转动惯量实验报告
- 格式:docx
- 大小:15.41 KB
- 文档页数:5
刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
三线摆测转动惯量实验报告实验报告:三线摆测转动惯量实验一、实验目的本次实验的主要目的是通过三线摆的测量,研究物体在不同摆动角度下的转动惯量。
转动惯量是描述物体旋转特性的一个重要参数,对于理解物体的运动规律和动力学性能具有重要意义。
二、实验原理1. 三线摆的构造三线摆是由三条相互垂直的细线组成,其中两条细线固定在同一端点,另一条细线则通过一个支点悬挂。
当三线摆摆动时,细线的张力会产生扭矩,使得摆锤绕支点旋转。
2. 转动惯量的计算公式转动惯量的计算公式为:I = m * r^2,其中m为物体的质量,r为物体的半径。
在本实验中,我们将通过测量三线摆在不同摆动角度下的周期和角速度,从而求得物体的转动惯量。
三、实验步骤与结果分析1. 实验准备(1) 准备三线摆、计时器、直尺等实验工具。
(2) 将三线摆调整至水平状态,使两条细线的夹角为90°。
(3) 在三线摆的一端挂上质量为m的小球。
(4) 将三线摆调整至合适的初始位置,使其摆动幅度较小。
2. 实验过程与数据记录(1) 以一定的时间间隔记录三线摆的周期T;(2) 以一定的时间间隔记录三线摆的角速度ω。
(3) 根据公式I = 2π/T * ω^2 * r,计算出小球的转动惯量I;(4) 重复以上步骤,分别测量三线摆在不同摆动角度下的数据。
3. 结果分析根据实验数据,我们可以得到以下结论:(1) 随着三线摆摆动角度的增大,其周期T逐渐减小;这是因为在摆动过程中,重力作用在小球上的分力逐渐增大,使得小球受到的回复力减小,从而导致摆动周期变短。
角速度ω也随之增大;这是因为在摆动过程中,小球受到的回复力与重力分力的合力方向始终保持不变,使得小球绕支点做圆周运动的速度不断增大。
因此,我们可以得出结论:物体在不同摆动角度下的转动惯量与其固有属性有关。
转动惯量测量实验报告(共7篇)20页实验名称:转动惯量测量实验实验目的:通过实验测量旋转物体的转动惯量,并了解柿子童的定理以及有效质量的概念。
实验仪器:旋转定量装置、摩擦转台、测高仪、微型计算机、数据采集卡实验原理:转动惯量是物体绕特定轴旋转时的惯性系数,表示物体的旋转固有性质。
旋转定量装置把物体固定在转轴上,悬挂一个对应于物体重量的质量,在物体减速旋转时通过计算得出物体的转动惯量。
设物体以角速度ω绕某一定轴转动。
质处于离该轴r处,质量为m,则质点的角动量L=mvr,转动惯量为I=mr 2,单位是kg·m2。
转动定量装置有相应的计算公式:I=C·m·(h+d/2)2/T2,其中I为物体的转动惯量,C为常数(由仪器提供),m为质量,h为重心高度,d为转轴的直径,T为物体1圈的时间。
有效质量的概念是指在转动过程中受到外力作用的物体的质量是原来物体质量的一部分。
它的大小可以计算为(C+K)m。
其中,C是转动定量装置的常数,K是校正因数,m是物体的质量。
实验步骤:1.安装转动定量装置,将待测物体固定在转轴上2.测量转轴的直径d和质心的高度h3.测量悬挂质量的质量m和悬挂高度h’4.使物体绕转轴旋转1圈,记录用时T5.多次测量,求平均值,计算转动惯量I=C·m·(h+d/2)2/T26.重复以上实验,修改悬挂质量的质量或质心位置,测量I的变化,比较偏差7.探究有效质量的概念,计算(C+K)m的大小,并进行比较实验结果:将物体的质量m不变,改变质心高度h和转轴直径d大小,观察对转动惯量I的影响。
可以发现,两者对I的影响都是与大小成正比的,即h、d越大,I越大;越小,I越小。
误差主要来自于读数仪器和实验操作技巧。
有效质量的计算结果与实际质量相比,误差范围较小。
通过转动惯量的测量,我们可以对旋转物体的惯性的了解更加多样化,并深入理解惯性的作用与其应用场景。
同时,实验结论可以帮助我们在实际应用场景中更加科学地设计实验方案,并更加深入地理解转动相关的物理知识点。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
篇一:转动惯量的实验分析报告转动惯量的测量实验分析报告一、数据处理(1)用游标卡尺、米尺、天平分别测出待测物体的质量和必要的几何尺寸。
如塑料圆柱的直径,金属圆筒的内、外径,木球的直径以及金属细杆的长度等。
(2)计算扭摆弹簧的扭转常数k,计算公式为:i1k?4?2?0.0411*******n?m 2t1?t22(3)测定塑料圆柱、金属圆筒、木球与金属细杆的转动周期,计算转动惯量的实验值,并与理论值相比较,求出百分比误差。
百分比误差=理论值-实验值?100理论值以上各测量值均记录在表3-2-1中,具体计算公式也包含在表格中。
表3-2-1 刚体转动惯量的测定(4)验证平行轴定理。
改变滑块在金属细杆上的位置,测定转动周期,测量数据记录在表3-2-2中。
计算滑块在不同位置出系统的转动惯量,并与理论值比较,计算百分比误差。
其中测得m滑块=0.2397kg。
表3-2-2 平行轴定理的验证从以上实验结果可知,实验结果与理论计算结果百分比误差在百分之十以内,理论值与实验值的拟合较为合理,可有效地验证测定刚体的转动惯量并验证平行轴定理。
其中,误差来源主要有以下几点:(1)圆盘转动的角度大于90度,致使弹簧的形变系数发生改变。
(2)没有对仪器进行水平调节。
(3)圆盘的固定螺丝没有拧紧。
(4)摆上圆台的物体有一定的倾斜角度。
三、思考题(一)预习思考题1、如何测量扭摆弹簧的扭转系数k?答:先测出小塑料圆柱的几何尺寸及质量,得到小塑料圆柱的转动惯量理21论值为i1?m1d1,再测量出金属载物盘的转动周期t0及小塑料圆柱的转动周8i1期为t1,利用计算公式k?4?2代入数据即可求出k。
2t1?t222.如何测定任意形状的物体绕特定轴转动的转动惯量?答:利用题1中测得的i1、t1和t0得到金属载物盘的转动惯量为i1t1i0?2,将待测物体放在金属载物盘上,测出其转动惯量周期为t2,再利2t1?t02kt2用计算公式i2=?i0即可得到该物体的转动惯量。
转动惯量的实验报告转动惯量的实验报告一、引言转动惯量是物体旋转时所具有的惯性,是描述物体旋转运动的物理量。
本实验旨在通过测量不同物体的转动惯量,探究物体形状和质量对转动惯量的影响。
二、实验装置和方法实验装置包括转动惯量测量装置、测量器具(卷尺、天平等)和不同形状的物体(如圆盘、长方体等)。
实验步骤如下:1. 将转动惯量测量装置放置在水平台面上,确保其稳定。
2. 选择一个物体,如圆盘,测量其质量m,并记录下来。
3. 将圆盘固定在转动惯量测量装置上,并使其能够自由旋转。
4. 通过卷尺测量圆盘的半径r,并记录下来。
5. 用测量器具测量圆盘的转动惯量I,并记录下来。
6. 重复步骤2-5,测量其他形状的物体的质量、尺寸和转动惯量。
三、实验结果与分析根据实验数据,我们计算得到了不同物体的转动惯量,并进行了比较。
以下是一些实验结果和分析:1. 圆盘与长方体的转动惯量比较我们测量了相同质量的圆盘和长方体的转动惯量,并发现圆盘的转动惯量要大于长方体。
这是因为圆盘的质量分布更加集中在旋转轴附近,而长方体的质量分布相对较为分散,导致圆盘的转动惯量较大。
2. 形状对转动惯量的影响我们还测量了不同形状的物体的转动惯量,并发现不同形状的物体具有不同的转动惯量。
例如,对于相同质量的物体,圆盘的转动惯量大于长方体,而球体的转动惯量又大于圆盘。
这是因为球体的质量分布更加集中在旋转轴附近,相比之下,圆盘的质量分布更为分散,导致球体的转动惯量最大。
3. 质量对转动惯量的影响我们还进行了不同质量物体的转动惯量比较。
实验结果显示,对于相同形状的物体,质量越大,转动惯量也越大。
这是因为质量的增加会增加物体的惯性,从而增大了物体的转动惯量。
四、实验误差分析在本实验中,存在一些误差可能影响了实验结果的准确性。
例如,测量质量时天平的读数误差、测量尺寸时卷尺的读数误差等。
此外,转动惯量测量装置本身可能存在一定的摩擦力,也会对实验结果产生一定的影响。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量实验报告一、实验目的1.学习转动惯量的概念和计算方法;2.通过实验测量确定不同物体的转动惯量;3.探究转动惯量和物体几何形状、质量的关系。
二、实验原理1.转动惯量:物体对绕过其质心轴心旋转的惯性特征的度量。
对于刚体,它由物体质量和物体构型决定。
2.转动惯量的计算方法:(1) 对于点质量:I = mr^2;(2)对于轴对称物体:I=1/2mR^2;(3) 对于复杂形状物体:I = Σmiri^2,其中m为小质量元素的质量,ri为离轴线的距离。
3.转动惯量的实验测量方法:利用转动定理,即T=Iα,其中T为转矩,α为角加速度。
三、实验器材1.转动惯量测量装置:由转动马达、转动平衡台、挠度计和电源等组成;2.一组不同形状的物体,如长方体、圆柱体和球体等;3.一个尺子和一个卷尺。
四、实验步骤1.将转动平衡台固定在桌面上,并将待测物体放在平衡台上;2.将挠度计的感应头与测量物体相切,并调整挠度计的灵敏度;3.通过转动马达,给待测物体加上一定的角加速度,并记录挠度计的示数;4.重复以上步骤3次,取平均值作为最终结果。
五、实验数据处理1.根据转动定理T=Iα,其中T为转矩,通过测量挠度计的示数可获得转矩大小;2.计算转动惯量:I=T/α;3.对于不同形状的物体,根据其几何形状和质量,计算并比较转动惯量的大小。
六、实验结果分析1.根据实验测得的数据,计算出不同物体的转动惯量;2.比较不同物体之间转动惯量的大小差异;3.分析转动惯量与物体的几何形状、质量之间的关系;七、实验结论1.转动惯量是描述物体对转动运动的惯性特征的物理量,它与物体的质量和几何形状有关;2.转动惯量的计算可以通过测量转矩和角加速度来实现;3.实验结果表明,不同物体具有不同的转动惯量,且转动惯量与物体的几何形状和质量有关;4.实验中可能存在的误差包括挠度计示数误差、驱动电压稳定性等,可通过改进实验装置和提高测量精度来减小误差。
八、实验心得通过完成这个转动惯量实验,我深刻理解了转动惯量的概念和计算方法。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量实验报告转动惯量实验报告引言:转动惯量是描述物体旋转惯性的物理量,它在刚体力学和旋转动力学中具有重要的意义。
本实验旨在通过测量不同物体的转动惯量,探究转动惯量与物体形状、质量分布以及旋转轴位置的关系。
实验装置与方法:实验装置包括转动惯量测量仪、不同形状的物体(如圆环、圆盘、长方体等)以及测量工具(如卷尺、天平等)。
首先,将待测物体固定在转动惯量测量仪上,确保物体能够自由旋转。
然后,通过改变转动轴的位置,测量物体在不同转动轴位置下的转动周期和振幅。
实验结果与分析:通过实验测量,我们得到了不同物体在不同转动轴位置下的转动周期和振幅数据。
首先,我们将数据整理成表格,并绘制出转动周期与转动轴位置的关系曲线。
根据实验数据的分析,我们发现转动惯量与物体形状、质量分布以及旋转轴位置密切相关。
1. 形状对转动惯量的影响:我们选取了不同形状的物体进行实验,包括圆环、圆盘和长方体。
通过实验数据的比较,我们发现相同质量的物体,圆环的转动惯量最大,圆盘次之,长方体最小。
这是因为圆环的质量分布更加集中在离转动轴较远的位置,使得转动惯量增大;而长方体的质量分布相对均匀,转动惯量较小。
2. 质量分布对转动惯量的影响:我们选取了两个相同形状但质量分布不同的物体进行实验,比较了它们的转动惯量。
结果显示,质量集中在离转动轴较远位置的物体转动惯量较大,而质量分布相对均匀的物体转动惯量较小。
这进一步验证了质量分布对转动惯量的影响。
3. 旋转轴位置对转动惯量的影响:我们固定了一个物体,通过改变旋转轴的位置,测量了不同旋转轴位置下的转动周期和振幅。
结果显示,离转动轴较远的位置转动周期较长,振幅较小;而离转动轴较近的位置转动周期较短,振幅较大。
这说明旋转轴位置的改变会影响物体的转动惯量。
结论:通过本次实验,我们得出了以下结论:1. 转动惯量与物体形状、质量分布以及旋转轴位置密切相关。
2. 相同质量的物体中,质量分布越集中、离转动轴越远的物体转动惯量越大。
转动惯量的测量实验报告数据处理实验目的:通过实验测量旋转体的转动惯量,掌握用陀螺仪测量转动的方法。
实验原理:转动惯量是描述物体相对于旋转轴的旋转惯性的物理量。
当外力作用于旋转体时,旋转体会产生转速,此时会有一个转动惯量作用于旋转体,阻碍其继续旋转。
因此当物体的质量越大或者物体到旋转轴的距离越远时,旋转惯量也就越大。
而陀螺仪的原理是利用旋转惯量的影响来测量角速度。
实验设备:数字陀螺仪、测量木块、计时器、圆盘、测量尺、线杠、液体测量器。
操作步骤:1、将圆盘放在水平面上,通过线杠和木块将圆盘固定在陀螺仪上。
2、调整陀螺仪,使其位置水平,然后进行零点校准。
3、通过液体测量器测量出木块的质量,并用测量尺测量木块到圆盘边缘的距离,记录下数据。
4、计时器开始计时,然后用手推动圆盘,使其绕自身的平行轴旋转。
5、在圆盘旋转时,观察陀螺仪的显示,得到圆盘的初始角速度和终止角速度。
6、通过式子:(I=mR^2)/(2t(wf-wi)),计算出圆盘的转动惯量。
实验数据处理:根据记录下的数据,结合计算公式,可以求出测量圆盘的转动惯量。
假如测量得到的木块质量为250g,距离圆盘边缘的距离为10cm,计时器计时结果为10秒。
圆盘的初始角速度为20rad/s,终止角速度为7rad/s。
则可以得到转动惯量如下:I=(0.25kg×0.1m^2)/(2×10s×(20rad/s-7rad/s))=0.037kg·m^2结论:通过实验测量得到的圆盘转动惯量为0.037kg·m^2,与理论值相差不大,说明实验方法可靠。
在实验中,我们还发现了测量精度与实验条件有关,如调整陀螺仪和圆盘的平衡、测量垂直方向时要保证测量精度等。
通过这次实验,我们掌握了用陀螺仪测量转动惯量的方法,并加深了对转动惯量的物理概念。
大学物理实验报告转动惯量转动惯量是物理学中的一个基础概念,它是描述刚体(不易发生形变的物体)转动运动的一个物理量。
在本次实验中,我们使用两种方法来测量转动惯量,分别是动力学法和选线法。
一、实验仪器1. 轻木质圆盘2. 镜面转盘3. 毛细绳4. 重物(小重物、大重物)5. 游标卡尺6. 电子天平7. 手摇发电机二、动力学法测量转动惯量动力学法测量转动惯量的原理是通过对物体施加一个外力,使其绕固定轴转动,然后通过测量转动加速度和所施加力的关系来计算出转动惯量。
1. 实验过程(1)将轻木质圆盘放在水平桌面上,将毛细绳拴在轻木质圆盘的底部,另一端拴上小重物,并且将重物绕过镜面转盘的轴心,以产生旋转运动。
(2)使用手摇发电机将绕过轴心的小重物生成电流,通过天平可以测量出小重物的重量,根据施加的力的大小可以计算出所施加的力。
(3)测量重物的距离轴心的距离d和重物绕过轴心的转动时间T,计算出转动加速度a。
(4)测量不同质量的重物所产生的转动加速度,根据牛二定律(F=ma)计算出所施加的力,然后根据该力和加速度的关系,可以计算出轻木质圆盘的转动惯量。
(5)重复实验三次并进行平均值计算。
2. 实验结果使用动力学法测量轻木质圆盘的转动惯量,得到实验数据如下:质量(kg) d(m) T(s) a (rad/s²) F (N) I (kg*m²)0.0575 0.10 1.37 3.29 0.189 0.0001480.0777 0.10 1.27 4.76 0.294 0.0001880.1095 0.10 1.14 6.96 0.680 0.0003020.1450 0.10 0.98 9.66 1.402 0.0004730.2023 0.10 0.84 14.47 2.753 0.000821选线法是通过将一些重物放在旋转的物体上,让它保持平衡旋转状态来测量转动惯量。
原理是转动惯量与物体自身的形状、密度和质量有关,通过改变物体上的重物的位置和数量,可以改变物体本身的转动惯量,最终测量物体的转动惯量。
测量转动惯量实验报告一、实验目的转动惯量是描述刚体转动惯性大小的物理量,它与刚体的质量分布以及转轴的位置有关。
本次实验的目的是通过实验测量几种不同形状刚体的转动惯量,并与理论值进行比较,从而加深对转动惯量概念的理解,掌握测量转动惯量的基本方法和实验技能。
二、实验原理1、转动惯量的定义对于绕定轴转动的刚体,其转动惯量 I 定义为刚体中各质点的质量mi 与其到转轴的距离 ri 的平方的乘积之和,即 I =Σ mi ri² 。
2、三线摆法测量转动惯量三线摆是通过测量刚体扭转摆动的周期来计算转动惯量的。
将一质量为 m0 的圆盘,用三条等长的悬线对称地悬挂在一个水平的圆盘上,构成三线摆。
当圆盘作小角度扭转摆动时,其运动可近似为简谐运动。
根据能量守恒定律和简谐运动的周期公式,可以推导出圆盘的转动惯量 I0 与摆动周期 T0 的关系为:I0 =(m0gRr) /(4π²H0T0²)其中,g 为重力加速度,R 为下圆盘(即摆盘)的半径,r 为上圆盘(即悬盘)的半径,H0 为上下圆盘之间的距离。
对于质量为 m 的待测刚体,将其放在下圆盘上,此时系统的转动惯量为 I',摆动周期为 T',则待测刚体的转动惯量 I 为:I = I' I03、平行轴定理若刚体对通过质心 C 的轴的转动惯量为 Ic,刚体的质量为 m,两平行轴之间的距离为 d,则刚体对另一平行轴的转动惯量 I 为:I = Ic + md²三、实验仪器三线摆实验仪、游标卡尺、米尺、电子天平、待测刚体(圆环、圆柱等)四、实验步骤1、调节三线摆装置(1)将三线摆的上、下圆盘调至水平,通过调节底座上的三个旋钮,使上圆盘的悬线与下圆盘的圆心在同一竖直线上。
(2)用米尺测量上下圆盘之间的距离 H0,测量 5 次,取平均值。
(3)用游标卡尺测量上圆盘和下圆盘的半径 r 和 R,各测量 5 次,取平均值。
2、测量下圆盘的质量 m0 和摆动周期 T0(1)用电子天平称出下圆盘的质量 m0。
理论力学转动惯量实验报告【实验目的】1.了解多功能计数计时毫秒仪实时测量(时间)的基本方法2.用刚体转动法测定物体的转动惯量3.验证刚体转动的平行轴定理4.验证刚体的转动惯量与外力矩无关【实验原理】1.转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程T×r+Mμ=Jβ2(1)由牛顿第二定律可知,砝码下落时的运动方程为:mg-T=ma即绳子的张力T=m(g-rβ2)砝码与系统脱离后的运动方程Mμ=Jβ1(2)由方程(1)(2)可得J=mr(g-rβ2)/(β2-β1) (3)2.角加速度的测量θ=ω0t+½βt²(4)若在t1、t2时刻测得角位移θ1、θ2则θ1=ω0 t1+½βt²(5)θ2=ω0 t2+½βt²(6)所以,由方程(5)、(6)可得β=2(θ2 t1-θ1 t2)/ t1 t2(t2- t1)【实验仪器】1、IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm)2、一个钢质圆环(内径为175mm,外径为215mm,质量为995g)3、两个钢质圆柱(直径为38mm,质量为400g)【实验步骤】1.实验准备在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。
将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。
通用电脑计时器上光电门的开关应接通,另一路断开作备用。
当用于本实验时,设置1个光电脉冲记数1次,1次测量记录大约20组数。
2.测量并计算实验台的转动惯量1)放置仪器,滑轮置于实验台外3-4cm处,调节仪器水平。
设置毫秒仪计数次数为20。
2)连接传感器与计数计时毫秒仪,调节霍尔开关与磁钢间距为0.4-0.6cm,转离磁钢,复位毫秒仪,转动到磁钢与霍尔开关相对时,毫秒仪低电平指示灯亮,开始计时和计数。
转动惯量实验报告-理论力学。
转动惯量实验报告-理论力学一、实验目的1.加深对转动惯量概念的理解;2.掌握用三线摆法测定物体转动惯量的原理和方法;3.学习用图解法处理实验数据。
二、实验原理转动惯量是物体在转动过程中的惯性大小的量度,它反映了物体对转动的抵抗能力。
转动惯量的大小与物体的质量、形状以及转动轴的位置有关。
本实验采用三线摆法测定物体的转动惯量。
三线摆法的基本原理是将待测物体悬挂于三条等长的细线下端,使物体在水平面内作小幅度的摆动。
当物体摆动时,三条细线的张力相等,且物体对三条细线的拉力之和为零。
设待测物体质量为m,三条细线的长度为l,物体质心到转动轴的距离为r,则物体的转动惯量为:J=mr^2实验中,通过测量物体摆动周期T和细线长度l,可以计算出物体的转动惯量J。
三、实验步骤1.将三线摆悬挂在支架上,调整三条细线的长度相等,且使三条细线的悬挂点处于同一水平面内。
2.将待测物体悬挂于三条细线下端,使物体在水平面内作小幅度摆动。
用秒表测量物体摆动10个周期的时间t,计算出单个周期的时间T=t/10。
3.重复测量3次,取平均值作为最终结果。
4.测量三条细线的长度l,记录数据。
5.根据实验原理公式计算待测物体的转动惯量J。
四、实验数据分析与处理表1 物体摆动周期和细线长度测量数据根据实验原理公式,计算出待测物体的转动惯量J:J=mr^2=m(l/2)^2=m(50.0/2)^2=625m(g·cm^2)其中,m为待测物体的质量,以克为单位。
由于本实验中未测量物体的质量,因此转动惯量的结果以m(g·cm^2)为单位表示。
五、实验结论通过本实验,我们掌握了用三线摆法测定物体转动惯量的原理和方法。
实验中,我们发现物体摆动周期T与细线长度l之间存在一定关系。
通过测量物体摆动周期T和细线长度l,我们可以计算出物体的转动惯量J。
本实验方法简单可靠,具有一定的实用价值。
同时,通过本实验,我们也加深了对转动惯量概念的理解。
刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握使用秒表、游标卡尺、米尺等测量工具。
二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。
当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。
根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。
三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。
四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。
2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。
3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。
4、测量下盘质量\(m_0\)。
5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。
6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。
五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。
转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定物体的转动惯量。
2、验证转动惯量的平行轴定理。
二、实验原理三线摆是将一个匀质圆盘,以三条等长的摆线对称地悬挂在一个水平的圆盘上。
当圆盘绕垂直于盘面的中心轴作微小扭转摆动时,圆盘的运动可以看作是一种简谐振动。
根据能量守恒定律和刚体转动定律,可以推导出三线摆测量转动惯量的公式:\(J_0 =\frac{m_0gRr^2}{4\pi^2H}T_0^2\)其中,\(J_0\)为下圆盘的转动惯量,\(m_0\)为下圆盘的质量,\(g\)为重力加速度,\(R\)和\(r\)分别为下圆盘和上圆盘的悬点到各自圆心的距离,\(H\)为上下圆盘之间的距离,\(T_0\)为下圆盘的摆动周期。
对于质量为\(m\)、转动惯量为\(J\)的待测物体放在下圆盘上时,系统的转动惯量为\(J_0 + J\),摆动周期为\(T\),则有:\(J =\frac{m_0gRr^2}{4\pi^2H}(T^2 T_0^2)\)若质量为\(m\)的待测物体的质心轴到下圆盘中心轴的距离为\(d\),根据平行轴定理,其转动惯量为\(J = J_c + md^2\),其中\(J_c\)为通过质心轴的转动惯量。
三、实验仪器三线摆实验仪、游标卡尺、米尺、电子秒表、待测圆环、圆柱体等。
四、实验步骤1、调节三线摆底座水平,使上圆盘和下圆盘处于平行状态。
2、用米尺测量上下圆盘之间的距离\(H\),测量六次取平均值。
3、用游标卡尺测量上下圆盘的悬点到各自圆心的距离\(R\)和\(r\),各测量六次取平均值。
4、测量下圆盘的质量\(m_0\)和半径\(R_0\)。
5、轻轻转动下圆盘,使其做小角度摆动,用电子秒表测量下圆盘摆动\(50\)次的时间,重复测量六次,计算平均周期\(T_0\)。
6、将待测圆环放在下圆盘上,使圆环的中心与下圆盘的中心重合,测量系统的摆动周期\(T\),重复测量六次。
7、用游标卡尺测量圆环的内、外直径,计算圆环的质量和转动惯量。
转动惯量测量实验报告转动惯量测量实验报告一、实验目的本实验旨在通过测量不同物体的转动惯量,探究转动惯量与物体形状、质量分布等因素之间的关系。
二、实验原理转动惯量是物体对转动运动的惯性特性的度量,它与物体的质量分布和形状密切相关。
根据牛顿第二定律,旋转运动的力矩与角加速度之间存在着线性关系:τ = Iα,其中τ为力矩,I为转动惯量,α为角加速度。
对于刚体的转动惯量,可以通过实验测量得到。
三、实验器材与装置1. 转动惯量测量装置:包括转轴、转轴支架、测力计、质量盘等。
2. 不同形状的物体:如圆盘、长方体、球体等。
3. 实验测量仪器:如千分尺、天平等。
四、实验步骤1. 安装转动惯量测量装置:将转轴固定在转轴支架上,确保转轴能够自由转动。
2. 测量质量盘的质量:使用天平准确测量质量盘的质量,并记录下来。
3. 测量质量盘的直径:使用千分尺测量质量盘的直径,并记录下来。
4. 将质量盘固定在转轴上:将质量盘装在转轴上,并用螺丝固定好。
5. 测量转动惯量:在质量盘上施加一个水平方向的力矩,通过测力计测量力矩的大小,并记录下来。
同时,记录下转轴上的角加速度。
6. 更换不同形状的物体:重复步骤2-5,分别测量不同形状的物体的转动惯量。
五、实验数据处理与分析1. 计算转动惯量:根据实验测得的力矩和角加速度数据,利用公式I = τ/α计算不同物体的转动惯量。
2. 绘制转动惯量与质量分布的关系图:将不同物体的转动惯量与其质量分布情况进行对比,观察其变化趋势。
3. 分析结果:根据实验结果,分析不同物体的转动惯量与形状、质量分布等因素之间的关系。
比较不同形状物体的转动惯量,探讨其差异的原因。
六、实验结果与讨论通过实验测量和数据处理,得到了不同形状物体的转动惯量数据,并绘制了转动惯量与质量分布的关系图。
观察图表可以发现,不同形状的物体具有不同的转动惯量。
例如,对于同样质量的物体,圆盘的转动惯量明显大于长方体和球体。
这是因为圆盘的质量分布更加集中在转轴附近,质量分布的不均匀性导致了转动惯量的增加。
测转动惯量的实验报告测转动惯量的实验报告引言转动惯量是描述物体抵抗转动运动的性质的物理量,它在物体的形状和质量分布上有所不同。
为了研究物体的转动惯量,我们进行了一系列实验。
本实验旨在通过测量不同物体的转动惯量,探究物体形状和质量分布对转动惯量的影响,并验证转动惯量的定义和计算公式。
实验一:转动惯量与物体形状的关系在第一组实验中,我们选择了三个不同形状的物体:圆盘、长方体和圆柱体。
首先,我们测量了这些物体的质量和尺寸。
然后,我们通过将这些物体放置在转轴上并施加一个旋转力矩,测量了它们的角加速度。
根据牛顿第二定律和角动量定理,我们可以计算出它们的转动惯量。
实验结果表明,转动惯量与物体的形状密切相关。
对于相同质量的物体,圆盘的转动惯量最小,长方体次之,而圆柱体的转动惯量最大。
这是因为圆盘的质量分布在其半径方向上更为均匀,而圆柱体的质量集中在中心轴附近,导致了转动惯量的增加。
这一实验结果与我们的预期相符。
实验二:转动惯量与质量分布的关系在第二组实验中,我们选择了两个相同形状但质量分布不同的物体:一个均匀分布质量的圆柱体和一个质量集中在中心轴附近的圆柱体。
同样地,我们测量了它们的质量和尺寸,并通过施加旋转力矩来测量它们的角加速度。
实验结果表明,质量分布的改变会显著影响转动惯量。
相同质量的物体中,质量集中在中心轴附近的圆柱体的转动惯量要大于质量均匀分布的圆柱体。
这是因为质量集中在中心轴附近的物体,其质量距离转轴的距离较小,从而增加了转动惯量。
这一实验结果进一步验证了转动惯量与质量分布的关系。
结论通过这一系列实验,我们得出了以下结论:1. 转动惯量与物体的形状密切相关,形状不同会导致转动惯量的差异。
2. 转动惯量与质量分布密切相关,质量集中在中心轴附近的物体转动惯量较大。
3. 转动惯量可以通过测量角加速度和施加力矩来计算,符合牛顿第二定律和角动量定理。
这些实验结果对于深入理解物体的转动性质和应用于工程设计中的转动系统具有重要意义。
转动惯量的测定实验报告一、实验目的1、学习用三线摆法测量物体的转动惯量。
2、验证转动惯量的平行轴定理。
二、实验原理三线摆是由三根等长的悬线将一个匀质圆盘悬挂在一个水平的圆盘支架上构成的。
当匀质圆盘在自身重力作用下绕垂直于圆盘平面的中心轴 OO'作扭转摆动时,通过测量圆盘的扭转周期和相关几何参数,可以计算出圆盘的转动惯量。
设下圆盘质量为 m₀,半径为 R₀,上圆盘质量为 m,半径为 r,上下圆盘之间的距离为 h。
当下圆盘扭转一个小角度θ 后,在重力矩的作用下,圆盘将做周期性的扭转摆动。
根据能量守恒定律,圆盘的转动动能等于重力势能的变化,可得:\\begin{align}mgh\theta&=\frac{1}{2}I\omega^2\\\end{align}\其中,I 为圆盘的转动惯量,ω 为圆盘的角速度。
由于圆盘的摆动角度很小,sinθ ≈ θ ,则重力矩为mghθ 。
又因为圆盘做简谐运动,其周期 T 与角速度ω 的关系为:\(\omega =\frac{2\pi}{T}\)。
将上述关系代入可得:\\begin{align}mgh\theta&=\frac{1}{2}I(\frac{2\pi}{T})^2\\I&=\frac{mghT^2}{4\pi^2\theta}\end{align}\对于三线摆,通过几何关系可以得到:\(h =\sqrt{(R_0^2r^2)}\)。
当质量为 m 的待测物体放在下圆盘上,且其质心与下圆盘中心轴重合时,测出此时的摆动周期 T',则系统的转动惯量为:\\begin{align}I'&=(m_0 + m)\frac{g\sqrt{(R_0^2 r^2)}T'^2}{4\pi^2\theta}\end{align}\则待测物体的转动惯量为:\(I_{x} = I' I_0\)。
平行轴定理:如果一个刚体对通过质心的轴的转动惯量为 Ic,那么对与该轴平行、相距为 d 的任意轴的转动惯量为:\(I = I_c +md^2\)。
刚体绕轴转动惯性的度量。
其数值为J=∑mi*ri^2,式中mi 表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。
求和号(或积分号)遍及整个刚体。
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。
规则形状的均质刚体,其转动惯量可直接计得。
不规则刚体或非均质刚体的转动惯量,一般用实验法测定。
转动惯量应用于刚体各种运动的动力学计算中。
描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。
由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。
还有垂直轴定理:垂直轴定理
一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
表达式:Iz=Ix+Iy
刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。
由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。
转动惯量的量纲为L^2M,在SI单位制中,它的单位是
kg·m^2。
刚体绕某一点转动的惯性由更普遍的惯量张量描述。
惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。
补充对转动惯量的详细解释及其物理意义:
先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。
E=(1/2)mv^2(v^2为v的2次方)
把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r)
得到E=(1/2)m(wr)^2
由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替,
K=mr^2
得到E=(1/2)Kw^2
K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。
这样分析一个转动问题就可以用能量的角度分析了,而不必
拘泥于只从纯运动角度分析转动问题。
为什么变换一下公式就可以从能量角度分析转动问题呢?
1、E=(1/2)Kw^2本身代表研究对象的运动能量
2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。
3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质心运动情况。
4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑mr^2(这里的K和上楼的J一样)所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。
若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑mr^2=∫r^2dm=∫r^2σdV
其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。
补充转动惯量的计算公式
转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。
对于杆:
当回转轴过杆的中点并垂直于轴时;J=mL^2/12
其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于轴时:J=mL^2/3
其中m是杆的质量,L是杆的长度。
对与圆柱体:
当回转轴是圆柱体轴线时;J=mr^2/2
其中m是圆柱体的质量,r是圆柱体的半径。
转动惯量定理:M=Jβ
其中M是扭转力矩
J是转动惯量
β是角加速度
例题:
现在已知:一个直径是80的轴,长度为500,材料是钢材。
计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩?
分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m,由公式ρ=m/v可以推出m=ρv=ρπr^2L.
根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度β=△ω/△t=500转/分/0.1s
电机轴我们可以认为是圆柱体过轴线,所以J=mr^2/2。
所以M=Jβ
=mr^2/2△ω/△t
=ρπr^2hr^2/2△ω/△t
=7.8*10^3*3.14*0.04^2*0.5*0.04^2/2*500/60/0.1
=1.2786133332821888kg/m^2
单位J=kgm^2/s^2=N*m。