第5讲 静定梁的受力分析
- 格式:ppt
- 大小:3.06 MB
- 文档页数:114
第五章静定结构的内力分析第一节多跨静定梁、斜梁一、多跨静定梁若干根梁用中间铰连接在一起,并以若干支座与基础相连,或者搁置于其他构件上而组成的静定梁,称为多跨静定梁。
在实际的建筑工程中,多跨静定梁常用来跨越几个相连的跨度。
图13—1a所示为一公路或城市桥梁中,常采用的多跨静定梁结构形式之一,其计算简图如图13—1b所示。
在房屋建筑结构中的木檩条,也是多跨静定梁的结构形式,如图13—2a所示为木檩条的构造图,其计算简图如图13—2b所示。
连接单跨梁的一些中间铰,在钢筋混凝土结构中其主要形式常采用企口结合(图13—1a),而在木结构中常采用斜搭接或并用螺栓连接(图13—2a)。
从几何组成分析可知,图13—1b中AB梁是直接由链杆支座与地基相连,是几何不变的。
且梁AB本身不依赖梁B C和CD就可以独立承受荷载,所以,称为基本部分。
如果仅受竖向荷载作用,CD梁也能独立承受荷载维持平衡,同样可视为基本部分。
短梁BC是依靠基本部分的支承才能承受荷载并保持平衡,所以,称为附属部分。
同样道理在图13—2b 中梁AB,CD和EF均为基本部分,梁BC和梁DE为附属部分。
为了更清楚地表示各部分之间的支承关系,把基本部分画在下层,将附属部分画在上层,分别如图13—1c和图13—2c所示,我们称它为关系图或层叠图。
从受力分析来看,当荷载作用于基本部分时,只有该基本部分受力,而与其相连的附属部分不受力;当荷载作用于附属部分时,则不仅该附属部分受力,且通过铰接部分将力传至 与其相关的基本部分上去。
因此,计算多跨静定梁时,必须先从附属部分计算,再计算基本部分,按组成顺序的逆过程进行。
例如图13—1c ,应先从附属梁BC 计算,再依次考虑(1)作层叠图如图13-3b 所示,AC 梁为基本部分,CE 梁是通过铰C 和D 支座链杆连接在AC梁上,要依靠AC 梁才能保证其几何不变性,所以CE 梁为附属部分。
(2)计算支座反力从层叠图看出,应先从附属部分CE 开始取隔离体,如图13-3c 所示。
第1节 静定平面桁架一、桁架的内力计算方法1、结点法取结点为隔离体,建立平衡方程求解的方法,每个结点最多只能含有两个未知力。
该法最适用于计算简单桁架。
根据结点法,可以得出一些结点平衡的特殊情况,能使计算简化:(1)两杆交于一点,若结点无荷载,则两杆的内力都为零(图2-2-1a )。
(2)三杆交于一点,其中两杆共线,若结点无荷载,则第三杆是零杆,而共线的两杆内力大小相等,且性质相同(同为拉力或压力)(图2-2-1b)。
(3)四杆交于一点,其中两两共线,若结点无荷载,则在同一直线上的两杆内力大小相等,且性质相同(图2-2-1c )。
推论,若将其中一杆换成力F P ,则与F P 在同一直线上的杆的内力大小为F P ,性质与F P 相同(图2-2-1d )。
F N3F N3=0F N1=F N2=0F N3=F N4(a)(b)(c)F N4(d)F N3=F PF PN1F F N2F N1F N2F N1F N2F N1F N2F N3F N3F N1=F N2,F N1=F N2,F N1=F N2,图2-2-1(4)对称结构在正对称荷载作用下,对称轴处的“K ”型结点若无外荷载作用,则斜杆为零杆。
例如图2-2-2所示对称轴处与A 点相连的斜杆1、2都是零杆。
1A2F PF PAF PF PBF PF PBA(b)(a)X =0图2-2-2 图2-2-3(5)对称结构在反对称荷载作用下,对称轴处正对称的未知力为零。
如图2-2-3a 中AB 杆为零杆,因为若将结构从对称轴处截断,则AB 杆的力是一组正对称的未知力,根据上述结论可得。
(6)对称结构在反对称荷载作用下,对称轴处的竖杆为零杆。
如图2-2-4a 中AB 杆和B 支座的反力均为零。
其中的道理可以这样理解:将图a 结构取左右两个半结构分析,对中间的杆AB 和支座B 的力,若左半部分为正,则根据反对称,右半部分必定为相同大小的负值,将半结构叠加还原回原结构后正负号叠加,结果即为零。
1 结构力学多媒体课件◆几何特性:无多余约束的几何不变体系◆静力特征:仅由静力平衡条件可求全部反力和内力◆常见静定结构:梁、刚架、三铰拱、桁架和组合结构。
◆静定结构受力分析的内容:反力和内力的计算,内力图的绘制和受力性能分析。
◆静定结构受力分析的基本方法:选取脱离体,建立平衡方程。
◆注意静力分析(拆)与构造分析(搭)的联系◆学习中应注意的问题:多思考,勤动手。
本章是后面学习的基础,十分重要,要熟练掌握!容易产生的错误认识:“静定结构内力分析无非就是选取隔离体,建立平衡方程,以前早就学过了,没有新东西”一、反力的计算4kN1kN/mDCBA2m2m 4mCB A20kN/m 4m4m2m6mDCB A(1)上部结构与基础的联系为3个时,对整体利用3个平衡方程,就可求得反力。
(2)上部结构与基础的联系多于三个时,不仅要对 整体建立平衡方程,而且必须把结构打开, 取隔离体补充方程。
1、内力分量及正负规定轴力F N :截面上应力沿杆轴法线方向的合力。
以拉力为正,压力为负。
剪力F Q :截面上应力沿杆轴切线方向的合力。
以绕隔离体顺时针转为正,反之为负。
弯矩M :截面应力对截面中性轴的力矩。
不规定正负,但弯矩图画在受拉侧。
在水平杆中, 当弯矩使杆件下部纤维受拉时为正。
A 端B 端杆端内力 F Q ABF N ABM AB正 F N BA F Q BAM BA 正2、内力的计算方法K截面法:截开、代替、平衡。
内力的直接算式(截面内力代数和法)=截面一边所有外力沿截面法线方向投影的代数和。
轴力FN外力背离截面投影取正,反之取负。
剪力F=截面一边所有外力沿截面切线方向投影代数和。
Q外力绕截面形心顺时针转动,投影取正,反之取负。
弯矩M =截面一边所有外力对截面形心的外力矩之和。
外力矩和弯矩使杆同侧受拉时取正,反之取负。
2、内力的计算方法【例】如图所示简支梁,计算截面C 、D 1、D 2的内力。
2m 4m 2mA2kN/mCBD 1 D 210kN0.2m10kN3.75kN0.25kN3、绘制内力图的规定内力图是表示结构上各截面的内力各杆件轴线分布规律的图形, 作图规定:弯矩图一律绘在受拉纤维一侧,图上不注明正负号;剪力图和轴力图可绘在杆轴线的任一侧(对水平杆件通常把正号的剪力和轴力绘于上方),但必须注明正负号,且正负不能绘在同一侧。
第一章绪论LI引言随着现代社会的进展,经济的提高和科技的进步,我们我国的土木工程建设项目正处于新的高潮期,重大的工程结构,如超大跨桥梁、超高层建筑、大型场馆和大型水利工程等正在不断建成,桥梁工程的进展如今更是突飞猛进。
梁是由支座支撑的主要承受弯矩和剪力的构件。
在机械,建筑等工程中存在大量受弯曲的杆件,例如起重机大梁,火车轮轴等,主要承受的外力以横向力为主。
社会的飞速进展给人们带来了诸多的便利,同时,也使我们我国的建筑土木行业得到了空前的进展,在建筑结构中,不管从它的承载力还是构造等,梁的地位显得尤为重要,由于在建筑结构中,梁是最具有典型特征的元素,它以多种形态展现在人们面前,以线性受力体系为主要的特征。
1. 2国内外梁受力分析讨论的现状20世纪以来,世界各地也相继兴建了很多以斜拉桥、悬索桥为主的大跨桥粱结构。
斜拉桥的主跨也从当时的100米左右进展到了现在的上千米。
90年月到现在,仅我们我国建筑的主跨在400米以上的斜拉桥也已有几十座。
现在世界上跨度超过IOOO米的悬索桥则更是不计其数。
由于这些大跨桥梁不仅可以满意更大流量的交通要求,并且造型轻快美观。
一般都是作为城市交通运输的重要枢纽工程和标志性建筑,投资特别巨大,对国民经济持续、稳定的进展有着特别重要的作用,这些结构假如一旦发生损坏,就会造成特别重大的人员伤亡和经济损失,并且也会产生极坏的社会影响,桥梁损坏造成的严峻损失也将是难以估量的。
桥梁在长期运营过程中也不行避开的会受到环境和有害化学物质的侵蚀,并要承受车辆,风暴、地震、破坏、爆炸、疲惫等因素的作用,这些因素使桥梁的自身性能不断退化,从而导致结构的各部分在没有达到设计年限就发生不同程度的损伤和劣化。
其中,循环荷载作用下的疲惫损伤累积和有损结构在动力荷载作用下的裂纹失稳扩展是造成很多桥梁发生灾难性事故的主要缘由,据美国土木工程协会(ASCE)统计斟,80%〜90%钢结构的破坏与疲惫损伤有关。
结构力学静定结构的受力分析静定结构是指在外载荷作用下,结构的每个部分均处于力学平衡状态,即结构的受力分析可以根据平衡方程求解。
静定结构的受力分析是结构力学中的重要内容,对于工程设计和分析非常关键。
在静定结构的受力分析中,需要根据结构的几何形状和支座条件,确定结构的受力模式,并使用平衡方程进行计算。
下面将介绍静定结构受力分析的基本步骤。
首先,需要对结构进行几何建模,确定结构的几何形状。
这包括确定结构的几何尺寸、节点位置和材料特性等。
几何建模是进行受力分析的前提,对于一些复杂的结构,可以使用计算机辅助设计软件进行建模。
其次,根据结构的边界条件,确定结构的支座情况。
支座条件包括固定支座、铰接支座和滑动支座等。
支座的选择是根据结构的实际情况及设计要求来确定的。
然后,根据结构的受力模式,建立受力体系,并采用平衡方程进行受力计算。
受力体系包括结构的梁、柱等构件以及它们之间的关系。
平衡方程是基于结构处于力学平衡的原理,其中包括转矩平衡和力平衡等方程。
通过平衡方程,可以得到结构中各个部分的受力大小和方向。
接着,根据受力计算的结果,进行受力校核。
受力校核是为了验证结构设计的合理性,包括确定结构中的应力、变形和稳定性等。
校核的依据是结构的设计规范和要求,以保证结构的安全可靠。
最后,对受力计算的结果进行结果的处理和分析。
这包括对受力大小和方向的合理性进行评估,以及根据受力情况进行结构优化设计。
在静定结构的受力分析过程中,需要注意以下几个问题。
首先,要合理选择受力模式和支座条件,以确保受力计算的有效性。
其次,要注意受力计算的精度和误差控制,以保证计算结果的准确性。
最后,在进行受力校核时,要注意结构的强度、刚度和稳定性等方面的要求。
总之,静定结构的受力分析是结构力学中的重要内容,对于工程设计和分析非常关键。
通过合理的几何建模、选择支座条件,建立受力体系并应用平衡方程进行受力计算,可以得到结构受力的大小和方向,为结构的设计和分析提供依据。
静定梁的受力分析受拉钢筋:在结构中以力学方向起到拉伸的钢筋。
相反则为受压钢筋。
一般钢筋多为受拉,很少受压。
对于梁来说,根据梁的受力特点,在梁跨中部,梁的中和轴下部为受拉区域,梁的中和轴上部为受压区域,但是在梁的支座处一般来说梁的上部受拉下部受压,因此,在梁的跨中,梁上部的钢筋为受压钢筋,梁下部的钢筋为受拉钢筋;在梁的支座处,梁的上部受拉,梁的下部受压。
受拉钢筋在钢筋混凝土结构起到的作用就是拉力,比如在简支梁底设置的钢筋,当梁上面出现荷载时,梁产生向下垂直的内力,这时梁底钢筋就受到拉作用力,因此该钢筋却为受拉钢筋。
受压钢筋通常指梁上部钢筋,柱筋(纵筋即受拉也受压)。
所以受拉钢筋与受压钢筋均是因受力而得名的。
简单的说:一般情况下梁板的跨中部位上层受压,下层受拉;支座部位上层受拉,下层受压。
基础部位跟上面相反。
如果想要具体一点理解,学会绘制力学弯矩图就一目了然!如图所示,有规定受力件下部受拉弯矩为正;下部受压弯矩为负。
对于钢筋而言,比如梁端有负弯矩,说明在这个部位是梁的上端受拉,所以就要在这部分梁的上部布置钢筋;又比如板一般都是受荷以后下部受拉,那就在板内的下部布置钢筋。
普通梁,上层钢筋受压、下层钢筋受拉,承台钢筋上层钢筋受压、下层钢筋受拉。
【摘自百度百科】一般而言,在不同的学科中弯矩的正负有不同的规定。
规定了弯矩的正负,就可以将弯矩进行代数计算。
在列弯矩计算时,应用“左上右下为正,左下右上为负”的判别方法。
凡截面左侧梁上外力对截面形心之矩为顺时针转向,或截面右侧外力对截面形心之矩为逆时针转向,都将产生正的弯矩,故均取正号;反之为负,即左顺右逆,弯矩为正。
对于土木工程结构中的一根梁(指水平向的构件),当构件区段下侧受拉时,我们称此区段所受弯矩为正弯矩;当构件区段上侧受拉时,我们称此区段所受弯矩为负弯矩。