ,则旗杆的高度为(滑轮上方的部份忽略不计)为( ) A .12m B .13m C .16mD .17m六、如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条抵达底部的直吸管在罐内部份a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .12≤a ≤13B .12≤a ≤15C .5≤a ≤12D .5≤a ≤137、如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能组成一个直角三角形三边的线段是( )A. CD、EF、GHB. AB、EF、GHC. AB、CD、GHD. AB、CD、EF八、如图,将矩形ABCD的四个角向内折起,恰好拼成一个无裂缝无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米9、已知x、y为正数,且│x2-4│+(y2-3)2=0,若是以x、y的长为直角边作一个直角三角形,那么以那个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、1510. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( ) A. ab=h2 B. a2+b2=2h2 C.a1+b1=h1D.21a+21b=21h11.已知,如图,在矩形ABCD中,P是边AD上的动点,ACPE⊥于E,BDPF⊥于F,若是AB=3,AD=4,那么()A.512=+PFPE; B.512<PFPE+<513;C. 5=+PFPE D. 3<PFPE+<412.已知直角三角形两边x、y的长知足|x2-4|+652+-yy=0,则第三边长为_____.13、如图,每一个小正方形的边长为1,A、B、C 是小正方形的极点,则∠ABC的度数为;14、如图,在△ABC中,∠B=45°,AB= 2,BC= 3+1,则边AC的长为;15、如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为;16、如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB与BC重合,A与BC延长线上的点D重合,则DE的长度为;17、数轴上的点A所表示的数为x,则x2—10的立方根为18、在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积别离是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= ;A DPE F第6题B A6cm 3cm 1cm19、如图,长方体的底面边长别离为1cm 和3cm ,高为6cm . ①若是用一根细线从点A 开始通过4个侧面缠绕一圈抵达点B , 那么所用细线最短需要__________cm ;②若是从点A 开始通过4个侧面缠绕3圈抵达点B , 那么所用细线最短需要__________cm .20、一直角三角形斜边的长是2,周长是2+7,则该三角形的面积是; 解答题:21、如图,在边长为1的小正方形组成的网格中,△ABC 的三个极点均在格点上,请证明△ABC 是直角三角形.20、在一棵树的10米高的B 处有两只猴子,为了抢吃水池边A 处水果,一只猴子爬下树跑到离C 处20米远的A 处.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,若是两只猴子所通过的距离相等,求这棵树的高.21、已知:如图,在长方形ABCD 中,AB=3,BC=4将△BCD 沿BD所在直线翻折,使点C 落在点F 上,若是BF 交AD 于E ,求AE 的长.22、如图,在△ABC 中,∠C=90°,角A 、B 、C 的对边别离为a 、b 、c ,设△ABC 的面积为s ,周长的一半为e . (1)填写表:(2)观看表,令m=e-a ,n=e-b ,探讨m 、n 与s 之间的关系,并对你的结论给予证明.23.四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11=a ,按上述方式所作的正方形的边长依次为n a a a a ,,,,432 ,请求出432,,a a a 的值;⑵依照 以上规律写出n a 的表达式.24、在等腰直角三角形中,AB=AC ,点D 是斜边BC 的中点,点E 、F 别离为AB 、AC 边上的点,且DE ⊥DF 。
中考数学复习《勾股定理》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A.25B.14C.7D.7或252.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )3.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A.13B.8C.12D.104.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2,则AB=( )A.4B.233C.433D.335.适合下列条件的△ABC中,∠A,∠B,∠C是三个内角,a,b,c分别是∠A,∠B,∠C的对边,直角三角形的个数是( )①a=7,b=24,C=25;②a=1.5,b=2,c=7.5;③∠A:∠B:∠C=1:2:3; ④a=1,b=2,c= 3.A.1个B.2个C.3个D.4个6.若△ABC的三边分别为5、12、13,则△ABC的面积是( )A.30B.40C.50D.607.一架250cm的梯子,斜靠在竖直的墙上,梯脚距墙终端70cm,如果梯子顶端沿着墙下滑40cm,那么梯脚将向外侧滑动( )A.40cmB.80cmC.90cmD.150cm8.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 59.如图,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,则AP+BP+CP的最小值为( )A.4.8B.8C.8.8D.9.810.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为( )A.12秒B.16秒C.20秒D.30秒.二、填空题11.在△ABC中,三边长分别为8、15、17,那么△ABC的面积为.12.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+∣c﹣b∣=0,则△ABC的形状为_______________.13.已知等腰直角三角形的面积为2,则它的周长为.(结果保留根号)14.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为 .15.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.若AM=3,MN=5,则BN 的长为____________.16.如图,已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第二个等边三角形AB1C1;再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第三个等边三角形AB2C2;再以等边三角形AB2C2的B2C2边上的高AB3为边作等边三角形,得到第四个等边三角形AB3C3……记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3……则Sn= .三、作图题17.在如图所示的5×5的正方形网格中,每个小正方形的边长均为1,按下列要求画图或填空;(1)画一条线段AB使它的另一端点B落在格点上(即小正方形的顶点),且AB=22;(2)以(1)中的AB为边画一个等腰△ABC,使点C落在格点上,且另两边的长都是无理数;(3)△ABC的周长为,面积为.四、解答题18.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.19.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.20.如图,在△ABC中,点O是AC边上的一点.过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于F.(1)求证:EO=FO;(2)若CE=4,CF=3,你还能得到那些结论?21.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)22.某菜农要修建一个塑料大棚,如图所示,若棚宽a=4m,高b=3m,长d=40m。
八年级数学勾股定理拓展提高(勾股定理)拔高练习一、填空题(共5道,每道4分)1.教材1题:△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是_______.2.教材3题:在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______.3题图5题图3.教材4题:△ABC周长是24,M是AB的中点,MC=MA=5,则△ABC的面积是_____.4.教材5题:将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.5.教材10题:矩形ABCD中,BC=4,DC=3,将该矩形沿对角线BD折叠,使点C落在点F处,求EF的长_____.二、解答题(共5道,每道10分)1.教材9题:如图,有一个直角三角形纸片,两直角边AC=8cm,BC=6cm,现将直角边BC沿直线BD折叠,使它落在斜边AB上的点C′处,求CD的长以及折痕BD的平方1题图2题图2.教材8题:如图,已知DE=m,BC=n,∠EBC与∠DCB互余,求+的值.3.教材12题:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B´处,点A对应点为A´,且B´C=3,求CN和AM的长.3题图4题图5题图4.教材14题:如图,某隧道的截面是一个半径为米的半圆形,一辆高米,宽3米的卡车能通过该隧道吗?5.教材16题:如图,某沿海城市A接到台风警报,在该市正南方向150km的B处有一台风中心正以20km/h的速度向BC方向移动,已知城市A到BC的距离AD=90km(1)台风中心经过多长时间从B点移到D点(2)如果在距台风中心30km的圆形区域内都有受到台风破坏的危险,为让D点的游人脱离危险,游人必顺在接到台风警报后的几小时内撤离(撤离速度为6km/h)三、证明题(共3道,每道10分)1.教材2题:如图,在正方形ABCD中,E是DC的中点,F为BC上的一点且BC=4CF,试说明△AEF是直角三角形.1题图2题图3题图2.作业1题:如图,已知P是矩形ABCD内任一点,求证:PA2+PC2=PB2+PD23.教材6题:如图所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.。
勾股定理提高训练一、简答题1、如图,矩形ABCD的长AB=4cm.宽BC=3cm,P、Q以1cm/s的速度分别从A、B出发,沿AB、BC方向前进,经多少秒后P、Q之间的距离为 2cm?2、如图,直线表示草原上一条河,在附近有A、B两个村庄,A、B到的距离分别为AC=30km,BD=40km,A、B两个村庄之间的距离为50km.有一牧民骑马从A村出发到B村,途中要到河边给马饮一次水。
如果他在上午八点出发,以每小时30km的平均速度前进,那么他能不能在上午十点三十分之前到达B村?3、《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)4、如图,四边形ABCD,AD∥BC,∠B=90°,AD=6,AB=4,BC=9.(1)求CD 的长为__________.(2)点P从点B出发,以每秒1个单位的速度沿着边BC向点C运动,连接DP.设点P运动的时间为t秒,则当t为何值时,△PDC为等腰三角形?5、如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要多少cm?6、如图,折叠长方形的一边AD,使点D 落在BC边上的点F处, BC=15cm,AB=9cm 求(1)FC的长,(2)EF的长.9、如图,Rt△ABC中,∠C=90°,现将直角边AC折叠到AB边上,点C落在AB边上的E点,折痕为AD.若AC=6,BC=8.求△ADB的面积.10、如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?11、已知三边满足,请你判断的形状,并说明理由.12、如图7,四边形ABCD中,.试判断的形状,并说明理由.13、在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.14、已知a、b、c为△ABC的三边,且,试判断△ABC的形状。
CB AB 第7题F ED C B A 第9题 BA6cm3cm 1cm第10题图勾股定理提高训练(一)1、在Rt △ABC 中,若直角边的长分别为1cm ,2cm ,则斜边长为_____________.2、已知直角三角形的两边长为3、2,则另一条边长是________________.3.在一个直角三角形中,若斜边长为5cm ,直角边的长为3cm ,则另一条直角边的长为( ). A .4cm B .4cm 或cm 34 C .cm 34 D .不存在 4、在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( )A.2B.4C.6D.85、直角三角形两直角边长分别为5和12,则它斜边上的高为_______.6、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”, 在花铺内走出了一条“路”.他们仅仅少走了 步路 (假设2步为1米)7、如图,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是_____________.8、把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.9.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与 A 点重合,则EB 的长是( ). A .3B .4 CD .510、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .①如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B , 那么所用细线最短需要__________cm ;②如果从点A 开始经过4个侧面缠绕3圈到达点B , 那么所用细线最短需要__________cm .勾股定理提高训练(二)1、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°2、下列各组数据中,不能作为直角三角形三边长的是( )A.9,12,15B.43,1,45 C.0.2,0.3,0.4 D.40,41,9715242520715202425157252024257202415(A)(B)(C)(D)3、满足下列条件的三角形中,不是直角三角形的是( ) A.三个内角比为1∶2∶1 B.三边之比为1∶2∶5 C.三边之比为3∶2∶5 D. 三个内角比为1∶2∶34、已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为( ) A.2 B.102 C.10224或 D.以上都不对5、 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )A B C D6、△ABC 的三边分别是7、24、25,则三角形的最大内角的度数是 7、已知△ABC 的三边长满足18,10==+ab b a ,8=c ,则为 三角形.8、将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ).A.直角三角形B.锐角三角形C.钝角三角形D.不是直角三角形 9、在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为 AD= cm .10、下列命题中是假命题的是( ).A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形.B .△ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形. C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D .△ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形.11.如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.第11题图12、如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .13、如图,在梯形ABCD 中,AD∥BC,AB⊥AC,∠B=45°,AD =1,B C =4,求DC 的长.11、在数轴上作出表示10的点.12、如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校 A 及车站D 的距离相等,求商店与车站之间的距离.BACD . 第12题图B C A DA D EBC13.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA⊥AB 于A ,CB⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?14、如图所示,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3, 求AB 的长.第14题图。
一. 勾股定理的构造(添加辅助线:即构造基本图形)1. 如图,已知:,,于P . 求证:.2. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积.二. 用勾股定理求最短问题1. 如图,一圆柱体的底面周长为16cm ,高AB为6cm ,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.2. 如图,铁路上A ,B 两点相距40km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=20km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,为了降低建设成本, 要使得C ,D 两村到E 站的路程之和最小,这个最小和的路程之和是多少?A B CD3. 如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160m 。
假设拖拉机行驶时,周围100m 以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?二. 折叠类问题1. 如图所示,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm ,求EF 的长。
2. 已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求△ABE 的面积.(提示:通过勾股定理列方程求解)3. 如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。
C 'F EO D C B A4. 将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。
提高题专题复习勾股定理练习题及答案一、选择题1.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则AP BP CP ++的最小值为( )A .8B .8.8C .9.8D .102.如图钢架中,∠A =15°,现焊上与AP 1等长的钢条P 1P 2,P 2P 3…来加固钢架,若最后一根钢条与射线AB 的焊接点P 到A 点的距离为4+23,则所有钢条的总长为( )A .16B .15C .12D .103.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm4.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( ) A .2 B .13C .5 D .6 5.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( ) A .6 B .12 C .62D .36.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.22B.4 C.3 D.108.长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为()A.1个B.2个C.3个D.4个9.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.17B.5C.2D.710.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为()A.5B7C.57D.3或4二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm、3 dm和1 dm,A和B 是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是 dm.13.如图,在矩形ABCD中,AB=6,AD=8,矩形内一动点P使得S△PAD=13S矩形ABCD,则点P到点A、D的距离之和PA+PD的最小值为_____.14.如图,在Rt△ABC中,∠B=90°,以AC为斜边向外作等腰直角三角形COA,已知BC=8,OB=102,则另一直角边AB的长为__________.15.如图,已知△DBC是等腰直角三角形,BE与CD交于点O,∠BDC=∠BEC=90°,BF=CF ,若BC=8,OD=2,则OF=______.16.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.17.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.18.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.19.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,22),点G 的斜坐标为(7,﹣22),连接PG ,则线段PG 的长度是_____.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.(1)求BF 的长;(2)求CE 的长.23.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.24.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .25.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由;(3)直接写出ADG ∆的周长.26.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.27.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.29.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,△ABC的面积为S=()()()()a b c a b c a c b b c a+++-+-+-.(1)(举例应用)已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a=4,b =5,c=7,则△ABC的面积为;(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.30.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG≌△BDF;(2)请你连结EG,并求证:EF=EG;(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;(4)求线段EF长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由AP+CP=AC 得到AP BP CP ++=BP+AC ,即计算当BP 最小时即可,此时BP ⊥AC ,根据三角形面积公式求出BP 即可得到答案.【详解】∵AP+CP=AC ,∴AP BP CP ++=BP+AC ,∴BP ⊥AC 时,AP BP CP ++有最小值,设AH ⊥BC ,∵56AB AC BC ===,∴BH=3, ∴224AH AB BH =-=, ∵1122ABC SBC AH AC BP =⋅=⋅, ∴1164522BP ⨯⨯=⨯, ∴BP=4.8,∴AP BP CP ++=AC+BP=5+4.8=9.8,故选:C.【点睛】此题考查等腰三角形的三线合一的性质,勾股定理,最短路径问题,正确理解AP BP CP ++时点P 的位置是解题的关键.2.D解析:D【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,求出钢条的根数,然后根据最后一根钢条与射线AB 的焊接点P 到A 点的距离即AP 5为3AP1=a,作P2D⊥AB于点D,再用含a的式子表示出P1P3,P3P5,从而可求出a的值,即得出每根钢条的长度,从而可以求得所有钢条的总长.【详解】解:如图,∵AP1与各钢条的长度相等,∴∠A=∠P1P2A=15°,∴∠P2P1P3=30°,∴∠P1P3P2=30°,∴∠P3P2P4=45°,∴∠P3P4P2=45°,∴∠P4P3P5=60°,∴∠P3P5P4=60°,∴∠P5P4P6=75°,∴∠P4P6P5=75°,∴∠P6P5B=90°,此时就不能再往上焊接了,综上所述总共可焊上5根钢条.设AP1=a,作P2D⊥AB于点D,∵∠P2P1D=30°,∴P2D=12P1P2,∴P1D=32a,∵P1P2=P2P3,∴P1P3=2P1D =3a,∵∠P4P3P5=60°,P3P4=P4P5,∴△P4P3P5是等边三角形,∴P3P5=a,∵最后一根钢条与射线AB的焊接点P到A点的距离为4+23,∴AP5=a+3a+a=4+23,解得,a=2,∴所有钢条的总长为2×5=10,故选:D.【点睛】本题考查了三角形的内角和、等腰三角形的性质、三角形外角的性质、等边三角形的判定与性质以及勾股定理等知识,发现并利用规律找出钢条的根数是解答本题的关键.3.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故选:D.【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.4.D解析:D【分析】先根据B(3m,4m+1),可知B在直线y=43x+1上,所以当BD⊥直线y=43x+1时,BD最小,找一等量关系列关于m的方程,作辅助线:过B作BH⊥x轴于H,则BH=4m+1,利用三角形相似得BH2=EH•FH,列等式求m的值,得BD的长即可.【详解】解:如图,∵点B(3m,4m+1),∴令341m xm y=⎧⎨+=⎩,∴y=43x+1,∴B在直线y=43x+1上,∴当BD⊥直线y=43x+1时,BD最小,过B作BH⊥x轴于H,则BH=4m+1,∵BE在直线y=43x+1上,且点E在x轴上,∴E(−34,0),G(0,1)∵F是AC的中点∵A(0,−2),点C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH⋅FH,∴(4m+1)2=(3m+34)(3−3m)解得:m1=−14(舍),m2=15,∴B(35,95),∴=6,则对角线BD的最小值是6;故选:D.【点睛】本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B的坐标确定其所在的直线的解析式是关键.5.D解析:D【分析】根据直角三角形的性质求出BC,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∠A=30°,∴BC=12AB=6,由勾股定理得,=故选:D.【点睛】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.6.B解析:B【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,则=AF FC .AD BC ∵∥,FAO BCO ∴∠=∠.在FOA ∆与BOC ∆中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FOA BOC ASA ∴∆≅∆,3AF BC ∴==,3FC AF ∴==,431FD AD AF =-=-=.在FDC ∆中,90D ︒∠=,222CD DF FC ∴+=,22213CD ∴+=,22CD∴=.故选A.【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.8.B解析:B【解析】试题分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故选B.考点:勾股定理的逆定理点评:本题难度中等,主要考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.9.A解析:A【解析】试题解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,{BAD CBEAB BCADB BEC∠=∠=∠=∠,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得25+9=34,在Rt△ABC中,根据勾股定理,得342=217.故选A.考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.10.C解析:C【分析】根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.【详解】由题意可得,当3和4为两直线边时,第三边为:2243+=5,当斜边为4时,则第三边为:2243-=7,故选:C【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.二、填空题11.103. 【解析】 试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=10,故3x+12y=10,x+4y=103, 所以S 2=x+4y=103. 考点:勾股定理的证明.12.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.13.2【分析】根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.【详解】 设△PAD 中AD 边上的高是h .∵S △PAD =13S 矩形ABCD , ∴12 AD •h =13AD •AB , ∴h =23AB =4, ∴动点P 在与AD 平行且与AD 的距离是4的直线l 上,如图,作A 关于直线l 的对称点E ,连接BE ,DE ,则DE 的长就是所求的最短距离.在Rt △ADE 中,∵AD =8,AE =4+4=8, DE 22228882AE AD ++=即PA +PD 的最小值为2 .故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.14.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以BE=()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键. 15.10【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC =∴DC DB ===∵OD =∴OC DC OD =-=∴OB =设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+∴17OE =∴EC ==∵BF CF =,FG ⊥BE ,∠BEC=90°∴12FG EC ==∴BE BO OE =+=∴12GO GE OE BE OE =-=-=∴OF =【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.16【分析】根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, AD ==∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅∴42158CE ⨯=得15CE =故此题填15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 17.5【分析】设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值【详解】如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10设绳索x 尺,则OA=OB=x∴OC=x+1-5=x-4在Rt △OBC 中,OB 2=OC 2+BC 2∴222(4)10x x =-+得x=14.5(尺)故填14.5 ,【点睛】此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键. 1871【分析】分别找到两个极端,当M 与A 重合时,AP 取最大值,当点N 与C 重合时,AP 取最小,即可求出线段AP 长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.19.5【分析】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.【详解】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .∵P(1,2),G(7.﹣2),∴OA=1,PA=GM=2,OM=7,AM=6,∵PA∥GM,∴∠PAN=∠GMN,∵∠ANP=∠MNG,∴△ANP≌△MNG(AAS),∴AN=MN=3,PN=NG,∵∠PAH=45°,∴PH=AH=2,∴HN=1,∴2222215PN PH NH=+=+=∴PG=2PN=5.故答案为5【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.20.2【分析】根据三角形等面积法求出32ACBC=,在Rt△ACD中根据勾股定理得出AC2=14BC2+36,依据这两个式子求出AC、BC的值.【详解】∵AD是BC边上的高,BE是AC边上的高,∴12AC•BE=12BC•AD,∵AD=6,BE=4,∴ACBC=32,∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(12)150°;(3【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD =3; (2)在△ADE 中,∵7,3,2AD AE DE ===, ∴DE 2+AE 2=()()222237+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP 22213-=,∴AE =CP ,在△AEG 与△CPG 中,∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12, ∴AG ()222211332AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG 13【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.(1)BF 长为6;(2)CE 长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】解:(1)∵四边形ABCD为矩形,∴∠B=90°,且AD=BC=10,又∵AFE是由ADE沿AE翻折得到的,∴AF=AD=10,又∵AB=8,在Rt△ABF中,由勾股定理得:,故BF的长为6.(2)设CE=x ,∵四边形ABCD为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,又∵△AFE是由△ADE沿AE翻折得到的,∴FE=DE=8-x,由(1)知:BF=6,故CF=BC-BF=10-6=4,CF+CE=EF,在Rt△CEF中,由勾股定理得:222∴2224+x=(8-x),解得:x=3,故CE的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.23.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+3)2∴DE2=(EB+12AD)2+(32AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.24.(1)13,17,10,112;(2)图见解析;7. 【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.【详解】解:(1)如图1中,AB =22AE BE +=2232+=13,BC =22BD CD +=2214+=17,AC =22AF CF +=2213+=10,S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣32﹣2=112, 故答案为13,17,10,112. (2)△PMN 如图所示.S △PMN =4×4﹣2﹣3﹣4=7,故答案为7.【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.25.(1)(0,3);(2)DF OE =;(3)93233+【分析】(1)由等边三角形的性质得出6OB =,12AB AC BC ===,由勾股定理得出2263OA AB OB =-=A 的坐标;(2)由等边三角形的性质得出AD AE =,AF AO =,60FAO DAE ∠=∠=︒,证出FAD OAE ∠=∠,由SAS 证明FAD OAE ∆≅∆,即可得出DF OE =;(3)证出90AGO ∠=︒,求出9AG =,由全等三角形的性质得出AOE AFD ∠=∠,证出6090FDO AFD AOD ∠=∠+︒+∠=︒,由等边三角形的性质得12DG OF ==即可得出答案.【详解】解:(1)ABC ∆是等边三角形,点0()6,B -,点(6,0)C ,6OB ∴=,12AB AC BC ===,OA === ∴点A 的坐标为(0,;(2)DF OE =;理由如下:ADE ∆,AFO ∆均为等边三角形,AD AE ∴=,AF AO =,60FAO DAE ∠=∠=︒,FAD OAE ∴∠=∠,在FAD ∆和OAE ∆中,AF AO FAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()FAD OAE SAS ∴∆≅∆,DF OE ∴=;(3)60AOF ∠=︒,30FOB ∴∠=︒,60ABO ∠=︒,90AGO ∴∠=︒,AFO ∆是等边三角形,AO =·sin 6092AG OA ∴=︒==, FAD OAE ∆≅∆,AOE AFD ∴∠=∠,30DOE AOD AOE ∠=︒=∠+∠,30AOD AFD ∴∠+∠=︒,FDO AFD FAO AOD ∠=∠+∠+∠,60603090FDO AFD AOD ∴∠=∠+︒+∠=︒+︒=︒,AG OF ⊥,AOF ∆为等边三角形,G ∴为斜边OF 的中点,1122DG OF ∴==⨯= ADG ∴∆的周长9AG AD DG =++=+【点睛】本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.26.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD 2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--, 化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M ,②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.27.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.【分析】(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.【详解】(1)不存在一组数,既符合上述规律,且其中一个数为71.理由如下:根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;若271m =,则35.5,m =,此时m 不符合题意;若2171m +=,则270m =,此时m 不符合题意,所以不存在一组数,既符合上述规律,且其中一个数为71.(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.理由如下:对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).因为2224222(1)(2)21(1)m m m m m -+=++=+所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用28.(1),CM ME CM EM =⊥;(2)见解析;(3)CM =【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME ≌△BMH (ASA ),∴HM =EM ,EF =BH ,∵CD =BC ,∴CE =CH ,∵∠HCE =90°,HM =EM ,∴CM =ME ,CM ⊥EM .(2)如图2,连接BD ,∵四边形ABCD 和四边形EDGF 是正方形,∴45,45FDE CBD ︒︒∠=∠=∴点B E D 、、在同一条直线上,∵90,90BCF BEF ︒︒∠=∠=,M 为BF 的中点, ∴12CM BF =,12EM BF =,∴CM ME =, ∵45EFD ∠=︒,∴135EFC ∠=︒,∵CM FM ME ==,∴,MCF MFC MFE MEF ∠=∠∠=∠∴135MCF MEF ∠+∠=︒,∴36013513590CME ∠=︒-︒-︒=︒,∴CM ME ⊥.(3)如图3中,连接EC ,EM .由(1)(2)可知,△CME 是等腰直角三角形,∵22EC 26210+=∴CM =EM =25【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.29.(1)46(2)(123+24+510)m2【分析】(1)由已知△ABC的三边a=4,b=5,c=7,可知这是一个一般的三角形,故选用海伦-奏九韶公式求解即可;(2)过点D作DE⊥AB,垂足为E,连接BD.将所求四边形的面积转化为三个三角形的面积的和进行计算.【详解】(1)解:△ABC的面积为S=()()()()a b c a b c a c b b c a+++-+-+-=(457)(457)(475)(574)+++-+-+-=46故答案是:46;(2)解:如图:过点D作DE⊥AB,垂足为E,连接BD(如图所示)在Rt△ADE中,∵∠A=60°,∴∠ADE=30°,∴AE=12AD=6∴BE=AB﹣AE=62﹣6=2DE2222(46)(26)62AD AE-=-=∴BD2222BE DE(42)(62)226+=+=∴S△BCD 1(57226)(57226)(22675)(22657)510 4+++-+-+-=∵S△ABD=11642)6212324 22AB DE⋅=⨯⨯=∴S四边形ABCD=S△BCD+S△ABD=12324510+答:该块草地的面积为(12324510+m2.【点睛】本题考查了勾股定理的应用和三角形面积的求解方法.此题难度不大,注意选择适当的求解方法是关键.。
中考数学复习《勾股定理》专项提升训练题-附答案学校:班级:姓名:考号:一、单选题1.以下列长度为边,能构成直角三角形的是()A.B.C.D.2.如图,四边形是长方形,BC=1,则点表示的数是()A.B.C.D.3.如图,有一根电线杆垂直立在地面处,在电线杆的点处引拉线固定电线杆,拉线,且和地面成,则电线杆引线处离地面的高度(即的长)是()A.B.C.D.4.中,将绕点A逆时针旋转后,能与重合,如果,那么的长等于()A.3 B.C.D.不能确定5.如图,是一个外轮廓为长方形的机器零件平面示意图,根据图中标注的尺寸,(单位:),可得两圆孔中心和的距离是()A.B.C.D.6.在中,a,b,c分别是,和的对边,若,则这个三角形一定是().A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形7.如图,在中,和,是的垂直平分线,交于点,交于点,连接,则的长为()A.B.C.D.8.如图,在长方体盒子中,和,长为10cm的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触.当木棒的端点I在长方形ABCD 内及边界运动时,GJ长度的最小值为()A.B.3cm C.D.5cm二、填空题9.在中,则的长是.10.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为2米,顶端距离地面1.5米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2.4米,则小巷的宽度为米.11.如图是一个三级台阶,它的每一级的长、宽、高分别为,和,和是这个台阶的两个端点,点上有一只蚂蚁想到点去吃可口的食物,则它所走的最短路线长度为 .12.如图,在中,点、是边上的点,点在边上,连结、EF,将分别沿直线和折叠,使点、的对称点重合在边上的点处.若AB=2,AC=3,则的长是.13.如图,将两个大小、形状完全相同的和拼在一起,其中点与点重合,点落在边AB上,连接.若,则的长度为.三、解答题14.如图,∠AOB=90°,OA=40m,OB=15m.一机器人在B点处看见一球从A点出发沿AO方向匀速滚向O,机器人立即从B点出发,沿直线匀速前进栏截球,在C处截住球.球滚速与机器人行速相同,机器人行走的路程BC为多少?15.如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B 到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.16.如图,在涪江笔直的河流一侧有一旅游地C,河边有两个景点A、B.其中,因C到A 的路不通,为方便游客决定在河边新建一个景点H(A、H、B三点在同一直线上),并新修一条路CH,测得千米,千米,千米.(1)判断△BCH的形状,并说明理由;(2)求原路线AC的长.17.如图,已知为的中线,延长,分别过点,作, CF ⊥AD .(1)求证: .(2)若, AF=12 , DC=13 ,求的长.18.如图,D为内一点,连接并延长至点E,使得.延长至点F,使得,连接.(1)求证:;(2)若,试探究线段之间满足的数量关系.参考答案:1.A2.D3.D4.B5.D6.B7.A8.A9.10.2.711.12.13.14.解:∵小球滚动的速度与机器人行走的速度相等∴BC=AC设BC=AC=xm则OC=(40﹣x)m在Rt△BOC中∵∴解得.∴机器人行走的路程BC为m.15.解:在Rt△AOB中,由勾股定理可知AB2=AO2+OB2=40,在Rt△A′OB′中由勾股定理可知A′B′2=A′O2+OB′2.∵AB=A′B′∴A′O2+OB′2=40.∴OB′= = .∴BB′=6﹣16.(1)解:是直角三角形理由是:在中是直角三角形且;(2)解:设千米,则千米在Rt中,由已知得由勾股定理得:解得答:原来的路线的长为千米.17.(1)证明:∵AD是△ABC的中线∴BD=CD∵∴∠CFD=∠BED=90°∵∠FDC=∠EDB∴(AAS);(2)解:由(1)可得:,∠AFC=90°∴ED=FD∵∴△AFC是等腰直角三角形∴AF=FC∵∴在Rt△DFC中∴EF=2DF=10.18.(1)证明:在与中∵∴∴∴;(2)解:,证明如下:延长交于点H,连接由(1)得∵∴∴∵∴∴。
第一章 勾股定理 分类提升训练 2024--2025学年 北师大版 八年级数学上册一、单选题1.学了“勾股定理”后,甲、乙两位同学的观点如下:甲:如果是直角三角形,那么一定成立;乙:在中,如果,那么不是直角三角形.对于两人的观点,下列说法正确的是( )A .甲对,乙错B .甲错,乙对C .两人都错D .两人都对2.如图,在中,,分别以,为边向外作正方形,面积分别为,,若,,则的长为( )A .4B .2CD .33.为预防新冠疫情,民生大院入口的正上方处装有红外线激光测温仪(如图所示),测温仪离地面的距离米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为米的市民正对门缓慢走到离门米的地方时(即米),测温仪自动显示体温,则人头顶离测温仪的距离等于( )A .米B .米C .米D .米4.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠ABO =60°,若矩形的对角线长为6.则线段AD 的长是( )ABC V 222a b c +=ABC V 222a b c +≠ABC V ABC V 90ACB ∠=︒AC AB 1S 2S 13S =27S =BC A 3AB = 1.8CD 1.6 1.6BC =AD 2.0 2.2 2.25 2.5A .3B .4C .2D .35.如图是一圆柱玻璃杯,从内部测得底面半径为,高为,现有一根长为的吸管任意放入杯中,则吸管露在杯口外的长度最少是( )A .B .C .D .6.如图,已知矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的长为( )A.B .C .D .7. 如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .B .C .D .28.如图,有一个水池,水面是一个边长为尺的正方形,在水池正中央有一根芦苇,它高出水面6cm 16cm 25cm 6cm 5cm 9cm (25cm -ABCD 4AB =3BC =P BC CDP V DP C E PE DE AB O F OP OF =DF 3911451317557173276256101尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面、求这根芦苇的长度是多少尺?设芦苇的长度是尺,根据题意,可列方程为( )A .B .C .D .9.如图,过矩形对角线的交点,作对角线的垂线,交于点,交于点,若,,则的长等于( )A .B .CD .10.在Rt 中,.以为圆心,AM 的长为半径作弧,分别交AC ,AB 于点M ,N.再分别以M ,N 为圆心,适当长度为半径画弧,两弧交于点.连接AP ,并延长AP 交BC 于点.过点作于点,垂足为,则DE 的长度为( )A .B .C .2D .1二、填空题11.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1米,当他把绳子下端拉开5米后,发现下端刚好接触地面,则旗杆高度为 米.12.下图是公园的一角,有人为了抄近道而避开横平竖直的路的拐角 ,而走“捷径 ”,于是在草坪内走出了一条不该有的“路 ”.已知 米, 米,只为少走 米的路. x 222510x +=()2221015x -+=()22215x x -+=()22251x x +=-ABCD O BD AD E BC F 3AE =5BF =EF 48ABC V B ∠=90,8,10AB AC ︒==A P D D DE AC ⊥E E 8345ABC ∠AC AC 40AB =30BC =13.若的三边,,满足,则的面积是 .14.如图,矩形ABCD 中, , ,CB 在数轴上,点C 表示的数是 ,若以点C 为圆心,对角线CA 的长为半径作弧交数轴的正半轴于点P ,则点P 表示的数是 .15.有一根长7cm 的木棒,要放进长、宽、高分别为5cm 、4cm 、3cm 的木箱, (填“能”或“不能”)放进去。
勾股定理的复习考点一:利用勾股定理求面积1.求:(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.2. 如图1-1,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.图1-1 图1-2 图1-3 3.如图,如果半圆的直径恰为直角三角形的一条直角边,那么这个半圆的面积为( ) A.π4 B.π6 C.π12 D.π244. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.考点二:在直角三角形中,已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 .2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长分别为5和12,求斜边上的高.4.已知△ABC中,AB=17,AC=10,BC边上的高,AD=8,则边BC的长为考点三:应用勾股定理在等腰三角形中求底边上的高1.如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.2.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.考点四:应用勾股定理解决楼梯上铺地毯问题1. 如图4-1,相邻的两边互相垂直,则从点B到点A的最短距离为()A.13B.12C.8D.52.如图4-1,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为米。
考点五、利用列方程求线段的长(折叠问题)1.折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知,AB=8cm ,BC=10cm,求 CF 和EC .2.如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。
第五讲 勾股定理知识点回顾;【知识点 1】 勾股定理内容:1、 在Rt △ABC 中, a ,b ,c 分别是三条边,∠C =90°,已知,a b 则c = ; 已知,a c 则b = 。
2、在Rt △ABC 中, a ,b ,c 分别是三条边,∠B =90°,已知a =6,b =10,则c= 。
3、在ABC Rt ∆中,,4,3cm b cm a == 则=c 。
4、在Rt △ABC 中,已知两边长分别是6和8,则其面积为 。
【知识点 2】 勾股数 回忆常见的勾股数1、下列各组数中,不能作为直角三角形三边长度的是( ) A .72425a b c === B . 1.52 2.5a b c === C .111345a b c === D .15817a b c === 2、、判断a 、b 、c 是否是勾股数。
(1)a=7,b=24,c=25 (2)a=5,b=13,c=12 (3)a=4,b=5,c=6 ⑷ a=0.5,b=0.3,c=0.4 【知识点 3】勾股定理与逆定理的应用1、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是 。
2、已知a 、b 、c 为三个正整数,如果a +b +c =12,那么以a 、b 、c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是______. 3、在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。
【知识点 4】 勾股定理与方程的综合运用1、 AC =6c m ,BC =8c m ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?2、 在长方形纸片ABCD 中,AD =4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE.【知识点5】勾股定理数学图形内的应用1、已知等腰三角形的一条腰长是5,底边长是6,求它底边上的高3、如图,在△ABC中,AB=26,BC=20,BC边上的中线AD=24,求AC.【知识点6】最近问题1、如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.2、如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是_______ cm(结果用带根号和π的式子表示).基础检测;1、在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;东 ④若a ∶b=3∶4,c=10则S Rt △ABC =________2、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是_________ 3、 如图,等腰ABC △中,AB AC =,AD 是底边上的高,若5cm 6cm AB BC ==,, 则AD = cm .4、 若ABC ∆的三条边长分别为7cm 、24cm 、25cm 。
数学中考复习《勾股定理的应用》专题提升训练1.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A出发沿AB方向以1cm/s的速度向终点B运动,点Q从点B出发沿BC方向以6cm/s的速度向终点C运动,P,Q两点同时出发,设点P的运动时间为t秒.(1)求BC的长;(2)当t=2时,求P,Q两点之间的距离;(3)当AP=CQ时,求t的值?2.如图,在△ABC中,∠C=90°,AC=12,BC=5,BD平分∠ABC.动点P从点B出发,沿折线BA﹣AC以每秒1个单位长度的速度向点C运动,当点P不与点D重合时,连结P、B、D三点.设点P的运动时间为t秒.(1)线段AB的长为;(2)当DP⊥AB时,t=;(3)求线段BD的长;(4)当∠DBP与∠DPB相等时,直接写出t的值.3.已知,如图,AB为圆O直径,AC=FC,E为弧BD中点.(1)求证:AC为圆O切线;(2)若AB=4,AC=3,求DF的长.4.在下图中,直线l所对应的函数关系式为y=﹣x+5,l与y轴交于点C,O为坐标原点.(1)请直接写出线段OC的长;(2)已知图中A点在x轴的正半轴上,四边形OABC为矩形,边AB与直线l相交于点D,沿直线l把△CBD折叠,点B恰好落在AC上一点E处,并且EA=1.①试求点D的坐标;②若⊙P的圆心在线段CD上,且⊙P既与直线AC相切,又与直线DE相交,设圆心P的横坐标为m,试求m的取值范围.5.如图,一张矩形硬片ABCD宽AB=6,长AD=10,E是CD边上一点,现将矩形硬片沿BE折叠,点C的对应点F刚好落在AD边上的点F处,过点F作FG⊥AD于点F,交BE于点G,连接CG.(1)判断四边形CEFG的形状,并给出证明;(2)求四边形CEFG的面积.6.如图,将一张矩形卡片ABCD A、C重合,展开后折痕交BC于E,交AD 于F.(1)试判断四边形AECF是什么特殊的四边形,并说明理由;(2)若AB=4,BC=8,求AF的长.7.已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以所在的直线为x轴,y 轴,建立如图所示的平面直角坐标系,直线l经过C、E两点.(1)求直线l的函数表达式;(2)如图,将矩形OABC中,将△COE沿直线l折叠后得到△CFE,点F在矩形OABC 内部,延长CF交AB于G点.证明:GF=GA;(3)由上面的条件,求四边形AGFE的面积?8.如图,三角形纸片ABC中,∠ACB=90°,AC=8,BC=6,折叠△ABC使点A与点B 重合,DE为折痕,求DE的长.9.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.10.一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC等于45°,树干AC垂直于地面,那么此树在未折断之前的高度为多少米?(答案保留根号)11.学校的一棵大树被风吹断了,如图,距地面6m处折断,折断的树梢顶部落在距树干底部8m处,求此树原高是多少米?(图1)有两棵大树,一棵高8m,另一棵高2m,BC=6,一只小鸟从一棵树梢飞到另一棵树梢,至少飞多少米?(图2)一架长10m的梯子斜靠在墙上,梯子顶端距地面8m,现将梯子顶端沿墙面下滑2m,则梯子底端与墙面距离是否也增长2m?请说明理由(图3)12.如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.13.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?14.如图,△ABC为等边三角形,AB=6,D是AC的中点,E是BC延长线上的一点,且CE=CD,过点D作DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.15.已知△ABC中,AB=7,BC=5,AC=8,⊙O与△ABC三边所在的直线都相切,切点分别为D,E,F.(1)如图1,若点O在△ABC内部.①求S△ABC;②求⊙O的半径R的值;(2)如图2,若点O在△ABC⊙O的半径r的值.16.如图,长方体的底面是边长为1cm的正方形,高为3cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短为多少.17.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B 是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?18.如图所示,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿着圆柱侧面爬行的最短路程是多少?(π的值取3)19.如图1,我们把对角线相互垂直的四边形叫做垂美四边形.(1)概念理解,在四边形ABCD中,以下是垂美四边形的是.①平行四边形;②矩形;③菱形;④AB=AD,CB=CD.(2)性质探究,小美同学猜想“垂美四边形两组对边的平方和相等”,即,如图1,在四边形ABCD中,若AC⊥BD,则AB2+CD2=AD2+BC2.请判断小美同学的猜想是否正确,并说明理由.(3)问题解决:如图2.在△ABC中,BC=3,AC=4,D、E分别是AC、BC的中点,连接AE、BD.有AE⊥BD,求AB.20.如图,我把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.已知四边形ABCD中,AC⊥BD,垂足为O,求证:AB2+CD2=AD2+BC2.(2)解决问题:已知AB=5,BC=4,分别以△ABC的边BC和AB向外作等腰Rt△BCQ 和等腰Rt△ABP.①如图2,当∠ACB=90°,连接PQ,求PQ;②如图3,当∠ACB≠90°,点M、N分别是AC、AP中点连接MN.若MN=2,则S△ABC=.参考答案1.解:(1)在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,∴BC==24cm.(2)如图,连接PQ,BP=7﹣2=5,BQ=6×2=12,在直角△BPQ中,由勾股定理得到:PQ==13(cm);(3)设t秒后,AP=CQ.则t=24﹣6t,解得t=.答:P、Q两点运动秒,AP=CQ.2.解:(1)∵∠C=90°,AC=12,BC=5,∴AB===13.故答案为:13.(2)∵BD平分∠ABC,DP⊥AB,DC⊥CB,∴DC=DP.在Rt△DCB和Rt△DPB中,,∴Rt△DCB≌Rt△DPB(HL).∴BC=BP=5.∴t=BP÷1=5.故答案为:5.(3)∵BD平分∠ABC,∴.∴.解得:CD=.在Rt△CDB中,BD==.(4)①当点P在AB上时,∵∠DBP=∠DPB,∴DB=DP.过点D作DE⊥AB于点E,如图,由(2)知:Rt△DCB≌Rt△DEB,∴BE=BC=5.∵DB=DP,DE⊥AB,∴PE=BE=5.∴PB=2BE=10.∴t=BP÷1=10;②当点P在AC上时,∵∠DBP=∠DPB,∴DB=DP.由(3)知:BD=,CD=,∴PD=.∴P A=AC﹣CD﹣PD=.∴点P运动的距离为:AB+P A=.∴t=()÷1=.综上,t的值为:10或.3.(1)证明:如图1,连接BE,∵E为弧BD中点,∴=,∴∠DBE=∠BAE,∵AB为⊙O直径,∴∠AEB=90°,∴∠DBE+∠BFE=90°,∴∠BAE+∠BFE=90°,∵∠BFE=∠CF A,∴∠BAE+∠CF A=90°,∵AC=FC,∴∠CAF=∠CF A,∴∠BAE+∠CAF=90°,∴AB⊥AC,∵AB是⊙O的直径,∴AC为⊙O切线;(2)如图2,连接AD,过点作FG⊥AB于点G,由(1)知:∠BAC=90°,∴BC===5,∵AB为⊙O直径,∴∠ADB=90°,∴BC•AD=AB•AC,∴AD===,∴BD===,∵=,∴∠DAE=∠BAE,∵FD⊥AD,FG⊥AB,∴FD=FG,设FD=FG=x,∵S△ABD=S△ADF+S△ABF,∴××=×x+×4x,解得:x=,∴DF=.4.解:(1)OC=5;(2)①解法一:设D点的横坐标为m,由已知得,它的纵坐标为:﹣m+5∴BC=OA=m,CA=CE+AE=m+1,在Rt△OAC中,OA2+OC2=AC2,即m2+52=(m+1)2,解得m=12.∴,即D点的坐标为;解法二:设D点的横坐标为m,由已知得,它的纵坐标为:﹣m+5,∴AD=﹣m+5,DE=AB﹣AD=m,在Rt△ADE,EA2+ED2=AD2,即12+(m)2=(﹣m+5)2,解得m=12,∴﹣m+5=,即D点的坐标为(12,);解法三:设D点的横坐标为m,由已知得,它的纵坐标为:﹣m+5,在Rt△OAC和Rt△ADE中,∠AOC=∠AED=90°,∠ACO+∠OAC=90°,∠OAC+∠EAD=90°,∴∠ACO=∠EAD,∴Rt△OAC∽Rt△ADE,∴,即:,解得m=12,∴﹣m+5=,即D点的坐标为(12,);②由于△BCD和△CDE关于直线L对称,所以⊙P与直线AC相切,与DE相交相当于与直线BC相切,与BD相交,过点P作PM⊥OA,交OA于M,交BC于N;作PH⊥AB,交AB于H,由题意知:只要PN>PH即可,PN=MN﹣PM=,PH=12﹣m,即:>12﹣m,解得m>10,又P在线段CD上,所以m≤12,即m的取值范围是10<m≤12.5.解:(1)四边形CEFG为菱形,证明过程如下:由折叠性质可得:EF=CE,CG=FG,∠CEG=∠FEG,∵FG⊥AD,四边形ABCD为矩形,∴∠DFG=∠EDF=90°,∴FG∥CD,∴∠EGF=∠CEG,∴∠EGF=∠FEG,∴FG=EF=CE,∴四边形CEFG为菱形;(2)∵AB=6,AD=10,∴BF=BC=AD=10,CD=AB=6,在Rt△ABF中,AF=,即AF==8,∴DF=AD﹣AF=2,设EF=x,则CE=EF=x,∴DE=CD﹣CE=6﹣x,在Rt△DEF中,DE2+DF2=EF2,即(6﹣x)2+22=x2,解得:x=,∴CE=,∴四边形CEFG的面积为CE•DF=×2=.6.解(1)四边形AECF是菱形.理由如下:根据折叠的性质得OA=OC,EF⊥AC,EA=EC,∵AD//BC,∴∠F AC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OF=OE,∴四边形AECF是菱形;(2)设菱形的边长为x,则:BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,根据勾股定理得BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得:x=5,∴AF的长为5.7.(1)解:设直线l的解析式y=kx+b(k≠0).∵矩形OABC的边长OA=4,AB=3,E是OA的中点,∴OC=AB=3,OE=2,∴E(2,0),C(0,3).∴,解得,,∴直线l的解析式y=﹣x+3;(2)证明:如图2,连接EG.∵四边形OABC是矩形,∴∠COA=∠OAB=90°.又根据折叠是性质得到∠COE=∠CFE=90°,OE=EF,∴∠EFG=∠EAG=90°.又∵E是OA的中点,∴OE=EF,∴EF=EA,∴在Rt△EFG和Rt△EAG中,,∴Rt△EFG≌Rt△EAG(HL),∴GF=GA;(3)解:由(2)知,GF=GA,根据折叠的性质知OC=CF=3.∵BG=AB﹣AG=3﹣AG,CG=CF+GF=3+GA,AE=2,∴在直角△CBG中,由勾股定理得:CG2=BC2+BG2,即(3+AG)2=(3﹣AG)2+42,解得,AG=.∵由(1)知,Rt△EFG≌Rt△EAG,∴S Rt△EFG=S Rt△EAG,∴S四边形AGFE=2S Rt△EAG=2×AE•AG=2××2×=,即四边形AGFE的面积是.8.解:∵△DEB是由△DEA翻折,∴AE=EB,AD=DB,设AE=EB=x,∵AC=8,BC=6,∴EC=8﹣x,在RT△EBC中,EB2=EC2+BC2,∴x2=(8﹣x)2+62,∴x=,∵∠C=90°,∴AB==10,∴AD=DB=5,在RT△AED中,∵ED=,∴ED==.9.解:(1)在Rt△ABC中,由面积的两种算法可得:,解得:CD=.(2)在Rt△ABD中AD2=42﹣x2=16﹣x2,在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2,所以16﹣x2=﹣11+12x﹣x2,解得=.10.解;由题意得,在△ACB中,∠C=90°∵∠ABC=45°∴∠A=45°∴∠ABC=∠A∴AC=BC∵BC=4∴AC=4(3分)由AC2+BC2=AB2得AB=;所以此树在未折断之前的高度为(4+)米.11.(1)在直角三角形ABC中,AC2=AB2+BC2,所以AC==10m;∴此树原高=10+6=16m.(2)两点之间,直线最短,所以最短距离为直接从D点飞到A点,所以最短距离为:AD==m;(3)在直角三角形ABC中,AB=8m,AC=10m,则BC==6m,现将梯子顶端下移至D点,则BD=6m,DE=10m,所以在直角三角形BDE中,BE==8m,8m﹣6m=2m,因此梯子底端与墙面的距离增加了2m.12.解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x﹣1)m,故x2=42+(x﹣1)2,解得:x=8.5,答:绳索AD的长度是8.5m.13.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.14.(1)解:∵BD是等边△ABC的中线,∴BD⊥AC,BD平分AC,∵AB=6,∴AD=3,∴由勾股定理得,BD==3.(2)证明:∵BD是等边△ABC的中线,∴BD平分∠ABC,∴∠DBE=∠ABC=30°,又∵CE=CD,∴∠E=∠CDE,∠E=∠ACB=30°.∴∠DBE=∠E,∴DB=DE.∵DF⊥BE,∴DF为底边上的中线.∴BF=EF.15.解:(1)①过A作AH⊥BC于H,∵AB=5,AC=7,BC=8,∴AB2﹣BH2=AC2﹣CH2,∴52﹣(8﹣CH)2=72﹣CH2,解得:CH=5.5,∴AH==,∴S△ABC=8×=10;②连接OA,OB,OC,OD,OE,OF,设⊙O的半径为r,∵⊙O是△ABC的内切圆,∴OD=OE=OF=r,∴×5r+r r=10,∴r=;∴⊙O的半径为;(2)如图2中,连接OA,OB,OC,OD,OE,OF,设⊙O的半径为r,点O在△ABC外部OE﹣OD=OF=r,由S△ABC=S△AOC+S△ABO﹣S△BCO,可得10=×8×r+×7×r﹣×5×r,∴r=2,∴⊙O的半径为2.16.解:将长方体展开,连接AB,根据两点之间线段最短,AB==5(cm);∴所用细线最短为5cm.17.解:将台阶展开,如下图,因为AC=3×3+1×3=12,BC=5,所以AB2=AC2+BC2=169,所以AB=13(cm),所以蚂蚁爬行的最短线路为13cm.答:蚂蚁爬行的最短线路为13cm.18.解:展开圆柱的半个侧面是矩形.矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高12.根据两点之间线段最短,知最短路程是矩形的对角线AB的长,即AB===15厘米.19.解:(1)∵菱形的对角线互相垂直,∴菱形是垂美四边形,∵AB=AD,CB=CD,∴AC⊥BD,∴当AB=AD,CB=CD的四边形ABCD是垂美四边形,故答案为:③④;(2)猜想正确,理由如下:∵四边形ABCD中,AC⊥BD,∴∠AOB=∠COD=∠BOC=∠AOD=90°,∴AB2=OA2+OB2,CD2=OC2+OD2,BC2=OB2+OC2,AD2=OA2+OD2,∴AB2+CD2=OA2+OB2+OC2+OD2,BC2+AD2=OB2+OC2+OA2+OD2,∴AB2+CD2=AD2+BC2;(3)∵BC=3,AC=4,D、E分别是AC、BC的中点,∴AD=AC=2,BE=BC=,DE=AB,∵AE⊥BD,∴AB2+ED2=AD2+BE2,∴AB2=4+,∴AB=.20.解:(1)证明:如图1中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AB2+CD2=AD2+BC2;(2)①方法一:连接PC、AQ交于点D,如图2,∵△ABP和△CBQ都是等腰直角三角形,∴PB=AB,CB=BQ,∠ABP=∠CBQ=90°,∴∠PBC=∠ABQ,∴△PBC≌△ABQ(SAS),∴∠BPC=∠BAQ,又∵∠BPC+∠CP A+∠BAP=90°,即∠BAQ+∠CP A+∠BAP=90°,∴∠PDA=90°,∴PC⊥AQ,利用(1)中的结论:AP2+CQ2=AC2+PQ2即(5)2+(4)2=32+PQ2;∴PQ=.②连接PC、AQ交于点D,如图3,同①可证△PBC≌△ABQ(SAS),AQ=PC且AQ⊥PC,∵M、N分别是AC、AP中点,∴MN=PC,∵MN=2,∴AQ=PC=4.延长QB作AE⊥QE,则有AE2+BE2=25,AE2+QE2=48,∵EQ=4+BE,∴(4+BE)2﹣BE2=23,解得BE=,∴S△ABC=×BC×BE==.方法二:连接PC,AQ,PQ,延长PB使BH=AB,由①得,△BPC≌△BAQ,∴PC=AQ=2MN=4,PC⊥AQ,∴∠PBM=∠QBC=90°,∴∠PBQ+∠ABC=180°,即∠QBH=∠CBA,∵BQ=BC,AB=PB=BH,∴△BQH≌△BCA(SAS),∴S△ABC=S△PBQ=S△QBH,∴S△ABC===.故答案为:.。
勾股定理经典提升题1.勾股定理有着悠长的历史,它曾惹起好多人的兴趣,如下图, AB 为四边形ABGM, APQC, BCDE 均为正方形,四边形 RFHN 是长方形,若图中空白部分的面积是 ________ .Rt△ABC 的斜边,BC=3 , AC=4 ,则勾股定理有着悠长的历史,它曾惹起好多人的兴趣.1955 年希腊刊行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形组成(图 1 :△ ABC 中,∠BAC=90 °).请解答:(1 )如图 2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、 S3之间的数目关系是______ .(2 )如图 3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、 S2、S3之间的数目关系是 ______ ,请说明原因.3 学过《勾股定理》后,八年级某班数学兴趣小组到达操场上丈量旗杆AB 的高度.小华测得从旗杆顶端垂直挂下来的升旗用的绳索比旗杆长1m(如图 1 ),小明拉着绳索的下端今后退,当他将绳索拉直时,小凡测得此时小明拉绳索的手到地面的距离CD 为 1m ,到旗杆的距离CE 为 8m ,(如图 2 ).于是,他们很快算出了旗杆的高度,请你也来试一试.4.研究学习:研究勾股定理时,我们发现“用不一样的方式表示同一图形的面积”能够解决线段和(或差)的相关问题,这类方法称为面积法.请你运用面积法求解以下问题:在等腰三角形 ABC 中, AB=AC ,BD 为腰 AC 上的高(如图1).(1)若等腰△ ABC 的面积为 24 cm 2,腰的长为 8 cm ,则腰 AC 上的高 BD 的长为 ______cm ;(2)若 BD=h ,M 是直线 BC 上的随意一点, M 到 AB、 AC 的距离分别为 h 1、h 2.①若 M 在线段 BC 上,请你联合图 2 证明: h 1+h 2=h ;②当点 M 在 BC 延伸线上时, h1、h 2、h 之间的关系为 ______ .(直接写出结论,不用证明)5. 一个直立的火柴盒在桌面上倒下,启示人们发现了勾股定理的一种新的考证方法.如图,火柴盒的一个侧面ABCD 倒下到 AB′ C′D′的地点,连结 CC′,设 AB=a ,BC=b ,AC=c ,请利用四边形BCC′D′的面积考证勾股定理:a2+b2=c2.6.在直线 l 上挨次摆放着七个正方形(如下图).已知斜搁置的三个正方形的面积分别是 1、2、3,正搁置的四个正方形的面积挨次是 S1、S2、S3、S4,则S1+S2+S3+S4等于A.4B.5C.6D.147.如图,已知AB: BC: CD: DA=2 : 2: 3: 1,且∠ ABC=90 °,求∠ DAB 的度数8 如下图,有高为 3 米,斜坡长为 5 米的楼梯表面铺地毯,那么地毯起码需要多少米?9 如下图,折叠长方形(四个角都是直角)的一边 AD使点 D落在 BC 边的点 F 处,已知 AB=DC=8cm, AD=BC=10cm,求 EC 的长.10.如图,长方体的长 BE=20cm,宽 AB=10cm,高 AD=15cm,点 M 在 CH 上,且 CM=5cm,一只蚂蚁假如要沿着长方体的表面从点 A 爬到点 M,需要爬行的最短距离是多少?11.柱子是圆柱体 ,它的周长是 1.6 米 ,高 4.8 米 ,如图是柱子的一个侧面 ,左上是彩带的起点 ,左下彩带的终点 , 彩带绕圆柱四圈 , 这根柱子最少需要多少米的彩带 ?...12. 如图有一个三级台阶,每级台阶长、宽、高分别为 2 米、0.3 米 0.2 米,A 处有一只蚂蚁,它想吃到B 处食品,你能帮蚂蚁设计一条最短的线路吗?并求出最短的线路长。
数学勾股定理提高题与常考题和培优题(含解析)一.选择题(共12小题)1.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC 的长为()A.5 B.6 C.8 D.102.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.43.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或104.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个 B.4个 C.3个 D.2个5.下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,76.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣57.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()78.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1699.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3 B.4 C.2 D.410.如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmC 和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1与S2的大小关系为()A.S1>S2B.S1<S2C.S1=S2D.不能确定11.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF12.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab二.填空题(共12小题)13.点A(3,﹣4)到原点的距离为.14.已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为.15.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.16.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=(提示:可过点A作BD的垂线)17.一副三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,若AB=DE=8,则BE=(结果保留根号)18.如图,Rt△ABC的周长为,以AB、AC为边向外作正方形ABPQ 和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是cm2.19.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是.20.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为.21.如图,△ABC是等腰三角形,AB=AC=5,BC=6,E为BA延长线上的一点,AE=AB,D为BC的中点,则DE的长为.22.如图,在Rt△ABC中,∠ABC是直角,AB=4,BC=2,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.23.如图,在四边形ABCD中,∠A=90°,AB=5,AD=3,点M在边AB上,则DM 的最大值为.24.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为.三.解答题(共16小题)25.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.26.正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一实线上;②连结三个格点,使之构成直角三角形,小华在下边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在下面的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.27.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m≠n),运用构图法可求出这三角形的面积为.28.如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE ⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长.29.如图,在四边形ABCD中,AD∥BC,AB⊥BC,对角线AC⊥CD,点E在边BC 上,且∠AEB=45°,CD=10.(1)求AB的长;(2)求EC的长.30.如图,将线段AB放在每个小正方形的边长为1的网格中,点A,点B均落在格点上.(1)AB的长等于;(2)请在如图所示的网格中,用无刻度的直尺,在线段AB上画出点P,使AP=,并简要说明画图方法(不要求证明).31.如图,AB⊥MN于A,CD⊥MN于D.点P是MN上一个动点.(1)如图①.BP平分∠ABC,CP平分∠BCD交BP于点P.若AB=4,CD=6.试求AD的长;(2)如图②,∠BPC=∠BPA,BC⊥BP,若AB=4,求CD的长.32.定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y 的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.33.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°夹角,长为20km,BC段与AB、CD段都垂直.长为10km,CD段长为30km,求两高速公路间的距离.(结果保留根号)34.如图是某学校主楼梯从底楼到二楼的楼梯截面图,已知BC=7米,AB=6+3米,中间平台DE与地面AB平行,且DE的长度为2米,DM、EN为平台的两根支柱,DM、EN垂直于AB,垂足分别为M、N,∠EAB=30°,∠CDF=45°,楼梯宽度为3米.(1)若要在楼梯上(包括平台DE)铺满地毯,求地毯的长度;(2)沿楼梯从A点到E点铺设价格为每平方米100元的地毯,从E点到C点铺设价格为每平方米120元的地毯,求用地毯铺满整个楼梯共需要花费多少元钱?35.如图,在△ABC中,E点为AC的中点,其中BD=1,DC=3,BC=,AD=,求DE的长.36.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、2、,请利用图②的正方形网格(每个小正方形的边长为1)画出相应的△ABC,并求出它的面积.37.在△ABC中,已知AB=AC=10,BC=16,点D在BC上,且BD=,连接AD,求证:AD⊥AC.38.如图,在△ABC中,AB=AC=28cm,BC=20cm,点D是AB边的中点,若有一动点P在BC边上由点B向点C运动,点Q在CA边上由点C向A运动.(1)P、Q两点的运动速度均为3cm/s,经过2秒后,△BPD与△CPQ是否全等,说明理由(2)若点P的运动速度为2.5cm/s,点Q的运动速度为3.5cm/s,是否存在某一时刻,使△BPD≌△CQP.39.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm 的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?40.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD 的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?数学勾股定理提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2016•荆门)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.【点评】本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.2.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握.3.(2016•东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【分析】分两种情况考虑,如图所示,分别在直角三角形ABD与直角三角形ACD 中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.4.(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个 B.4个 C.3个 D.2个【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:C.【点评】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.5.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.6.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.7.(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.8.(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【点评】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.9.(2016•黄冈校级自主招生)如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3 B.4 C.2 D.4【分析】在Rt△AOB、Rt△DOC中分别表示出AO2、DO2,从而在Rt△ADO中利用勾股定理即可得出AD的长度.【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.【点评】此题考查了勾股定理的知识,解答本题的关键是在Rt△AOB、Rt△DOC 中分别表示出AO2、DO2,需要我们熟练掌握勾股定理的表达形式.10.(2016•雅安校级自主招生)如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmC和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1与S2的大小关系为()A.S1>S2B.S1<S2C.S1=S2D.不能确定【分析】根据题给图形可知:S1=π(AC)2+π(BC)2﹣π(AB)2+S△ABC,S2=S△ABC,在Rt△ABC中BC2+AC2=AB2,继而即可得出答案.【解答】解:在Rt△ABC中,∵BC2+AC2=AB2,∴S1=π(AC)2+π(BC)2﹣π(AB)2+S△ABC=π(BC2+AC2﹣AB2)+S△ABC=S△ABC,S2=S△ABC.∴S1=S2.故选C.【点评】本题考查的是勾股定理,根据题意得出阴影部分的面积与直角三角形三条边的关系是解答此题的关键.11.(2016•海淀区校级模拟)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CD 、GH D .AB 、CD 、EF【分析】设出正方形的边长,利用勾股定理,解出AB 、CD 、EF 、GH 各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB 2=22+22=8,CD 2=22+42=20,EF 2=12+22=5,GH 2=22+32=13.因为AB 2+EF 2=GH 2,所以能构成一个直角三角形三边的线段是AB 、EF 、GH .故选:B .【点评】考查了勾股定理逆定理的应用.12.(2016•富顺县校级模拟)如图,将一边长为a 的正方形(最中间的小正方形)与四块边长为b 的正方形(其中b >a )拼接在一起,则四边形ABCD 的面积为( )A .b 2+(b ﹣a )2B .b 2+a 2C .(b +a )2D .a 2+2ab【分析】先求出AE 即DE 的长,再根据三角形的面积公式求解即可.【解答】解:∵DE=b ﹣a ,AE=b ,∴S 四边形ABCD =4S △ADE +a 2=4××(b ﹣a )•b +a 2=b 2+(b ﹣a )2.故选:A .【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.二.填空题(共12小题)13.(2016•淮阴区一模)点A(3,﹣4)到原点的距离为5.【分析】易得点A的横纵坐标的绝对值与到原点的距离构成直角三角形,利用勾股定理求解即可.【解答】解:点A的坐标为(3,﹣4)到原点O的距离:OA==5,故答案为:5.【点评】本题主要利用了“平面内一点到原点的距离等于其横纵坐标的平方和的算术平方根”这一知识点.14.(2016•道外区二模)已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为10或90.【分析】根据题意作出图形分为高线在三角形内和高线在三角形外两种情况,然后根据勾股定理计算求解即可.【解答】解:由题意可作图.如图1,AC=5,CD=3,CD⊥AB,根据勾股定理可知:AD==4,∴BD=1.∴BC2=12+32=10.如图2,AC=5,CD=3,CD⊥AB,根据勾股定理可知:AD==4,∴BD=9,∴BC2=92+32=90.故答案是:10或90.【点评】本题考查了等腰三角形的性质,作出图形利用三角形知识求解即可.注意:需要分类讨论.15.(2016•烟台)如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M 对应的实数为.【分析】先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出OC=,然后利用画法可得到OM=OC=,于是可确定点M对应的数.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.故答案为.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.也考查了等腰三角形的性质.16.(2016•绥化)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=2(提示:可过点A作BD的垂线)【分析】过A作AF⊥BD,交BD于点F,由三角形ABD为等腰直角三角形,利用三线合一得到AF为中线,利用直角三角形斜边上的中线等于斜边的一半求出AF的长,在直角三角形AEF中,利用30度角所对的直角边等于斜边的一半求出AE的长即可.【解答】解:过A作AF⊥BD,交BD于点F,∵AD=AB,∠DAB=90°,∴AF为BD边上的中线,∴AF=BD,∵AB=AD=,∴根据勾股定理得:BD==2,∴AF=,在Rt△AFE中,∠EAF=∠DCA=30°,∴EF=AE,设EF=x,则有AE=2x,根据勾股定理得:x2+3=4x2,解得:x=1,则AE=2.故答案为:2【点评】此题考查了勾股定理,含30度直角三角形的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.17.(2016•徐州二模)一副三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,若AB=DE=8,则BE=8﹣2(结果保留根号)【分析】过B作BG⊥FC,交FC于点G;由三角函数求出BC的长,由等腰直角三角形得性质和含30°角的直角三角形的性质得出BG=DG=BC=2,求出BD,即可得出BE的长.【解答】解:过B作BG⊥FC,交FC于点G,如图所示:∵AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AB=8,∴∠ABC=∠BCG=30°,BC=AB′sin60°=AB=4,△EDF和△BGD都为等腰直角三角形,∴BG=DG=BC=2,∴BD=BG=2,∴BE=DE﹣BD=8﹣2;故答案为:8﹣2.【点评】此题考查了勾股定理,平行线的性质,含30度直角三角形的性质,以及等腰直角三角形的判定与性质;熟练掌握勾股定理是解本题的关键.18.(2016•南京一模)如图,Rt△ABC的周长为,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是5cm2.【分析】根据正方形的面积公式,勾股定理求得a2=c2+b2=25,据此可以求得a=5.又由Rt△ABC的周长为可以求得b+c=3,所以△ABC的面积=bc=[(c+b)2﹣(c2+b2)]÷2.【解答】解:如图,a2=c2+b2=25,则a=5.又∵Rt△ABC的周长为,∴a+b+c=5+3,∴b+c=3(cm).∴△ABC的面积=bc=[(c+b)2﹣(c2+b2)]÷2=[(3)2﹣25]÷2=5(cm2).故答案是:5.【点评】本题考查了勾股定理的应用.解答此题时,巧妙地运用了完全平方公式的变形来求△ABC的面积.19.(2016•黄冈模拟)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是 1.5.【分析】连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出CE=DE,由线段垂直平分线的性质得出CF=DF,由SSS证明△ADF≌△ACF,得出∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【解答】解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故答案为:1.5.【点评】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解决问题的关键.20.(2016•江西三模)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为.【分析】连接AE,根据垂直平分线的性质可得AE=EC,然后在直角△ABE中利用勾股定理即可列方程求得EC的长,然后证明△AOD≌△COE,即可求得.【解答】解:连接AE.∵DE是线段AC的垂直平分线,∴AE=EC.设EC=x,则AE=EC=x,BE=BC﹣EC=12﹣x,∵在直角△ABE中,AE2=AB2+BE2,∴x2=52+(12﹣x)2,解得:x=.即EC=.∵AD∥BC,∴∠D=∠OEC,在△AOD和△COE中,,∴△AOD≌△COE,∴AD=EC=.故答案是:.【点评】本题考查了线段的垂直平分线的性质以及全等三角形的判定与性质,正确列方程求得EC的长是关键.21.(2016•孝义市三模)如图,△ABC是等腰三角形,AB=AC=5,BC=6,E为BA 延长线上的一点,AE=AB,D为BC的中点,则DE的长为.【分析】根据题意结合等腰三角形的性质得出AD⊥BC,BD=DC=3,再利用相似三角形的判定与性质得出EN,BN的长,即可得出答案.【解答】解:连接AD,过点E作EN⊥BC于点N,∵AB=AC=5,D为BC的中点,∴AD⊥BC,BD=DC=3,∵AB=AC=5,∴AD=4,∵EN⊥BC,∴AD∥EN,∴△ABD∽△EBN,∴==,∴==,解得:BN=4.5,EN=6,∴DN=1.5,∴DE===.故答案为:.【点评】此题主要考查了等腰三角形的性质以及勾股定理和相似三角形的判定与性质,正确得出EN,DN的长是解题关键.22.(2016•碑林区校级三模)如图,在Rt△ABC中,∠ABC是直角,AB=4,BC=2,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x 的取值范围是≤x≤2.【分析】先根据勾股定理计算出AC=6,由于∠BQP=90°,根据圆周角定理得到点Q在以PB为直径的圆⊙M上,而点Q在AC上,则有AC与⊙M相切于点Q,连结MQ,根据切线的性质得MQ⊥AC,MQ=BM=x,然后证明Rt△CMQ∽Rt△CAB,再利用相似比得到x:4=(2﹣x):6,最后解方程即可.【解答】解:∵∠ABC=90°,AB=4,BC=2,∴AC==6,∵∠BQP=90°,∴点Q在以PB为直径的圆⊙M上,∵点Q在AC上,∴AC与⊙M相切于点Q,连结MQ,如图,则MQ⊥AC,MQ=BM=x,∵∠QCM=∠BCA,∴Rt△CMQ∽Rt△CAB,∴QM:AB=CM:AC,即x:4=(2﹣x):6,∴x=.当P与C重合时,BP=2,∴BP=x的取值范围是:≤x≤2,故答案为:≤x≤2.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O 相离⇔d>r.也考查了勾股定理和相似三角形的判定与性质.23.(2016•长春模拟)如图,在四边形ABCD中,∠A=90°,AB=5,AD=3,点M 在边AB上,则DM的最大值为.【分析】连结BD,作辅助线构建直角三角形,根据勾股定理即可求出DM的最大值.【解答】解:连结BD,∵∠A=90°,AB=5,AD=3,∴在Rt△ABD中,BD==,即DM的最大值为,故答案为:,【点评】本题考查了勾股定理、关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.24.(2016•余干县二模)如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为2或2.【分析】利用分类讨论,当∠APB=90°时,分两种情况讨论,情况一:如图1,易得∠PBA=30°,利用直角三角形斜边的中线等于斜边的一半得出结论;情况二:利用锐角三角函数得AP的长;如图2,当∠BAP=90°时,如图3,利用锐角三角函数得AP的长.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,利用分类讨论,数形结合是解答此题的关键.三.解答题(共16小题)25.(2016春•周口期末)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.【分析】如图,连接BD,构建等边△ABD、直角△CDB.利用等边三角形的性质求得BD=8;然后利用勾股定理来求线段BC、CD的长度.【解答】解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.【点评】本题考查了勾股定理、等边三角形的判定与性质.根据已知条件推知△CDB是解题关键.26.(2016•高安市一模)正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一实线上;②连结三个格点,使之构成直角三角形,小华在下边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在下面的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.【分析】本题中得出直角三角形的方法如图:如果设AE=x,BE=4﹣x,如果∠FEG=90°,△AFE∽△GBE,AF•BG=AE•BE=x(4﹣x),当x=1时,AF•BG=3,AF=1,BG=3或AF=3,BG=1,当x=2时,AF•BG=4,AF=1,BG=4或AF=2,BG=2或AF=4,BG=1,当x=3时,AF•BG=3,AF=1,BG=3或AF=3,BG=1(同x=1时),由此可画出另两种图形.【解答】解:如图所示:.【点评】本题中借助了勾股定理,相似三角形的判定和性质等知识来得出有可能的直角三角形的情况,要学会对已学知识点的运用.27.(2016•南开区一模)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m≠n),运用构图法可求出这三角形的面积为5mn.【分析】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;。
B A
6cm
3cm
1cm
C
B A 勾股定理拓展提高题
1、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm . ①如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B , 那么所用细线最短需要__________cm ;
②如果从点A 开始经过4个侧面缠绕3圈到达点B , 那么所用细线最短需要__________cm .
2、如图1,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数
_________
图1 图2 图3
3、如图2,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积
4、如图3,数轴上的点A 所表示的数为x ,则x 2
—10的立方根为
5、如图4,一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到顶点B,则它走过的最短路程为
图4 图5
6、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图5所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么()2
b a +的值为( )
(A )13 (B )19 (C )25 (D )169
7、已知△ABC 的三边长满足18,10==+ab b a ,8=c ,则为 三角形 • • A B
A D E
B C
8、如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA⊥AB 于A ,CB⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
9、已知:正方形ABCD 的边长为1,正方形ABCD 的边长为1,正方形EFGH 内接于ABCD ,AE=a,AF=b,且3
2
=
EFGH S 正方形。
求:a b -的值。
10、在等腰直角三角形中,AB=AC ,点D 是斜边BC 的中点,点E 、F 分别为AB 、AC 边上的点,且DE ⊥DF 。
(1)说明:2
22EF CF BE =+
(2)若BE=12,CF=5,试求DEF ∆的面积。
勾股定律逆定理应用
考点一 证明三角形是直角三角形
例1、已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD·BD.
求证:△ABC 是直角三角形.
H
G
F
E
C
B
F
E
A
针对训练:1、已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.
2(如图) 在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41
BC ,
求证:∠EFA=90︒.
3、如图,已知:在ΔABC 中,∠C=90︒,M 是BC 的中点,MD ⊥AB 于D ,求证:AD 2=AC 2+BD 2.
4、如图,长方形ABCD 中,AD=8cm,CD=4cm.
⑴若点P 是边AD 上的一个动点,当P 在什么位置时PA=PC?
⑵在⑴中,当点P 在点P '时,有C P A P ''=,Q 是AB 边上的一个动点,若4
15AQ =
时, QP' 与C P '垂直吗?为什么?
A
B D
C
F
E A
B
C
M
D
D
C
A
B
考点二 运用勾股定理的逆定理进行计算 例、如图,等腰△ABC 中,底边BC =20,D 为AB 上一点,CD =16,BD =12,
求△ABC 的周长。
针对训练:1、.已知:如图,四边形ABCD ,AD ∥BC ,AB=4,
BC=6,CD=5,AD=3.
求:四边形ABCD 的面积.
3.已知:如图,DE=m,BC=n,∠EBC 与∠DCB 互余,求BD 2+CD 2.
考点三、与勾股定理逆定理有关的探究和应用
例1.阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.
解:∵a 2c 2-b 2c 2=a 4-b 4,(A)∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2),(B)∴c 2=a 2+b 2,(C)∴△ABC 是直角三角形.
问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______; ②错误的原因是______________;③本题的正确结论是__________.
B
E
C
D
例2. 学习了勾股定理以后,有同学提出“在直角三角形中,三边满足2
2
2c
b
a=
+,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!
(1)画出任意的一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是
=
a ______mm;=
b_______mm;较长的一条边长=
c_______mm。
比较2
2
2_____c
b
a+ (填写“>”,“<”,或“=”);
(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是
=
a______mm;=
b_______mm;较长的一条边长=
c_______mm。
比较2
2
2_____c
b
a+ (填写“>”,“<”,或“=”);
(3)根据以上的操作和结果,对这位同学提出的问题, 你猜想的结论是:
;。
⑷对你猜想22
a b
+与2c的两个关系,任选其中一个结论利用勾股定理证明。
(1)
C B
A
(2)
C B
A
(3)
C B
A
例3.如图,南北向MN为我国的领海线,即MN以西为我国领海,以东为公海.上午9时50分,我国反走私艇A发现正东方有一走私艇C以每小时13海里的速度偷偷向我领海开来,便立即通知正在线上巡逻的我国反走私艇B密切注意.反走私艇A通知反走私艇B:A和C 两艇的距离是13海里,A、B两艇的距离是5海里.反走私艇B测得距离C艇是12海里,若走私艇C的速度不变,最早会在什么时间进入我国领海?
针对训练:1观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.
2、如图所示,有一块塑料模板ABCD,长为10㎝,宽为4㎝,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合)并在AD上平行移动:
①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.
②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延
长线交于点Q,与BC交于点E,能否使CE=2㎝?若能,请你求出这时AP的长;若不能,请说明理由.
3.喜欢爬山的同学都知道,很多名山上都有便于游人观光的索道,如图所示,山的高度AC为800 m,从山上A与山下B处各建一索道口,且BC=1 500 m,一游客从山下索道口坐缆车到山顶,知缆车每分钟走50 m,那么大约多长时间后该游客才能到达山顶?说明理由.
延伸训练:如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PB=1,PC=2,PA=3,求∠BPC的度数.
台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.
(1)该城市是否会受到这交台风的影响?请说明理由.
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?。