欧拉公式知识点总结
- 格式:doc
- 大小:21.50 KB
- 文档页数:5
数学知识点归纳三角函数与复数的关系数学知识点归纳:三角函数与复数的关系三角函数与复数在数学中都是重要的概念,它们之间存在着密切的联系和相互关系。
本文将对三角函数与复数的关系进行归纳总结,以加深对这两个概念的理解。
一、三角函数简介三角函数是描述角度与边长之间的关系的数学函数。
常见的三角函数有正弦函数、余弦函数和正切函数,分别用sin、cos和tan表示。
这些函数在数学、物理、工程等领域有广泛的应用,对于解决各种问题十分重要。
二、复数简介复数是由实数和虚数构成的数。
它可以表示为a+bi的形式,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
复数在数学中有着广泛的应用,包括在电路分析、信号处理、计算机图形学等领域。
三、三角函数与复数之间的关系1. 欧拉公式欧拉公式是三角函数与复数之间密切关系的一个重要结果。
它表达了复数和三角函数之间的联系,即e^(ix)=cos(x)+isin(x)。
这个公式将三角函数与复数指数函数联系起来,极大地简化了一些复杂的数学运算。
2. 复数的幅角复数的幅角可以与三角函数的概念相联系。
幅角指的是复数在复平面上与实轴正方向之间的角度,通常用θ表示。
幅角与三角函数之间的关系可以通过复数的实部和虚部来表示。
对于一个复数z=a+bi,其幅角θ可由公式θ=arctan(b/a)得出。
3. 欧拉公式与三角函数的关系欧拉公式提供了复数与三角函数之间的桥梁。
通过欧拉公式,我们可以使用指数函数的形式来表示三角函数。
例如,sin(x)可以表示为Im(e^(ix)),cos(x)可以表示为Re(e^(ix)),其中Im表示复数的虚部,Re表示复数的实部。
这种表示方法在计算复杂三角函数的值时非常有用。
4. 欧拉公式在解决三角函数问题中的应用欧拉公式在解决三角函数问题时起到了重要的作用。
通过使用欧拉公式,我们可以将三角函数的计算转化为复数的运算,简化了问题的求解过程。
例如,利用欧拉公式可以推导出一些三角函数的恒等式,如sin(x+y)=sinx*cosy+cosx*siny。
1、〔2021•凉山州〕观察以下多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.考点:欧拉公式。
专题:图表型。
分析:三棱柱的顶点数为:3×2=6,棱数为:3×3=9,面数为:2+3=5;四棱柱的顶点数为:4×2=8,棱数为:4×3=12,面数为:2+4=6;五棱柱的顶点数为:5×2=10,棱数为:5×3=15,面数为:2+5=7;六棱柱的顶点数为:6×2=12,棱数为:6×3=18,面数为:2+6=8.∴a+c﹣b=2.解答:解:规律为a+c﹣b=2.点评:可先由简单图形得到解决问题的方法.2、〔2006•烟台〕以下图形中,图〔a〕是正方体木块,把它切去一块,得到如图〔b〕〔c〕〔d〕〔e〕的图号顶点数x 棱数y 面数z〔a〕8 12 6〔b〕〔c〕〔d〕〔e〕〔1〕我们知道,图〔a〕的正方体木块有8个顶点、12条棱、6个面,请你将图〔b〕、〔c〕、〔d〕、〔e〕中木块的顶点数、棱数、面数填入下表;〔2〕上表,各种木块的顶点数、棱数、面数之间的数量关系可以归纳出一定的规律,请你试写出顶点数x、棱数y、面数z之间的数量关系式.考点:欧拉公式。
专题:规律型。
分析:〔1〕小题,只要将图〔b〕、〔c〕、〔d〕、〔e〕各个木块的顶点数、棱数、面数数一下就行;数的时候要注意:图中不能直接看到的那一局部不要遗漏,也不要重复,可通过想象计数,正确填入表内;〔2〕通过观察找出每个图中“顶点数、棱数、面数〞之间隐藏着的数量关系,这个数量关系用公式表示出来即可.解答:解:〔1〕见表:图号顶点数x 棱数y 面数z〔a〕8 12 6〔b〕 6 9 5〔c〕8 12 6〔d〕8 13 7〔e〕10 15 7〔2〕规律:x+z﹣2=y.点评:命题立意:考察平均数的求法,搜集信息的能力〔读表〕,作图能力及用样本估计总体的统计思想.3、〔1〕图①是正方体木块,把它切去一块,可能得到形如图②、③、④、⑤的木块.我们知道,图①的正方体木块有8个顶点,12条棱,6个面,请你将图②、③、④、⑤中木块的顶点数、棱数、面数填人下表:〔2〕观察此表,请你归纳上述各种木块的顶点数、棱数、面数之间的数虽关系是:顶点数+面数﹣棱数=2.〔3〕图⑥是用虚线画出的正方体木块,请你想象一种与图②~⑤不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,那么该木块的顶点数为8,棱数为6,面数为3.考点:欧拉公式。
欧拉公式∑摘要:1.欧拉公式的概述2.欧拉公式的证明3.欧拉公式的应用4.欧拉公式的重要性正文:1.欧拉公式的概述欧拉公式,是数学领域中一个著名的公式,由瑞士数学家欧拉在18 世纪提出。
该公式的表达式为:e^(ix) = cos(x) + i*sin(x),其中,e 表示自然对数的底数,i 表示虚数单位,x 表示实数,cos(x) 表示角度为x 的单位圆的余弦值,sin(x) 表示角度为x 的单位圆的正弦值。
欧拉公式将复数指数与三角函数联系在一起,展示了数学领域的美妙统一。
2.欧拉公式的证明欧拉公式的证明过程较为复杂,涉及到复数、三角函数、微积分等多个数学领域的知识。
一般证明过程需要用到泰勒级数和复数解析延拓等高级数学概念。
在此,我们不再详细展开证明过程,而是直接引用欧拉公式。
3.欧拉公式的应用欧拉公式在数学领域具有广泛的应用,包括复分析、微积分、概率论、物理学等。
以下是欧拉公式在几个领域的应用示例:(1)在复分析中,欧拉公式说明了复指数函数与三角函数的联系,将复平面上的点与单位圆上的点一一对应,为复数的几何表示提供了直观的理解。
(2)在微积分中,欧拉公式可以简化求解周期函数的积分问题。
例如,求解f(x) = sin(x) 的定积分,可以通过将sin(x) 替换为欧拉公式,然后进行积分计算。
(3)在概率论中,欧拉公式可以简化求解随机变量的均值和方差。
例如,对于一个均值为0,方差为1 的随机变量X,其数学期望和方差可以分别表示为E(X) = 0 和Var(X) = 1,利用欧拉公式可以得到E(e^(ix)) = cos(x) + i*sin(x) 和Var(e^(ix)) = cos^2(x) + sin^2(x)。
(4)在物理学中,欧拉公式可以用于描述简谐振动的运动规律。
例如,简谐振动的运动方程可以表示为x(t) = Asin(ωt + φ),其中A 表示振幅,ω表示角频率,t 表示时间,φ表示初相位。
七年级上册数学第六单元知识点七年级上册数学第六单元学习的内容是关于欧拉图的知识。
欧拉图起源于18世纪,是图论中的一种基本概念。
在这一单元中,我们将学习欧拉图的基础概念、性质及其应用,并掌握欧拉图的构造方法。
一、欧拉图的基础概念欧拉图是指一种特殊的图,这种图包含了所有节点都能够连通(即是连通图)且每个节点的度数都是偶数的图。
欧拉图有两种形式:欧拉回路和欧拉通路。
欧拉回路:在一张图中,如果从一个节点出发,恰好经过所有的边,且最后回到原始节点,那么这张图就包含欧拉回路。
欧拉通路:在一张图中,如果存在一条路径可以经过所有边,但是不需要回到原始节点,那么这张图就包含欧拉通路。
二、欧拉图的性质欧拉图的性质有如下几点:1、欧拉回路存在的判断条件:该图所有节点的度数都是偶数。
2、欧拉通路存在的判断条件:该图有且仅有两个奇度数节点(度数为奇数的节点)(或者无奇度数节点)。
3、若一张无向图中存在欧拉回路或欧拉通路,则一定是连通图。
三、欧拉图的构造方法1、欧拉回路的构造方法:每次从一个节点出发遍历该节点所连边中没有被遍历过的边。
一直遍历下去,直到回到起点。
2、欧拉通路的构造方法:选择一个奇度数节点作为起点,从该节点开始遍历该节点所连边中没有被遍历过的边。
当无法再走下去的时候,进入另一个未遍历到的奇数度节点继续遍历。
一直遍历下去,直到所有边都被遍历过为止。
四、欧拉图在实际应用中的意义欧拉图的2个重要性质:所有节点的度数都是偶数或者只有2个奇度数节点,意味着欧拉图是很有规律的。
因此,在我们的现实世界中很多事物都可以用欧拉图来表示。
例如,在城市规划中,欧拉回路可以表示为一个完美的环路,有可能在一个城市中形成一个中心广场。
在网络优化方面,欧拉图可以用来控制数据的流动,以实现更好的性能。
在实际应用中,学习欧拉图可以使我们更好地理解和分析问题,从而提高解决问题的能力。
五、总结欧拉图是图论中的基本概念,主要包括欧拉回路和欧拉通路。
1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体棱柱、棱锥、正多面体等一切凸多面体都是简单多面体3.欧拉定理(欧拉公式):简单多面体的顶点数、面数及棱数E有关系式:2V F E+-=.4.欧拉示性数:在欧拉公式中令()f p V F E=+-,()f p叫欧拉示性数(1)简单多面体的欧拉示性数()2f p=.(2)带一个洞的多面体的欧拉示性数()0f p=(3)多面体所有面的内角总和公式:①()360E F-︒或②0(2)360V-5 球的概念:与定点距离等于或小于定长的点的集合,叫做球体,简称球定点叫球心,定长叫球的半径与定点距离等于定长的点的集合叫做球面表示它的球心的字母表示,例如球O.6.球的截面:用一平面α去截一个球O,设OO'是平面α的垂线段,O'为垂足,且,所得的截面是以球心在截面内的射影为圆心,以r截面是一个圆面球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆7.经线:球面上从北极到南极的半个大圆;纬线:与赤道平面平行的平面截球面所得的小圆;经度:某地的经度就是经过这点的经线与地轴确定的半平面与0 经线及轴确定的半平面所成的二面角的度数;纬度:某地的纬度就是指过这点的球半径与赤道平面所成角的度数8.两点的球面距离:球面上两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离9.两点的球面距离公式: AB Rθ=(其中R为球半径,θ为A,B所对应的球心角的弧度数)10 半球的底面:已知半径为R的球O,用过球心的平面去截球O,球被截面分成大小相等的两个半球,截面圆O(包含它内部的点),叫做所得半球的底面11.球的体积公式:43V Rπ=12 球的表面积:24S Rπ=1 一个n 面体共有8条棱,5个顶点,求2.一个正n 面体共有8个顶点,每个顶点处共有三条棱,求3.一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有下面的关系:F =2V -4 4.有没有棱数是7的简单多面体?说明理由5.是否存在这样的多面体,它有奇数个面,且每一个面都有奇数条边6 ①过球面上任意两点,作球的大圆的个数是 .②球半径为25cm ,球心到截面距离为24cm ,则截面面积为 . ③已知球的两个平行截面的面积分别是5π和8π,它们位于球心同一侧,且相距1,则球半径是 .④球O 直径为4,,A B 为球面上的两点且AB =,A B 两点的球面距离为 . ⑤北纬60圈上,M N 两地,它们在纬度圈上的弧长是2Rπ(R 为地球半径),则这两地间的球面距离为 .7.北纬45圈上有,A B 两地,A 在东径120,B 在西径150,设地球半径为R ,,A B 两地球面距离为 ;8.一个球夹在120二面角内,两切点在球面上最短距离为cm π,则球半径为 ;9.设地球的半径为R ,在北纬45°圈上有A 、B 两点,它们的经度相差90°,那么这两点间的纬线的长为_________,两点间的球面距离是_________.10 球的大圆面积增大为原来的4倍,则体积增大为原来的 倍;11.三个球的半径之比为1:2:3,那么最大的球的体积是其余两个球的体积和的 倍; 12.若球的大圆面积扩大为原来的4倍,则球的体积比原来增加 倍;13.把半径分别为3,4,5的三个铁球,熔成一个大球,则大球半径是 ; 14.正方体全面积是24,它的外接球的体积是 ,内切球的体积是 .15 球O 1、O 2分别与正方体的各面、各条棱相切,正方体的各顶点都在球O 3的表面上,求三个球的表面积之比.16.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积17. 正四面体ABCD 的棱长为a ,球O 是内切球,球O 1是与正四面体的三个面和球O 都相切的一个小球,求球O 1的体积.练习参考答案:1 一个n 面体共有8条棱,5个顶点,求解:∵2V F E +-=,∴25F E V =+-=,即5n =.2.一个正n 面体共有8个顶点,每个顶点处共有三条棱,求解:∵8V =,83122E ⨯==,∴26F E V =+-=,即6n =. 3.一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有下面的关系:F =2V -4 证明:∵23F E =,V +F -E =2 ∴V +F -F 23=2 ∴F =2V -4 4.有没有棱数是7的简单多面体?说明理由解:若E =7,∵V +F -E =2 , ∴V +F =7+2=9 ,∵多面体的顶点数V ≥4,面数F ≥4∴只有两种情况V =4,F =5或V =5,F =4,但是有4个顶点的多面体只有四个面,不可能是5个面,有四个面的多面体是四面体,也只有四个顶点,不可能有5个顶点,∴没有棱数是7的多面体 5.是否存在这样的多面体,它有奇数个面,且每一个面都有奇数条边解:设有一个多面体,有F (奇数)个面,并且每个面的边数F n n n 21,也都是奇数,则 E n n n F 221=+++ ,但是上式左端是奇数个“奇数相加”,结果仍为奇数,可右端是偶数,这是不可能的 ∴不存在这样的多面体6 ①过球面上任意两点,作球的大圆的个数是 .②球半径为25cm ,球心到截面距离为24cm ,则截面面积为 . ③已知球的两个平行截面的面积分别是5π和8π,它们位于球心同一侧,且相距1,则球半径是 .④球O 直径为4,,A B 为球面上的两点且AB =,A B 两点的球面距离为 . ⑤北纬60圈上,M N 两地,它们在纬度圈上的弧长是2Rπ(R 为地球半径),则这两地间的球面距离为 .答案:①一个或无数个 ②249m ③3 ④43π ⑤ 3π7.北纬45圈上有,A B 两地,A 在东径120,B 在西径150,设地球半径为R ,,A B 两地球面距离为 ; 答案:3R π8.一个球夹在120二面角内,两切点在球面上最短距离为cm π,则球半径为 ;答案:3cm9.设地球的半径为R ,在北纬45°圈上有A 、B 两点,它们的经度相差90°,那么这两点间的纬线的长为_________,两点间的球面距离是_________.分析:求A 、B 两点间的球面距离,就是求过球心和点A 、B 的大圆的劣弧长,因而应先求出弦AB 的长,所以要先求出A 、B 两点所在纬度圈的半径.解:连结AB .设地球球心为O ,北纬45°圈中心为O 1,则 O 1O ⊥O 1A ,O 1O ⊥O 1B .∴4511=∠=∠=∠AOC BO O AO O .∴ O 1A =O 1B =O 1O =45cos ⋅OA =R 22. ∴ 两点间的纬线的长为:R R 42222=⋅π. ∵ A 、B 两点的经度相差90°, ∴ 901=∠B AO .在B AO Rt 1△中,R AO AB ==12,∴ OB AB OA ==,3π=∠AOB .∴ 两点间的球面距离是:R 3π.10 球的大圆面积增大为原来的4倍,则体积增大为原来的 倍;答案: 811.三个球的半径之比为1:2:3,那么最大的球的体积是其余两个球的体积和的 倍; 答案: 312.若球的大圆面积扩大为原来的4倍,则球的体积比原来增加 倍; 答案: 713.把半径分别为3,4,5的三个铁球,熔成一个大球,则大球半径是 ; 答案: 614.正方体全面积是24,它的外接球的体积是 ,内切球的体积是 .答案: ,43π 15 球O 1、O 2分别与正方体的各面、各条棱相切,正方体的各顶点都在球O 3的表面上,求三个球的表面积之比.分析:球的表面积之比事实上就是半径之比的平方,故只需找到球半径之间的关系即可. 解:设正方体棱长为a ,则三个球的半径依次为2a 、a 22,a 23 ∴ 三个球的表面积之比是3:2:1::321=S S S .16.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积解:设球半径为R ,正四棱柱底面边长为a ,则作轴截面如图,14AA '=,AC =,又∵24324R ππ=,∴9R =,∴AC ==8a =,∴6423214576S =⨯+⨯=表.17. 正四面体ABCD 的棱长为a ,球O 是内切球,球O 1是与正四面体的三个面和球O 都相切的一个小球,求球O 1的体积.分析:正四面体的内切球与各面的切点是面的中心,球心到各面的距离相等.解:如图,设球O 半径为R ,球O 1的半径为r ,E 为CD 中点,球O 与平面ACD 、BCD 切于点F 、G ,球O 1与平面ACD 切于点H . 由题设 a GE AE AG 3622=-=. ∵ △AOF ∽△AEG ∴a Ra a R 233663-=,得a R 126=.∵ △AO 1H ∽△AOF ∴ R r R a rR a =---36236,得a r 246=. ∴ 3331728624634341a a r V O =⎪⎪⎭⎫ ⎝⎛==ππ球.另法:以O 为顶点将正四面体分成相等体积的四个三棱锥,用体积相等法,可以得到1144R OG AG h ===,3h a =,111()428r h h ===。
高三数学周期性知识点归纳数学是一门需要不断积累和总结的学科,高三学生在备战高考时,需要理清各个知识点之间的联系和周期性规律。
本文将对高三数学中的周期性知识点进行归纳和总结,帮助同学们更好地理解和掌握相关内容。
一、三角函数的周期性1. 正弦函数:y = A*sin(Bx + C)- 周期:2π/B- 最大值:A- 最小值:-A2. 余弦函数:y = A*cos(Bx + C)- 周期:2π/B- 最大值:A- 最小值:-A3. 正切函数:y = A*tan(Bx + C)- 周期:π/B二、复数的周期性1. 复数的定义:z = a + bi,其中a为实部,b为虚部,i为虚数单位。
2. 欧拉公式:e^ix = cos(x) + isin(x)3. 指数函数的周期性:e^(ix+2kπ) = e^ix (k为整数)三、指数函数和对数函数的周期性1. 指数函数的定义:f(x) = a^x,其中a为底数,x为自变量。
- 当a>1时,函数递增且无周期- 当0<a<1时,函数递减且无周期2. 对数函数的定义:f(x) = loga(x),其中a为底数,x为自变量。
- 当a>1时,函数递增且无周期- 当0<a<1时,函数递减且无周期四、三角函数和指数函数的关系1. 欧拉公式的推导: e^ix = cos(x) + isin(x)2. 指数函数与正弦函数的关系:- e^(ix) = cos(x) + isin(x)- e^(-ix) = cos(-x) + isin(-x) = cos(x) - isin(x) - e^(ix) + e^(-ix) = 2cos(x) (欧拉恒等式) 3. 指数函数与余弦函数的关系:- e^(ix) = cos(x) + isin(x)- e^(-ix) = cos(-x) + isin(-x) = cos(x) - isin(x) - e^(ix) - e^(-ix) = 2isin(x)五、三角函数的和差化积公式1. 正弦函数的和差化积公式:- sin(x + y) = sin(x)cos(y) + cos(x)sin(y)- sin(x - y) = sin(x)cos(y) - cos(x)sin(y)2. 余弦函数的和差化积公式:- cos(x + y) = cos(x)cos(y) - sin(x)sin(y)- cos(x - y) = cos(x)cos(y) + sin(x)sin(y)3. 正切函数的和差化积公式:- tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x)tan(y))- tan(x - y) = (tan(x) - tan(y)) / (1 + tan(x)tan(y))六、高三数学中的周期性问题1. 求解三角函数的周期:- 以给定函数的参数作为周期2. 判断函数的周期性:- 基于函数表达式中的参数和三角函数的特点进行判断3. 应用周期性知识点解决问题:- 求解特定范围内的函数值- 证明两个函数或方程等价性- 推导出其他数学公式通过对高三数学中的周期性知识点进行整理和总结,同学们在备考高考时可以更好地理解和掌握这些知识点。
研究性课题:多面体欧拉公式的发现(一)●教学目标(一)教学知识点1.简单多面体的V、E、F关系的发现.2.欧拉公式的猜想.3.欧拉公式的证明.(二)能力训练要求1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律.2.使学生能通过进一步观察验证所得的规律.3.使学生能从拓扑的角度认识简单多面体的本质.4.使学生能通过归纳得出关于欧拉公式的猜想.5.使学生了解欧拉公式的一种证明思路.(三)德育渗透目标1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求.2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力.●教学重点欧拉公式的发现.●教学难点使学生从中体会和学习数学大师研究数学的方法.●教学方法指导学生自学法首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识并从中寻找规律;问题2让学生作进一步观察、验证得出规律;问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明.以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法.●教具准备投影片三张:第一张:课本P56的问题1及表1(记作§9.9.1 A)第二张:课本P57的问题2及表2(记作§9.9.1 B)第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C)●教学过程Ⅰ.课题导入瑞士著名的数学家欧拉,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,今天我们就去体验当年的数学大师是如何运用数学思想和方法发现欧拉公式并给予理论上的推理证明等研究活动,希望大家在活动中要充分展开自己的想象,展开热烈的讨论互相进行数学交流.Ⅱ.讲授新课[师]我们先从一些常见的多面体出发,对它们的顶点数V、面数F、棱数E列出表,请大家观察后填写表1(打出投影片§9.9.1 A)(学生观察,数它们的顶点数V、面数F、棱数E,填入表1) [师]好,大家填的快速而准确,继续观察表1的各组数据,找出顶点数V、面数F及棱数E的关系如何?(学生寻找,可能一时不易得到,教师应给予适当点拨提问)[师]表1中多面体的面数F都随顶点数目V的增大而增大吗?[生]不一定.[师]请举例说明.[生]如八面体和立方体的顶点数由6增大到8,而面数由8减小到6.[师]此时棱的数目呢?[生]棱数都是一样的.[师]所以我们得到:棱的数目也并不随顶点数目的增大而增大.大家从表中还发现了其他的什么规律,请积极观察,勇于发言.[生]当多面体的棱数增加时,它的顶点与面数的变化也有一定规律.[师]举例说明.[生甲]如图中(1)和(2)的棱数由6增大到12,面数由4增大到6,此时的顶点数也在随棱数的增加而增加,即由4增大到8.[师]生甲叙述得严格吗?有不同意见吗?[生乙]顶点数和面数并不是严格按棱数的增大而增大的.[师]请试说说你归纳出来的规律.[生乙]我发现并认为:当顶点数随棱数的增加而减小时,它的面数一定是随棱数的增加而增加的;当面数随棱数的增加而减小时,它的顶点数却是随棱数的增加而增加.[师]生乙归纳得如何?大家对他的叙述同意吗?(可能会有其他想法,教师应给学生充分的时间,让他们畅所欲言,表达他们的新发现,并予以一一指导)[师]上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.[生](积极验证,得出)V+F-E=2[师]以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.[生](许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.(教师应启发学生展开想象,举出更多的例子)[生]一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.[师]好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?[生]所得的多面体的棱数E为3n条,顶点数V为2n个,面数F为2+n个,因2n+(2+n)-3n=2,故满足V+F-E=2这个关系式.[师]请继续来观察一些其他图形的情况.(打出投影片§9.9.1 B)请同学们观察后,将所得数据填入表2中.(学生观察,数它们的顶点数V、面数F、棱数E,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)[师]观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形符合?[生](1)符合,(2)、(3)不符合.[师]一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?(打出投影片§9.9.1 C)[生]问题1中的(1)~(5)和问题2中的(1)图形表面经过连续变形能变为一个球面.[师]请同学们继续设想问题2中(2)(3)在连续变形中,其表面最后将变成什么图形?[生]问题2中第(2)个图形,表面经过连续变形能变为环面;问题2中第(3)个图形,表面经过连续变形能变为两个对接球面.[师]像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?[生]棱柱、棱锥、正多面体、凸多面体是简单多面体.[师]至此,在问题1、2、3的基础上,我们是否可以得到什么猜想?怎样用式子表达?(有了前面积极地认真解决了问题1、2、3后学生不难归纳出)[生]简单多面体的顶点数V、面数F的和与棱数E之间存在规律V+F-E=2.[师]我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V+F-E=2的过程.那么如何证明欧拉公式呢?请大家打开课本P58的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到的数学思想.(学生自学、教师查看,发现问题,收集问题下节课处理)Ⅲ.课堂练习课本P61练习1、2.1.用三棱柱、四棱锥验证欧拉公式.解:在三棱柱中:V=6,F=5,E=9,∵6+5-9=2,∴V+F-E=2。
在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。
(1)分式里的欧拉公式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)当r=0,1时式子的值为0当r=2时值为1当r=3时值为a+b+c(2)复变函数论里的欧拉公式:e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。
将e^ix=cosx+isinx中的x取作∏就得到:e^i∏+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。
数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
(3)三角形中的欧拉公式:设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr(4)拓扑学里的欧拉公式:V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。
如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P 同胚于一个接有h个环柄的球面,那么X(P)=2-2h。
X(P)叫做P的拓扑不变量,是拓扑学研究的范围。
(5)初等数论里的欧拉公式:欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。
n是一个正整数。
欧拉证明了下面这个式子:如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。
欧拉公式知识点总结
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复变函数论里的欧拉公式:
e…x=cosx+isinx,e是自然对数的底,i是虚数单位。
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
将公式里的x换成-x,得到:
eix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e…x-eix)/(2i),cosx=(e…x+e ix)/2.
这两个也叫做欧拉公式。
将e…x=cosx+isinx中的x取作∏就得到:e…∏+1=0.
这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。
数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
(3)三角形中的欧拉公式:
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:。