2014年内蒙古包头市中考数学试卷(含解析)
- 格式:doc
- 大小:178.50 KB
- 文档页数:21
2014年 呼 和 浩 特 市 中 考 试 卷数学参考答案及评分标准一、选择题1.C 2.D 3.A 4.B 5.B6.C 7.D 8.C 9.B 10.C二、填空题11.160° 12.1.6 13.63°或27°14.–y(3x –y)2 15.8 16.①三、计算题17.(1)解:原式=2 × 32 + 13–2+ 12 ··············································· 3分 = 3–(3+2) + 12····················································· 4分 = –32········································································· 5分 (2)解:去分母得3x 2–6x –x 2–2x = 0 ······································································· 1分 2x 2 –8x = 0 ·················································································· 2分 ∴ x = 0或x = 4 ············································································ 3分 经检验:x = 0是增根∴ x = 4是原方程的解 ···································································· 5分18.解:过点P 作PD ⊥AB 于D ································································ 1分 由题意知∠DPB = 45°在Rt ΔPBD 中,sin 45° = PD PB ∴ PB =2PD ··················································································· 2分 ∵ 点A 在P 的北偏东65°方向上∴ ∠APD = 25°在Rt ΔPAD 中cos 25° = PD PA∴ PD = PA cos 25° = 80 cos 25° ··························································· 5分∴ PB = 80 2 cos 25° ······································································ 6分19.解:⎩⎪⎨⎪⎧–2x +3≥–3…………………①12(x –2a)+12 x < 0……………② 解①得:x ≤3··················································································· 1分 解②得:x < a ·················································································· 2分 ∵ a 是不等于3的常数∴ 当a > 3时,不等式组的解集为x ≤3 ················································· 4分 当a < 3时,不等式组的解集为x < a················································· 5分20.解:(1)中位数落在第四组 ······························································· 1分由此可以估计初三学生60秒跳绳在120个以上的人数达到一半以上 ············ 3分(2)x = 2×70+10×90+12×110+13×130+10×150+3×17050≈121 ··· 6分 (3)记第一组的两名学生为A 、B ,第六组的三名学生为1、2、3 ············· 7分 则从这5名学生中抽取两名学生有以下10种情况:AB ,A1,A2,A3,B1,B2,B3,12,13,23∴ P = 410 = 25················································································ 9分 21.证明:(1)∵ 四边形ABCD 是矩形∴ AD=BC AB=CD又∵ AC 是折痕∴ BC = CE = AD ············································································ 1分 AB = AE = CD ············································································ 2分 又DE = ED∴ ΔADE ≌ΔCED ········································································· 3分(2)∵ ΔADE ≌ΔCED∴ ∠EDC =∠DEA又ΔACE 与ΔACB 关于AC 所在直线对称∴ ∠OAC =∠CAB而∠OCA =∠CAB∴ ∠OAC =∠OCA ··········································································· 5分 ∴ 2∠OAC = 2∠DEA ······································································· 6分∴ ∠OAC =∠DEA∴ DE ∥AC ····················································································· 7分22.解:设基本电价为x 元/千瓦时,提高电价为y 元/千瓦时··························· 1分由题意得:⎩⎪⎨⎪⎧180x +150y=213180x +60y =150 ·········································································· 3分 解之得:⎩⎨⎧x=0.6y=0.7·············································································· 4分 ∴ 4月份的电费为:160×0.6=96元5月份的电费为:180×0.6+230×0.7 = 108+161 = 269元答:这位居民4、5月份的电费分别为96元和269元. ···························· 7分23.解:(1)∵ y = k x过(1,4)点 ∴ k = 4,反比例函数解析式为y = 4x·················································· 1分 (2)∵ B (m ,n ) A (1,4)∴ AC = 4–n ,BC = m –1,ON = n ,OM = 1 ········································· 2分∴ AC ON = 4–n n = 4n–1 而B (m ,n )在y = 4x上 ∴ 4n= m ∴ AC ON= m –1 而 BC OM = m –11∴ AC ON = BC OM················································································· 4分 又∵ ∠ACB =∠NOM = 90°∴ ΔACB ∽ΔNOM ·········································································· 5分(3)∵ ΔACB 与ΔNOM 的相似比为2∴ m –1 = 2∴ m = 3∴ B 点坐标为(3,43) ····································································· 6分 设AB 所在直线的解析式为y = kx +b∴ ⎩⎪⎨⎪⎧43 = 3k +b 4 = k +b∴ k = –43 b = 163∴ 解析式为y = –43 x +163······························································· 8分 24.证明:(1)连接OC ········································································· 1分∵ AB 为⊙O 的直径∴ ∠ACB = 90°∴ ∠ABC +∠BAC = 90°又∵ CM 是⊙O 的切线∴ OC ⊥CM∴ ∠ACM +∠ACO = 90° ······························································ 2分 ∵ CO = AO∴ ∠BAC =∠ACO∴ ∠ACM =∠ABC ··········································································· 3分(2)∵ BC = CD∴ OC ∥AD又∵ OC ⊥CE∴ AD ⊥CE∴ ΔAEC 是直角三角形∴ ΔAEC 的外接圆的直径为AC ························································· 4分 又∵ ∠ABC +∠BAC = 90°∠ACM +∠ECD = 90°而∠ABC =∠ACM∴ ∠BAC =∠ECD又∠CED =∠ACB = 90°∴ ΔABC ∽ΔCDE∴ AB CD = BC ED而⊙O 的半径为3∴ AB = 6∴ 6CD = BC 2∴ BC 2 = 12∴ BC = 2 3 ·················································································· 6分 在Rt ΔABC 中∴ AC = 36–12 = 2 6 ·································································· 7分 ∴ ΔAEC 的外接圆的半径为 6 ························································· 8分25.解:(1)∵ y = ax 2+bx +2经过点B 、D∴ ⎩⎪⎨⎪⎧4a +2b +2 = 0a +b +2 = 54 解之得:a =–14,b =–12∴ y =–14 x 2 –12x +2 ······································································· 2分 ∵ A (m ,0)在抛物线上∴ 0 =–14 m 2 –12m +2 解得:m =–4∴ A (–4,0) ··············································································· 3分 图像(略)······················································································ 4分(2)由题设知直线l 的解析式为y = 12x –1 ∴ S = 12AB ·PF = 12×6·PF = 3(–14 x 2 –12 x +2+1–12x ) ·················································· 5分 = –34x 2 –3x +9 = –34(x +2)2 +12 ·································································· 6分 其中–4 < x < 0 ················································································ 7分 ∴ S 最大= 12,此时点P 的坐标为(–2,2) ·········································· 9分(3)∵ 直线PB 过点P (–2,2)和点B (2,0)∴ PB 所在直线的解析式为y =–12x +1 ············································· 10分 设Q (a ,12 a –1)是y = 12x –1上的任一点则Q 点关于x 轴的对称点为(a ,1–12a ) 将(a ,1–12 a )代入y =–12x +1显然成立 ·········································· 11分 ∴ 直线l 上任意一点关于x 轴的对称点一定在PB 所在的直线上 ··············· 12分 注:本卷中各题如有不同解法,可依据情况酌情给分。
综合性问题一、选择题1.(2014•内蒙古包头,第11题3分)已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()=1. (2014•湖南永州,第6题3分)下列命题是假命题的是()6.(3分)(2014•德州,第10题3分)下列命题中,真命题是()的图象上,若=4S的图象上,若=4=91. (2014•安徽省,第8题4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).菁优网分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.2. (2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()的图象可知3. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.4.(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE =AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()PE===2. (2014•乐山,第10题3分)如图,点P(﹣1,1)在双曲线上,过点P的直线l1与坐标轴分别交于A、B两点,且tan∠BAO=1.点M是该双曲线在第四象限上的一点,过点M 的直线l2与双曲线只有一个公共点,并与坐标轴分别交于点C、点D.则四边形ABCD的面积最小值为(),﹣);设直线,,﹣AC(,.,则点的坐标为(﹣.的图象上,,﹣.﹣﹣﹣只有一个交点,﹣﹣+++(=,﹣﹣﹣,﹣﹣(﹣)=2+AC())﹣)()()∴当且仅当﹣3.(2014•浙江绍兴,第10题4分)如图,汽车在东西向的公路l上行驶,途中A,B,C,D 四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l 上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()∴两车的速度为:(所用的时间为:,=120,时,∵=1,时,∵=3,时,∵=5,=2,=6=10,=4,=8,2. (2014•广东广州,第10题3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE.由△DGF与△DCE相似即可判定③错误,由△GOD与△FOE相似即可求得④.解答:证明:①∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),②∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;③∵四边形GCEF是正方形,∴GF∥CE,∴=,∴=是错误的.④∵DC∥EF,∴∠GDO=∠OEF,∵∠GOD=∠FOE,∴△OGD∽△OFE,∴=()2=()2=,∴(a﹣b)2•S△EFO=b2•S△DGO.故应选B点评:此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直角三角形的判定和性质.3. (2014•湖北鄂州,第9题3分)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形A n B n C n D n面积为.═A5A A AC B B=2×(=的面积是4. (2014•湖北潜江仙桃,第9题3分)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(1,2),B两点,给出下列结论:①k1<k2;②当x<﹣1时,y1<y2;③当y1>y1时,x>1;④当x<0时,y2随x的增大而减小.其中正确的有()A.0个B.1个C.2个D.3个考点:反比例函数与一次函数的交点问题分析:①根据待定系数法,可得k1,k2的值,根据有理数的大小比较,可得答案;②根据观察图象,可得答案;③根据图象间的关系,可得答案;④根据反比例函数的性质,可得答案.解答:解:①正比例函数y=k1x和反比例函数y2=的图象交于A(1,2),1∴k1=2,k2=2,k1=k2,故①错误;②x<﹣1时,一次函数图象在下方,故②正确;③y1>y2时,﹣1<x<0或x>1,故③错误;④k2=2>0,当x<0时,y2随x的增大而减小,故④正确;故选:C.点评:本题考查了反比例函数与一次函数的交点问题,利用了待定系数法,图象与不等式的关系.5. (2014•湖北潜江仙桃,第10题3分)如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6C.6D.12考点:垂径定理;等边三角形的判定与性质;圆周角定理;弧长的计算;解直角三角形.专题:计算题.分析:连结OC交BD于E,设∠BOC=n°,根据弧长公式可计算出n=60,即∠BOC=60°,易得△OBC为等边三角形,根据等边三角形的性质得∠C=60°,∠OBC=60°,BC=OB=6,由于BC∥OD,则∠2=∠C=60°,再根据圆周角定理得∠1=∠2=30°,即BD平分∠OBC,根据等边三角形的性质得到BD⊥OC,接着根据垂径定理得BE=DE,在Rt△CBE中,利用含30度的直角三角形三边的关系得CE=BC=3,CE=CE=3,所以BD=2BE=6.解答:解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∴∠1=∠2=30°,∴BD平分∠OBC,∴BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴CE=CE=3,∴BD=2BE=6.故选C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了弧长公式、等边三角形的判定与性质和圆周角定理.6 (2014•青海西宁,第2题,3分)下列各式计算正确的是()A.3a+2a=5a2B.(2a)3=6a3C.(x﹣1)2=x2﹣1 D.2×=4考点:二次根式的乘除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则,积的乘方,二次根式的乘法与完全平方公式的知识求解即可求得答案.解答:解:A、3a+2a=5a,故A选项错误;B、(2a)3=8a3,故B选项错误;C、(x﹣1)2=x2﹣2x+1.故C选项错误;D、2×=4,故D选项正确.故选:D.点评:此题考查了合并同类项的法则,积的乘方,二次根式的乘法与完全平方公式的知识,解题要熟记法则,公式.1. (2014•年山东东营,第10题3分)如图,四边形ABCD为菱形,AB=BD,点B、C、D、G 四个点在同一个圆⊙O上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论:①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为⊙O的直径时,DF=AF.其中正确结论的个数是()A.1 B.2C.3D.4考点:圆的综合题.分析:①由四边形ABCD是菱形,AB=BD,得出△ABD和△BCD是等边三角形,再由B、C、D、G四个点在同一个圆上,得出∠ADE=∠DBF,由△ADE≌△DBF,得出AE=DF,②利用内错角相等∠FBA=∠HFB,求证FH∥AB,③利用∠DGH=∠EGB和∠EDB=∠FBA,求证△DGH∽△BGE,④利用CG为⊙O的直径及B、C、D、G四个点共圆,求出∠ABF=120°﹣90°=30°,在RT△AFB 中求出AF=AB在RT△DFB中求出FD=BD,再求得DF=AF.解答:解:①∵四边形ABCD是菱形,∴AB=BC=DC=AD,又∵AB=BD,∴△ABD和△BCD是等边三角形,∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°,又∵B、C、D、G四个点在同一个圆上,∴∠DCH=∠DBF,∠GDH=∠BCH,∴∠ADE=∠ADB﹣∠GDH=60°﹣∠EDB,∠DCH=∠BCD﹣∠BCH=60°﹣∠BCH,∴∠ADE=∠DCH,∴∠ADE=∠DBF,在△ADE和△DBF中,∴△ADE≌△DBF(ASA)∴AE=DF故①正确,②由①中证得∠ADE=∠DBF,∴∠EDB=∠FBA,∵B、C、D、G四个点在同一个圆上,∠BDC=60°,∠DBC=60°,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGE=180°﹣∠BGC﹣∠DGC=180°﹣60°﹣60°=60°,∴FGD=60°,∴FGH=120°,又∵∠ADB=60°,∴F、G、H、D四个点在同一个圆上,∴∠EDB=∠HFB,∴∠FBA=∠HFB,∴FH∥AB,故②正确,③∵B、C、D、G四个点在同一个圆上,∠DBC=60°,∴∠DGH=∠DBC=60°,∵∠EGB=60°,∴∠DGH=∠EGB,由①中证得∠ADE=∠DBF,∴∠EDB=∠FBA,∴△DGH∽△BGE,故③正确,④如下图∵CG为⊙O的直径,点B、C、D、G四个点在同一个圆⊙O上,∴∠GBC=∠GDC=90°,∴∠ABF=120°﹣90°=30°,∵∠A=60°,∴∠AFB=90°∴AF=AB,又∵∠DBF=60°﹣30°=30°,∠ADB=60°,∴∠DFB=90°,∴FD=BD,∵AB=BD,∴DF=AF,故④正确,故选:D.点评:此题综合考查了圆及菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,运用四点共圆找出相等的角是解题的关键.解题时注意各知识点的融会贯通.2. (2014•甘肃白银、临夏,第10题3分)如图,边长为1的正方形ABCD中,点E在CB 延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是()C D的对应边成比例列出比例式,从而得到则,即,(3.(2014•甘肃兰州,第15题4分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()t t﹣=﹣7.(2014•北京,第8题4分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()..(8.(2014•莆田,第8题4分)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接Q D.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是().C,﹣﹣x﹣x﹣﹣,()二、填空题5.(2014•呼和浩特,第16题3分)以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y=两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有①(只需填正确命题的序号)=,,,错误,1. (2014•湖北鄂州,第16题3分)如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN的面积最小值为﹣1.+2+22﹣时等号成立ML==2时,故答案为2. (2014•吉林,第12题3分)如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB 为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为(﹣1,2).考点:一次函数图象上点的坐标特征;等边三角形的性质;坐标与图形变化-平移.分析:先求出直线y=2x+4与y轴交点B的坐标为(0,4),再由C在线段OB的垂直平分线上,得出C点纵坐标为2,将y=2代入y=2x+4,求得x=﹣1,即可得到C′的坐标为(﹣1,2).解答:解:∵直线y=2x+4与y轴交于B点,∴y=0时,2x+4=0,解得x=﹣2,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣1.故答案为(﹣1,2).点评:本题考查了一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化﹣平移,得出C点纵坐标为2是解题的关键.3.(2014•广东深圳,第15题3分)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=.考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即AECB可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.1. (2014•湖南永州,第16题3分)小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是BABBA.2. (2014•乐山,第15题3分)如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=﹣9.=﹣=故答案为:﹣3.(2014•四川广安,第16题3分)如图,在直角梯形ABCD中,∠ABC=90°,上底AD为,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为﹣π(不取近似值).,,∠=2,==4=﹣﹣=﹣=故答案为4.(2014•四川绵阳,第16题4分)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π).故答案为:5.(2014•四川绵阳,第17题4分)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为2.6.(2014•重庆A,第17题4分)从﹣1,1,2这三个数字中,随机抽取一个数,记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为.考点:概率公式;解一元一次不等式组;一次函数图象上点的坐标特征.分析:将﹣1,1,2分别代入y=2x+a,求出与x轴、y轴围成的三角形的面积,将﹣1,1,2分别代入,求出解集,有解者即为所求.解答:解:当a=﹣1时,y=2x+a可化为y=2x﹣1,与x轴交点为(,0),与y轴交点为(0,﹣1),三角形面积为××1=;当a=1时,y=2x+a可化为y=2x+1,与x轴交点为(﹣,0),与y轴交点为(0,1),三角形的面积为××1=;当a=2时,y=2x+2可化为y=2x+2,与x轴交点为(﹣1,0),与y轴交点为(0,2),三角形的面积为×2×1=1(舍去);当a=﹣1时,不等式组可化为,不等式组的解集为,无解;当a=1时,不等式组可化为,解得,解集为,解得x=﹣1.使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为P=.故答案为.点评:本题考查了概率公式、解一元一次不等式、一次函数与坐标轴的交点,有一定的综合性.7.(2014•江西,第14题3分)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若P 在直线AC 上(不与点A ,C 重合),且∠ABP =30°,则CP 的长为_______.【答案】 6.【考点】 直角三角形性质,勾股定理,解直角三角形,分类讨论思想.【分析】 根据题意画出图形,分三种情况进行讨论,利用直角三角形的性质,解直角三角形或者用勾股定理进行解答. 【解答】解:分四种情况讨论:①如图1:当∠C =60°时,当∠C =60°时,∠ABC =30°,P 点在线段AC 上,∠ABP 不可能等于30°,只能是P 点与C 点重合,与条件相矛盾。
内蒙古呼和浩特市2014年中考试卷数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】无理数就是无限不循环小数,由此可判断π是无理数,故选C. 【考点】无理数的定义 2.【答案】D【解析】选择普查还是抽样调查要根据所要调查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查了解一批灯泡的使用寿命,具有破坏性,工作量大,不适合全面调查,故选D. 【考点】抽样调查和全面调查的区别 3.【答案】A【解析】平移中点的变化规律是横坐标右移加,左移减;纵坐标上移加,下移减.因为点(1,4)A -的对应点 为()4,7C ,所以平移规律为向右平移5个单位,向上平移3个单位,又因为点()4,1B --,所以点D 的坐 标为(1,2),故选A.【考点】坐标与图形变化平移 4.【答案】B【解析】由三视图可以判断此几何体为空心圆柱,其内径为6,外径为8,高为10,圆柱的体积=⨯底面高积,所以此空心圆柱的体积为2210(4π3π70)π⨯-=,故选B.【考点】三视图计算几何体的体积 5.【答案】B【解析】原价提高10%后商品新单价为%(1)10a +元,再按新价降低10%后单价为()(110%10%)1a +-元,由题意得110%1 10% ()()0.99a a +-=g (元),故选B. 【提示】找到相应关系是解答此题的关键. 【考点】列代数式解应用题 6.【答案】C【提示】根据题意画出图形,利用数形结合求解是解答此题的关键. 【考点】垂径定理,等边三角形的性质 7.【答案】D【解析】∵由图可知,0a b c <<<,∴ac bc <,故A 错误;∵a b <,∴0a b -<,∴||a b b a -=-,B 错误;∵0a b <<,∴a b ->-,C 错误;∵a b ->-,0c >,∴a c b c -->--,故选D. 【考点】实数,数轴,绝对值,实数大小的比较 8.【答案】C==A 3||a =,B 错误; 22222222222221111()()()()()()()()a b b a b a a b a b a ba b a b a b a b a b b a b a b a++-+++÷-=÷==+--g ,C 正确;93936()a a a a a -÷=-÷=-,D 错误,故选C.【考点】分式的混合运算,同底数幂的除法,二次根式的混合运算∵CD AB =,90CDE ABF ∠=∠=︒,BF DE =,∴CDE ABF △≌△,故选B. 【考点】矩形的性质,全等三角形的判定与性质,线段垂直平分线的性质 10.【答案】C【解析】∵点,()A a c 在第一象限的一支曲线上,∴0a >,0c >,1ac =,∴点1(),B b c +在该函数图像的另外一支上,∴0b <,1()1b c -+=,∴12011x x bc b <+=-=+<,120cx x a=>,故选C. 【提示】熟练掌握根与系数的关系和反比例函数图象在各个象限点的特征的解答本题的关键. 【考点】根与系数的关系,反比例函数图像上点的坐标特征第Ⅱ卷二、填空题【考点】圆锥的计算 12.【答案】1.6【解析】根据题意有1010128510x ++++÷=(),10x =, ∴这组数据的方差是22223(1010)(1210)([]810)165s ⨯-+-+-==..【考点】方差 13.【答案】63︒或27︒【解析】解:在三角形ABC 中,如图所示,AB AC =,BD AC ⊥于D .①若ABC △是锐角三角形,903654A ∠=︒-︒=︒,底角(18054)263ABC C ∠=∠=︒-︒÷=︒;若ABC △是钝角三角形,3690126BAC ∠=︒+︒=︒,(180126)227ABC C ∠=∠=︒-︒÷=︒.所以此等腰三角形底角的度数是63︒或27︒.【考点】等腰三角形的性质,三角形内角和定理 14.【答案】2(3)y x y --【解析】因式分解的一般步骤:(1)提取公因式;(2)运用公式进一步分解,所以22322269(69)(3)xy x y y y y xy x y x y --=-+=---.【考点】提取公因式法,公式法分解因式 15.【答案】8【解析】由m 、n 是方程2250x x +-=的两个实数根,得2m n +=-,5mn =-,且2250m m +-=,而223(25)502558m mn m n m m m n -++=+-+++=-++=.【考点】根与系数的关系,一元二次方程的解 16.【答案】①【解析】当0m >时,函数my x=的图像在第一象限、第三象限,y 随着x 的增大而减小,故○2错误;正方形的对称中心在坐标原点,顶点A ,B ,C ,D 按逆时针依次排列,若A 点坐标为,则D 点坐标为) 1-,故○3错误;在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为316,故○4错误. 【考点】命题与定理,菱形的性质,一次函数及反比例函数的性质,图形与坐标及概率 三、解答题 17.【答案】(1)32- (2)4x =【解析】解:(1)原式122=+12)2=+3=2-(2)去分母得223620x x x x ---=,2280x x -=∴0x =或4x =经检验,0x =是增根,∴4x =是原方程的解.【提示】对于第(2)题,分式方程要检验,这点要切记.【考点】二次根式的混合运算,负指数幂运算,解分式方程,特殊角的三角函数值 18.【答案】︒【考点】直角三角形的应用,方向角问题19.【答案】当3a >时,不等式组的解集为3x ≤;当3a <时,不等式组的解集为x a <.【解析】解:23311(2)022x x a x -+≥-⎧⎪⎨-+<⎪⎩①② 解①得3x ≤, 解②得x a <.∵a 是不等于3的常数,∴当3a >时,不等式组的解集为3x ≤; 当3a <时,不等式组的解集为x a <.【考点】一元一次不等式组20.【答案】(1)解:(1)中位数落在第四组,可以估计初三学生60秒跳绳再120个以上的人数达到一半以上. (2)121 (3)2【考点】频数(率)分布直方图21.【答案】证明:(1)∵四边形ABCD 是矩形,AD BC =,AB CD =,又∵AC 是折痕,BC CE AD ==,AB AE CD ==.又DE ED =,∴ADE CED △≌△.【解析】证明:(2)∵ADE CED △≌△,∴EDC DEA ∠=∠,ACE △与ACB △关于AC 所在直线对称, ∴OAC CAB ∠=∠,而OCA CAB ∠=∠,∴OAC OCA ∠=∠. ∴22OAC DEA ∠=∠,∴OAC DEA ∠=∠,∴DE AC ∥.【考点】翻折变换(折叠问题),全等三角形的判定与性质,矩形的性质 22.【答案】96元、296元【解析】解:设基本电价为x 元/千瓦时,提高电价为y 元/千瓦时, 由题意得18015021318060180x y x y +=⎧⎨+=⎩解得0.60.7x y =⎧⎨=⎩∴4月份的电费为1600.696⨯=(元),5月份的电费为1800.62300.7108161269⨯+⨯=+=(元).【提示】解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解. 【考点】二元一次方程组的应用 23.【答案】(1)4y=(3)416y x =-+【考点】反比例函数的综合应用 24.【答案】(1)证明:连接OC .∵AB 为O e 的直径,∴90ACB ∠=︒,∴90ABC BAC ∠+∠=︒,又∵CM 是O e 的切线,∴OC CM ⊥, ∴90ACM ACO ∠+∠=︒.∴CO AO =,∴BAC ACO ∠=∠,∴ACM ABC ∠=∠(2【解析】【考点】切线的性质,勾股定理,圆周角定理,相似三角形 25.【答案】(1)(4,0)- (2)(2,2)P -【考点】待定系数法求抛物线的解析式;待定系数法求直线的解析式,函数的最值问题,四边形的面积求法,x轴的对称点的坐标特征。
2014年市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•)下列实数是无理数的是()A.﹣2 B.C.D.分析:根据无理数是无限不循环小数,可得答案.解答:解;A、B、C、都是有理数,D、是无理数,故选:D.点评:本题考查了无理数,无理数是无限不循环小数.2.(3分)(2014•)下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣1考点:负整数指数幂;绝对值;有理数的乘方;零指数幂.分析:根据负整指数幂,可判断A,根据非0的0次幂,可判断B,根据负数的绝对值是正数,可判断C,根据相反数,可判断D.解答:解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣1)0=1,故B错误;C、|﹣1|=1,故C错误;D、﹣(﹣1)2=﹣1,故D正确;故选:D.点评:本题考查了负整指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.(3分)(2014•)2013年我国GDP总值为56.9万亿元,增速达7.7%,将56.9万亿元用科学记数法表示为()A.56.9×1012元B.5.69×1013元C.5.69×1012元D.0.569×1013元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:56.9万亿元=5.69×1013,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•)在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7B.8C.9D.10考点:中位数.分析:根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.解答:解:把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.故选;B.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).5.(3分)(2014•)计算sin245°+cos30°•tan60°,其结果是()A.2B.1C.D.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算即可.解答:解:原式=()2+×=+=2.故选:A.点评:此题比较简单,解答此题的关键是熟记特殊角的三角函数值.6.(3分)(2014•)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种考点:三角形三边关系.分析:要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.解答:解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.7.(3分)(2014•)下列说确的是()A.必然事件发生的概率为0B.一组数据1,6,3,9,8的极差为7C.“面积相等的两个三角形全等”这一事件是必然事件D.“任意一个三角形的外角和等于180°”这一事件是不可能事件考点:随机事件;方差;概率的意义.分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件,可得答案.解答:解:A、必然事件发生的概率为1,故A错误;B、一组数据1,6,3,9,8的级差为8,故B错误;C、面积相等两个三角形全等,是随机事件,故C错误;D、”任意一个三角形的外角和等于180°”是不可能事件,故D正确;故选:D.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事.8.(3分)(2014•)在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2 B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2考点:二次函数图象与几何变换.分析:先根据抛物线的顶点式得到抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),则抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.解答:解:∵抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x﹣1)2+2.故选C.点评:本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a(x﹣k)2+h,其中对称轴为直线x=k,顶点坐标为(k,h),若把抛物线先右平移m个单位,向上平移n个单位,则得到的抛物线的解析式为y=a(x﹣k﹣m)2+h+n;抛物线的平移也可理解为把抛物线的顶点进行平移.9.(3分)(2014•)如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为,则图中阴影部分的面积是()A.﹣1 B.﹣C.﹣D.π﹣2考点:扇形面积的计算;正方形的性质;旋转的性质.分析:首先根据正方形的性质可得∠DBD′=45°,BC=CD,然后根据勾股定理可得BC、CD长,再计算出扇形BDD′和△BCD的面积可得阴影部分面积.解答:解:∵四边形ABCD是正方形,∴∠DBD′=45°,BC=CD,∵BD的长为,∴BC=CD=1,∴S扇形BDD′==,S△CBD=1×1=,∴阴影部分的面积:﹣,故选:C.点评:此题主要考查了正方形的性质,扇形的面积和三角形的面积计算,关键是掌握扇形的面积公式:S=.10.(3分)(2014•)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.考点:平行线分线段成比例.分析:根据平行线分线段成比例定理得出===2,即可得出答案.解答:解:∵DE∥BC,EF∥AB,AD=2BD,∴==2,==2,∴=,故选A.点评:本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截得的对应线段成比例.11.(3分)(2014•)已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个考点:命题与定理.分析:先对原命题进行判断,再判断出逆命题的真假即可.解答:解;①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则=a是真命题,逆命题是假命题;③错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选:A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.12.(3分)(2014•)关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值围是()A.m≤B.m≤且m≠0 C.m<1 D.m<1且m≠0考点:根的判别式;根与系数的关系.分析:先由根的判别式可得方程有两个实数根则△≥0,根据根与系数的关系得出x1+x2=﹣2(m﹣1),x1x2=m2,再由x1+x2>0,x1x2>0,解出不等式组即可.解答:解:∵△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,∴m≤,∵x1+x2=﹣2(m﹣1)>0,x1x2=m2>0∴m<1,m≠0∴m≤且m≠0.故选:B.点评:此题考查了根的判别式和根与系数的关系,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,根与系数的关系是x1+x2=﹣,x1x2=.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2014•)计算:﹣= .考点:二次根式的加减法.分析:首先化简二次根式进而合并同类二次根式进而得出答案.解答:解:﹣=×2﹣×=﹣=.故答案为:.点评:此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.14.(3分)(2014•)如图,已知∠1=∠2,∠3=73°,则∠4的度数为107 度.考点:平行线的判定与性质.专题:计算题.分析:根据已知一对同位角相等,利用同位角相等两直线平行得到a与b平行,利用两直线平行同旁角互补得到一对角互补,再利用对顶角相等即可确定出∠4的度数.解答:解:∵∠1=∠2,∴a∥b,∴∠5+∠3=180°,∵∠4=∠5,∠3=73°,∴∠4+∠3=180°,则∠4=107°.故答案为:107点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.15.(3分)(2014•)某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为9.4 分.考点:加权平均数.分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:这5个分数的平均分为(9.5×2+9.4×2+9.2)÷5=9.4;故答案为:9.4.点评:此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据公式列出算式.16.(3分)(2014•)计算:(x+1)2﹣(x+2)(x﹣2)= 2x+5 .考点:完全平方公式;平方差公式.专题:计算题.分析:原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果.解答:解:原式=x2+2x+1﹣x2+4=2x+5.故答案为:2x+5.点评:此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.17.(3分)(2014•)方程﹣=0的解为x= 2 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x﹣3﹣x﹣1=0,解得:x=2,经检验x=2是分式方程的解.故答案为:2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(3分)(2014•)如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为8 .考点:垂径定理;勾股定理;三角形中位线定理.专题:计算题.分析:连接OC,根据圆心角与弧之间的关系可得∠BOE=∠COE,由于OB=OC,根据等腰三角形的性质可得OD⊥BC,BD=CD.在直角三角形BDO中,根据勾股定理可求出OB,进而求出OD长,再根据三角形中位线定理可得AC的长.解答:解:连接OC,如图所示.∵点E是的中点,∴∠BOE=∠COE.∵OB=OC,∴OD⊥BC,BD=DC.∵BC=6,∴BD=3.设⊙O的半径为r,则OB=OE=r.∵DE=1,∴OD=r﹣1.∵OD⊥BC即∠BDO=90°,∴OB2=BD2+OD2.∵OB=r,OD=r﹣1,BD=3,∴r2=32+(r﹣1)2.解得:r=5.∴OD=4.∵AO=BO,BD=CD,∴OD=AC.∴AC=8.点评:本题考查了在同圆或等圆中等弧所对的圆心角相等、等腰三角形的性质、勾股定理、三角形中位线定理等知识,有一定的综合性.19.(3分)(2014•)如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D 作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为﹣16 .考点:相似三角形的判定与性质;反比例函数系数k的几何意义.分析:证△DCO∽△ABO,推出===,求出=()2=,求出S△ODC=8,根据三角形面积公式得出OC×CD=8,求出OC×CD=16即可.解答:解:∵OD=2AD,∴=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴===,∴=()2=,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=16,∴k=﹣16,故答案为:﹣16.点评:本题考查了反比例函数图象上点的坐标特征,相似三角形的性质和判定的应用,解此题的关键是求出△ODC的面积.20.(3分)(2014•)如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是①③④.(填写所有正确结论的序号)考点:矩形的性质;全等三角形的判定与性质.分析:根据同角的余角相等可得∠AEF=∠BCE,判断出①正确,然后求出△AEF和△BCE 相似,根据相似三角形对应边成比例可得=,然后根据两组边对边对应成比例,两三角形相似求出△AEF和△ECF,再根据相似三角形对应角相等可得∠AFE=∠EFC,过点E作EH⊥FC于H,根据角平分线上的点到角的两边距离相等可得AE=DH,利用“HL”证明△AEF和△HEF,根据全等三角形对应边相等可得AF=FH,同理可得BC=CH,然后求出AF+BC=CF,判断出②错误;根据全等三角形的面积相等可得S△CEF=S△EAF+S△CBE,判断出③正确;根据锐角三角函数的定义求出∠BCE=30°,然后求出∠DCF=∠ECF=30°,再利用“角角边”证明即可.解答:解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴=,∵点E是AB的中点,∴AE=BE,∴=,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=DH,在△AEF和△HEF中,,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE=====2×=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故答案为:①③④.点评:本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,解直角三角形,熟记各性质是解题的关键,难点在于求出△AEF和△ECF相似并得到∠AFE=∠EFC.三、解答题(本大题共6小题,共60分)21.(8分)(2014•)有四正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四卡片中随机地摸取一不放回,将该卡片上的数字记为m,再随机地摸取一,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.考点:列表法与树状图法;一次函数图象与系数的关系.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先可得所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3),再利用概率公式即可求得答案.解答:解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2014•)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,点E在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)考点:梯形;勾股定理.分析:过点D作DF⊥BC,根据∠BCD=45°,得DF=CF,再由AB=2,可得DF=CF=2,由勾股定理得CD的长,因为AD=1,所以BC=2+1,根据∠AEB=60°,可得BE,进而得出CE的长.解答:解:过点D作DF⊥BC,∵AD∥BC,∠ABC=90°,∴四边形ABFD为矩形,∵∠BCD=45°,∴DF=CF,∵AB=2,∴DF=CF=2,∴由勾股定理得CD=2;∵AD=1,∴BF=1,∴BC=2+1,∵∠AEB=60°,∴tan60°=,∴=,∴BE=2,∴CE=BC﹣BE=2+1﹣2=2﹣1.点评:本题考查了梯形的计算以及勾股定理,是基础知识要熟练掌握.23.(10分)(2014•)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.考点:一次函数的应用.分析:(1)根据两家商场的优惠方案分别列式整理即可;(2)根据收费相同,列出方程求解即可;(3)根据函数解析式分别求出x=5时的函数值,即可得解.解答:解:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.∴y1=;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+900=2100×5+900=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.点评:本题考查了一次函数的应用,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.(10分)(2014•)如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.(1)求证:△PCD是等腰三角形;(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.考点:切线的性质;等腰三角形的判定;相似三角形的判定与性质.专题:证明题.分析:(1)连结OC,根据切线的性质得∠OCP=90°,即∠1+∠PCD=90°,由GE⊥AB 得∠GEA=90°,则∠2+∠ADE=90°,利用∠1=∠2得到∠PCD=∠ADE,根据对顶角相等得∠ADE=∠PDC,所以∠PCD=∠PDC,于是根据等腰三角形的判定定理得到△PCD是等腰三角形;(2)连结OD,BG,在Rt△COF中根据含30度的直角三角形三边的关系可计算出OC=2,由于∠FOC=90°﹣∠F=60°,根据三角形外角性质可计算出∠1=∠2=30°,则∠PCD=90°﹣∠1=60°,可判断△PCD为等边三角形;再由D为AC的中点,根据垂径定理得到OD⊥AC,AD=CD,在Rt△OCD中,可计算出OD=OC=1,CD=OD=,所以△PCD的周长为3;然后在Rt△ADE中,计算出DE=AD=,AE=DE=,根据圆周角定理由AB为直径得到∠AGB=90°,再证明Rt△AGE∽Rt△ABG,利用相似比可计算出AG.解答:(1)证明:连结OC,如图,∵PC为⊙O的切线,∴OC⊥PC,∴∠OCP=90°,即∠1+∠PCD=90°,∵GE⊥AB,∴∠GEA=90°,∴∠2+∠ADE=90°,∵OA=OC,∴∠1=∠2,∴∠PCD=∠ADE,而∠ADE=∠PDC,∴∠PCD=∠PDC,∴△PCD是等腰三角形;(2)解:连结OD,BG,如图,在Rt△COF中,∠F=30°,BF=2,∴OF=2OC,即OB+2=2OC,而OB=OC,∴OC=2,∵∠FOC=90°﹣∠F=60°,∴∠1=∠2=30°,∴∠PCD=90°﹣∠1=60°,∴△PCD为等边三角形,∵D为AC的中点,∴OD⊥AC,∴AD=CD,在Rt△OCD中,OD=OC=1,CD=OD=,∴△PCD的周长为3;在Rt△ADE中,AD=CD=,∴DE=AD=,AE=DE=,∵AB为直径,∴∠AGB=90°,而∠GAE=∠BAG,∴Rt△AGE∽Rt△ABG,∴AG:AB=AE:AG,∴AG2=AE•AB=×4=6,∴AG=6.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的判定、垂径定理、圆周角定理和三角形相似的判定与性质.25.(12分)(2014•)如图,已知∠MON=90°,A是∠MON部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)运用=和夹角相等,得出△EOF∽△ABO.(2)证明Rt△EOF∽Rt△ABO,进而证明EF⊥OA.(3)由已知S△AEF=S四边形ABOF.得出S△FOE+S△ABE=S梯形ABOF,求出t的值.解答:解:(1)∵t=1,∴OE=1.5厘米,OF=2厘米,∵AB=3厘米,OB=4厘米,∴==,==∵∠MON=∠ABE=90°,∴△EOF∽△ABO.(2)在运动过程中,OE=1.5t,OF=2t.∵AB=3,OB=4.∴.又∵∠EOF=∠ABO=90°,∴Rt△EOF∽Rt△ABO.∴∠AOB=∠EOF.∵∠AOB+∠FOC=90°,∴∠EOF+∠FOC=90°,∴EF⊥OA.(3)如图,连接AF,∵OE=1.5t,OF=2t,∴BE=4﹣1.5t∴S△FOE=OE•OF=×1.5t×2t=t2,S△ABE=×(4﹣1.5t)×3=6﹣t,S梯形ABOF=(2t+3)×4=4t+6∵S△AEF=S四边形ABOF∴S△FOE+S△ABE=S梯形ABOF,∴t2+6﹣t=(4t+6),即6t2﹣17t+12=0,解得t=或t=.∴当t=或t=时,S△AEF=S四边形ABOF.点评:本题主要考查了相似形综合题,解题的关键是利用S△FOE+S△ABE=S梯形ABOF求t的值.26.(12分)(2014•)已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.(1)求该抛物线的解析式及点M的坐标;(2)连接ON,AC,证明:∠NOB=∠ACB;(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E 的坐标;(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC 对称吗?请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法即可求得解析式,把解析式转化成顶点式即可求得顶点坐标.(2)根据有两组对应边对应成比例且夹角相等即可求得△ABC∽△NBO,由三角形相似的性质即可求得.(3)作EF⊥BC于F,根据抛物线的解析式先设出E点的坐标,然后根据两直线垂直的性质求得F点的坐标,根据勾股定理即可求得.(4)延长EF交y轴于Q,根据勾股定理求得FQ的长,再与EF比较即可.解答:解:(1)∵抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,∴,解得.∴抛物线为y=﹣x2+x+2;∴抛物线为y=﹣x2+x+2=﹣(x﹣)2+,∴顶点M(,).(2)如图1,∵A(﹣1,0),B(2,0),C(0,2),∴直线BC为:y=﹣x+2,当x=时,y=,∴N(,),∴AB=3,BC=2,OB=2,BN==,∴==,==,∵∠ABC=∠NBO,∴△ABC∽△NBO,∴∠NOB=∠ACB;(3)如图2,作EF⊥BC于F,∵直线BC为y=﹣x+2,∴设E(m,﹣m2+m+2),直线EF的解析式为y=x+b,则直线EF为y=x+(﹣m2+2),解得,∴F(m2,﹣m2+2),∵EF=,∴(m﹣m2)2+(﹣m2+2+m2﹣m﹣2)2=()2,解得m=1,∴﹣m2+m+2=2,∴E(1,2),(4)如图2,延长EF交y轴于Q,∵m=1,∴直线EF为y=x+1,∴Q(0,1),∵F(,),∴FQ==,∵EF=,EF⊥BC,∴E、F两点关于直线BC对称.点评:本题考查了待定系数法求解析式,抛物线的顶点的求法,直线的交点问题,勾股定理的应用等.。
2014年内蒙古包头市中考数学试卷参考答案一、选择题1-5 DDBBA 6-10 CDCCA 11-12 AB二、填空题13..14.10715.9.4.16.2x+5.17.218.8.19.﹣16.20.①③④.三、解答题21.解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的概率为:=解:过点D作DF⊥BC,22.∵AD∥BC,∠ABC=90°,∴四边形ABFD为矩形,∵∠BCD=45°,∴DF=CF,∵AB=2,∴DF=CF=2,∴由勾股定理得CD=2;∵AD=1,∴BF=1,∴BC=2+1,∵∠AEB=60°,∴tan60°=,∴=,∴BE=2,∴CE=BC﹣BE=2+1﹣2=2﹣1.23. 解:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.∴y1=;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+900=2100×5+900=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.24. (1)证明:连结OC,如图,∵PC为⊙O的切线,∴OC⊥PC,∴∠OCP=90°,即∠1+∠PCD=90°,∵GE⊥AB,∴∠GEA=90°,∴∠2+∠ADE=90°,∵OA=OC,∴∠1=∠2,∴∠PCD=∠ADE,而∠ADE=∠PDC,∴∠PCD=∠PDC,∴△PCD是等腰三角形;(2)解:连结OD,BG,如图,在Rt△COF中,∠F=30°,BF=2,∴OF=2OC,即OB+2=2OC,而OB=OC,∴OC=2,∵∠FOC=90°﹣∠F=60°,∴∠1=∠2=30°,∴∠PCD=90°﹣∠1=60°,∴△PCD为等边三角形,∵D为AC的中点,∴OD⊥AC,∴AD=CD,在Rt△OCD中,OD=OC=1,CD=OD=,∴△PCD的周长为3;在Rt△ADE中,AD=CD=,∴DE=AD=,AE=DE=,∵AB为直径,∴∠AGB=90°,而∠GAE=∠BAG,∴Rt△AGE∽Rt△ABG,∴AG:AB=AE:AG,∴AG2=AE•AB=×4=6,∴AG=6.25. 解:(1)∵t=1,∴OE=1.5厘米,OF=2厘米,∵AB=3厘米,OB=4厘米,∴==,==∵∠MON=∠ABE=90°,∴△EOF∽△ABO.(2)在运动过程中,OE=1.5t,OF=2t.∵AB=3,OB=4.∴.又∵∠EOF=∠ABO=90°,∴Rt△EOF∽Rt△ABO.∴∠AOB=∠EOF.∵∠AOB+∠FOC=90°,∴∠EOF+∠FOC=90°,∴EF⊥OA.(3)如图,连接AF,∵OE=1.5t,OF=2t,∴BE=4﹣1.5t∴S△FOE=OE•OF=×1.5t×2t=t2,S△ABE=×(4﹣1.5t)×3=6﹣t,S梯形ABOF=(2t+3)×4=4t+6∵S△AEF=S四边形ABOF∴S△FOE+S△ABE=S梯形ABOF,∴t2+6﹣t=(4t+6),即6t2﹣17t+12=0,解得t=或t=.∴当t=或t=时,S△AEF=S四边形ABOF.26. 解:(1)∵抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,∴,解得.∴抛物线为y=﹣x2+x+2;∴抛物线为y=﹣x2+x+2=﹣(x﹣)2+,∴顶点M(,).(2)如图1,∵A(﹣1,0),B(2,0),C(0,2),∴直线BC为:y=﹣x+2,当x=时,y=,∴N(,),∴AB=3,BC=2,OB=2,BN==,∴==,==,∵∠ABC=∠NBO,∴△ABC∽△NBO,∴∠NOB=∠ACB;(3)如图2,作EF⊥BC于F,∵直线BC为y=﹣x+2,∴设E(m,﹣m2+m+2),直线EF的解析式为y=x+b,则直线EF为y=x+(﹣m2+2),解得,∴F(m2,﹣m2+2),∵EF=,∴(m﹣m2)2+(﹣m2+2+m2﹣m﹣2)2=()2,解得m=1,∴﹣m2+m+2=2,∴E(1,2),(4)如图2,延长EF交y轴于Q,∵m=1,∴直线EF为y=x+1,∴Q(0,1),∵F(,),∴FQ==,∵EF=,EF⊥BC,∴E、F两点关于直线BC对称.。
内蒙古包头市2014年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•包头)下列实数是无理数的是()A.﹣2 B.C.D.分析:根据无理数是无限不循环小数,可得答案.解答:解;A、B、C、都是有理数,D、是无理数,故选:D.点评:本题考查了无理数,无理数是无限不循环小数.2.(3分)(2014•包头)下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣1考点:负整数指数幂;绝对值;有理数的乘方;零指数幂.分析:根据负整指数幂,可判断A,根据非0的0次幂,可判断B,根据负数的绝对值是正数,可判断C,根据相反数,可判断D.解答:解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣1)0=1,故B错误;C、|﹣1|=1,故C错误;D、﹣(﹣1)2=﹣1,故D正确;故选:D.点评:本题考查了负整指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.(3分)(2014•包头)2013年我国GDP总值为56.9万亿元,增速达7.7%,将56.9万亿元用科学记数法表示为()A.56.9×1012元B.5.69×1013元C.5.69×1012元D.0.569×1013元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:56.9万亿元=5.69×1013,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•包头)在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7B.8C.9D.10考点:中位数.分析:根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.解答:解:把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.故选;B.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).5.(3分)(2014•包头)计算sin245°+cos30°•tan60°,其结果是()A.2B.1C.D.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算即可.解答:解:原式=()2+×=+=2.故选:A.点评:此题比较简单,解答此题的关键是熟记特殊角的三角函数值.6.(3分)(2014•包头)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种考点:三角形三边关系.分析:要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.解答:解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.7.(3分)(2014•包头)下列说法正确的是()A.必然事件发生的概率为0B.一组数据1,6,3,9,8的极差为7C.“面积相等的两个三角形全等”这一事件是必然事件D.“任意一个三角形的外角和等于180°”这一事件是不可能事件考点:随机事件;方差;概率的意义.分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件,可得答案.解答:解:A、必然事件发生的概率为1,故A错误;B、一组数据1,6,3,9,8的级差为8,故B错误;C、面积相等两个三角形全等,是随机事件,故C错误;D、”任意一个三角形的外角和等于180°”是不可能事件,故D正确;故选:D.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事.8.(3分)(2014•包头)在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2 B.y=3(x+1)2﹣2 C.y=3(x﹣1)2+2 D.y=3(x﹣1)2﹣2考点:二次函数图象与几何变换.分析:先根据抛物线的顶点式得到抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),则抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.解答:解:∵抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x﹣1)2+2.故选C.点评:本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a(x﹣k)2+h,其中对称轴为直线x=k,顶点坐标为(k,h),若把抛物线先右平移m个单位,向上平移n个单位,则得到的抛物线的解析式为y=a(x﹣k﹣m)2+h+n;抛物线的平移也可理解为把抛物线的顶点进行平移.9.(3分)(2014•包头)如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B 旋转后,点D落在BC延长线上的点D′处,点D经过的路径为,则图中阴影部分的面积是()A.﹣1 B.﹣C.﹣D.π﹣2考点:扇形面积的计算;正方形的性质;旋转的性质.分析:首先根据正方形的性质可得∠DBD′=45°,BC=CD,然后根据勾股定理可得BC、CD 长,再计算出扇形BDD′和△BCD的面积可得阴影部分面积.解答:解:∵四边形ABCD是正方形,∴∠DBD′=45°,BC=CD,∵BD的长为,∴BC=CD=1,∴S扇形BDD′==,S△CBD=1×1=,∴阴影部分的面积:﹣,故选:C.点评:此题主要考查了正方形的性质,扇形的面积和三角形的面积计算,关键是掌握扇形的面积公式:S=.10.(3分)(2014•包头)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.考点:平行线分线段成比例.分析:根据平行线分线段成比例定理得出===2,即可得出答案.解答:解:∵DE∥BC,EF∥AB,AD=2BD,∴==2,==2,∴=,故选A.点评:本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截得的对应线段成比例.11.(3分)(2014•包头)已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个考点:命题与定理.分析:先对原命题进行判断,再判断出逆命题的真假即可.解答:解;①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选:A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.12.(3分)(2014•包头)关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤B.m≤且m≠0C.m<1 D.m<1且m≠0考点:根的判别式;根与系数的关系.分析:先由根的判别式可得方程有两个实数根则△≥0,根据根与系数的关系得出x1+x2=﹣2(m﹣1),x1x2=m2,再由x1+x2>0,x1x2>0,解出不等式组即可.解答:解:∵△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,∴m≤,∵x1+x2=﹣2(m﹣1)>0,x1x2=m2>0∴m<1,m≠0∴m≤且m≠0.故选:B.点评:此题考查了根的判别式和根与系数的关系,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,根与系数的关系是x1+x2=﹣,x1x2=.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2014•包头)计算:﹣=.考点:二次根式的加减法.分析:首先化简二次根式进而合并同类二次根式进而得出答案.解答:解:﹣=×2﹣×=﹣=.故答案为:.点评:此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.14.(3分)(2014•包头)如图,已知∠1=∠2,∠3=73°,则∠4的度数为107度.考点:平行线的判定与性质.专题:计算题.分析:根据已知一对同位角相等,利用同位角相等两直线平行得到a与b平行,利用两直线平行同旁内角互补得到一对角互补,再利用对顶角相等即可确定出∠4的度数.解答:解:∵∠1=∠2,∴a∥b,∴∠5+∠3=180°,∵∠4=∠5,∠3=73°,∴∠4+∠3=180°,则∠4=107°.故答案为:107点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.15.(3分)(2014•包头)某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为9.4分.考点:加权平均数.分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:这5个分数的平均分为(9.5×2+9.4×2+9.2)÷5=9.4;故答案为:9.4.点评:此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据公式列出算式.16.(3分)(2014•包头)计算:(x+1)2﹣(x+2)(x﹣2)=2x+5.考点:完全平方公式;平方差公式.专题:计算题.分析:原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果.解答:解:原式=x2+2x+1﹣x2+4=2x+5.故答案为:2x+5.点评:此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.17.(3分)(2014•包头)方程﹣=0的解为x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x﹣3﹣x﹣1=0,解得:x=2,经检验x=2是分式方程的解.故答案为:2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(3分)(2014•包头)如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC 于点D.连接AC,若BC=6,DE=1,则AC的长为8.考点:垂径定理;勾股定理;三角形中位线定理.专题:计算题.分析:连接OC,根据圆心角与弧之间的关系可得∠BOE=∠COE,由于OB=OC,根据等腰三角形的性质可得OD⊥BC,BD=CD.在直角三角形BDO中,根据勾股定理可求出OB,进而求出OD长,再根据三角形中位线定理可得AC的长.解答:解:连接OC,如图所示.∵点E是的中点,∴∠BOE=∠COE.∵OB=OC,∴OD⊥BC,BD=DC.∵BC=6,∴BD=3.设⊙O的半径为r,则OB=OE=r.∵DE=1,∴OD=r﹣1.∵OD⊥BC即∠BDO=90°,∴OB2=BD2+OD2.∵OB=r,OD=r﹣1,BD=3,∴r2=32+(r﹣1)2.解得:r=5.∴OD=4.∵AO=BO,BD=CD,∴OD=AC.∴AC=8.点评:本题考查了在同圆或等圆中等弧所对的圆心角相等、等腰三角形的性质、勾股定理、三角形中位线定理等知识,有一定的综合性.19.(3分)(2014•包头)如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D 作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为﹣16.考点:相似三角形的判定与性质;反比例函数系数k的几何意义.分析:证△DCO∽△ABO,推出===,求出=()2=,求出S△ODC=8,根据三角形面积公式得出OC×CD=8,求出OC×CD=16即可.解答:解:∵OD=2AD,∴=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴===,∴=()2=,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=16,∴k=﹣16,故答案为:﹣16.点评:本题考查了反比例函数图象上点的坐标特征,相似三角形的性质和判定的应用,解此题的关键是求出△ODC的面积.20.(3分)(2014•包头)如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是①③④.(填写所有正确结论的序号)考点:矩形的性质;全等三角形的判定与性质.分析:根据同角的余角相等可得∠AEF=∠BCE,判断出①正确,然后求出△AEF和△BCE 相似,根据相似三角形对应边成比例可得=,然后根据两组边对边对应成比例,两三角形相似求出△AEF和△ECF,再根据相似三角形对应角相等可得∠AFE=∠EFC,过点E作EH⊥FC于H,根据角平分线上的点到角的两边距离相等可得AE=DH,利用“HL”证明△AEF和△HEF,根据全等三角形对应边相等可得AF=FH,同理可得BC=CH,然后求出AF+BC=CF,判断出②错误;根据全等三角形的面积相等可得S△CEF=S△EAF+S△CBE,判断出③正确;根据锐角三角函数的定义求出∠BCE=30°,然后求出∠DCF=∠ECF=30°,再利用“角角边”证明即可.解答:解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴=,∵点E是AB的中点,∴AE=BE,∴=,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=DH,在△AEF和△HEF中,,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE=====2×=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故答案为:①③④.点评:本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,解直角三角形,熟记各性质是解题的关键,难点在于求出△AEF和△ECF相似并得到∠AFE=∠EFC.三、解答题(本大题共6小题,共60分)21.(8分)(2014•包头)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.考点:列表法与树状图法;一次函数图象与系数的关系.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先可得所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3),再利用概率公式即可求得答案.解答:解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2014•包头)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,点E在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)考点:梯形;勾股定理.分析:过点D作DF⊥BC,根据∠BCD=45°,得DF=CF,再由AB=2,可得DF=CF=2,由勾股定理得CD的长,因为AD=1,所以BC=2+1,根据∠AEB=60°,可得BE,进而得出CE的长.解答:解:过点D作DF⊥BC,∵AD∥BC,∠ABC=90°,∴四边形ABFD为矩形,∵∠BCD=45°,∴DF=CF,∵AB=2,∴DF=CF=2,∴由勾股定理得CD=2;∵AD=1,∴BF=1,∴BC=2+1,∵∠AEB=60°,∴tan60°=,∴=,∴BE=2,∴CE=BC﹣BE=2+1﹣2=2﹣1.点评:本题考查了梯形的计算以及勾股定理,是基础知识要熟练掌握.23.(10分)(2014•包头)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.考点:一次函数的应用.分析:(1)根据两家商场的优惠方案分别列式整理即可;(2)根据收费相同,列出方程求解即可;(3)根据函数解析式分别求出x=5时的函数值,即可得解.解答:解:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.∴y1=;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+900=2100×5+900=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.点评:本题考查了一次函数的应用,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.(10分)(2014•包头)如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.(1)求证:△PCD是等腰三角形;(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.考点:切线的性质;等腰三角形的判定;相似三角形的判定与性质.专题:证明题.分析:(1)连结OC,根据切线的性质得∠OCP=90°,即∠1+∠PCD=90°,由GE⊥AB得∠GEA=90°,则∠2+∠ADE=90°,利用∠1=∠2得到∠PCD=∠ADE,根据对顶角相等得∠ADE=∠PDC,所以∠PCD=∠PDC,于是根据等腰三角形的判定定理得到△PCD是等腰三角形;(2)连结OD,BG,在Rt△COF中根据含30度的直角三角形三边的关系可计算出OC=2,由于∠FOC=90°﹣∠F=60°,根据三角形外角性质可计算出∠1=∠2=30°,则∠PCD=90°﹣∠1=60°,可判断△PCD为等边三角形;再由D为AC的中点,根据垂径定理得到OD⊥AC,AD=CD,在Rt△OCD中,可计算出OD=OC=1,CD=OD=,所以△PCD的周长为3;然后在Rt△ADE中,计算出DE=AD=,AE=DE=,根据圆周角定理由AB为直径得到∠AGB=90°,再证明Rt△AGE∽Rt△ABG,利用相似比可计算出AG.解答:(1)证明:连结OC,如图,∵PC为⊙O的切线,∴OC⊥PC,∴∠OCP=90°,即∠1+∠PCD=90°,∵GE⊥AB,∴∠GEA=90°,∴∠2+∠ADE=90°,∵OA=OC,∴∠1=∠2,∴∠PCD=∠ADE,而∠ADE=∠PDC,∴∠PCD=∠PDC,∴△PCD是等腰三角形;(2)解:连结OD,BG,如图,在Rt△COF中,∠F=30°,BF=2,∴OF=2OC,即OB+2=2OC,而OB=OC,∴OC=2,∵∠FOC=90°﹣∠F=60°,∴∠1=∠2=30°,∴∠PCD=90°﹣∠1=60°,∴△PCD为等边三角形,∵D为AC的中点,∴OD⊥AC,∴AD=CD,在Rt△OCD中,OD=OC=1,CD=OD=,∴△PCD的周长为3;在Rt△ADE中,AD=CD=,∴DE=AD=,AE=DE=,∵AB为直径,∴∠AGB=90°,而∠GAE=∠BAG,∴Rt△AGE∽Rt△ABG,∴AG:AB=AE:AG,∴AG2=AE•AB=×4=6,∴AG=6.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的判定、垂径定理、圆周角定理和三角形相似的判定与性质.25.(12分)(2014•包头)如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)运用=和夹角相等,得出△EOF∽△ABO.(2)证明Rt△EOF∽Rt△ABO,进而证明EF⊥OA.(3)由已知S△AEF=S四边形ABOF.得出S△FOE+S△ABE=S梯形ABOF,求出t的值.解答:解:(1)∵t=1,∴OE=1.5厘米,OF=2厘米,∵AB=3厘米,OB=4厘米,∴==,==∵∠MON=∠ABE=90°,∴△EOF∽△ABO.(2)在运动过程中,OE=1.5t,OF=2t.∵AB=3,OB=4.∴.又∵∠EOF=∠ABO=90°,∴Rt△EOF∽Rt△ABO.∴∠AOB=∠EOF.∵∠AOB+∠FOC=90°,∴∠EOF+∠FOC=90°,∴EF⊥OA.(3)如图,连接AF,∵OE=1.5t,OF=2t,∴BE=4﹣1.5t∴S△FOE=OE•OF=×1.5t×2t=t2,S△ABE=×(4﹣1.5t)×3=6﹣t,S梯形ABOF=(2t+3)×4=4t+6∵S△AEF=S四边形ABOF∴S△FOE+S△ABE=S梯形ABOF,∴t2+6﹣t=(4t+6),即6t2﹣17t+12=0,解得t=或t=.∴当t=或t=时,S△AEF=S四边形ABOF.点评:本题主要考查了相似形综合题,解题的关键是利用S△FOE+S△ABE=S梯形ABOF求t的值.26.(12分)(2014•包头)已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.(1)求该抛物线的解析式及点M的坐标;(2)连接ON,AC,证明:∠NOB=∠ACB;(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC 对称吗?请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法即可求得解析式,把解析式转化成顶点式即可求得顶点坐标.(2)根据有两组对应边对应成比例且夹角相等即可求得△ABC∽△NBO,由三角形相似的性质即可求得.(3)作EF⊥BC于F,根据抛物线的解析式先设出E点的坐标,然后根据两直线垂直的性质求得F点的坐标,根据勾股定理即可求得.(4)延长EF交y轴于Q,根据勾股定理求得FQ的长,再与EF比较即可.解答:解:(1)∵抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,∴,解得.∴抛物线为y=﹣x2+x+2;∴抛物线为y=﹣x2+x+2=﹣(x﹣)2+,∴顶点M(,).(2)如图1,∵A(﹣1,0),B(2,0),C(0,2),∴直线BC为:y=﹣x+2,当x=时,y=,∴N(,),∴AB=3,BC=2,OB=2,BN==,∴==,==,∵∠ABC=∠NBO,∴△ABC∽△NBO,∴∠NOB=∠ACB;(3)如图2,作EF⊥BC于F,∵直线BC为y=﹣x+2,∴设E(m,﹣m2+m+2),直线EF的解析式为y=x+b,则直线EF为y=x+(﹣m2+2),解得,∴F(m2,﹣m2+2),∵EF=,∴(m﹣m2)2+(﹣m2+2+m2﹣m﹣2)2=()2,解得m=1,∴﹣m2+m+2=2,∴E(1,2),(4)如图2,延长EF交y轴于Q,∵m=1,∴直线EF为y=x+1,∴Q(0,1),∵F(,),∴FQ==,∵EF=,EF⊥BC,∴E、F两点关于直线BC对称.点评:本题考查了待定系数法求解析式,抛物线的顶点的求法,直线的交点问题,勾股定理的应用等.。
2014年呼和浩特市中考试卷数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数是无理数的是( )A.-1B.0C.πD.2.以下问题,不适合用全面调查的是( )A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命3.已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)4.下图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A.60πB.70πC.90πD. 60π5.某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则最后的单价是( )A.a元B.0.99a元C.1.21a元D.0.81a元6.已知☉O的面积为2π,则其内接正三角形的面积为( )A.3B.3C.2D.267.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A.ac>bcB.|a-b|=a-bC.-a<-b<cD.-a-c>-b-c8.下列运算正确的是( )A. ·2=26 B.2=a3C.2÷2-2=-D.(-a)9÷a3=(-a)69.已知矩形ABCD的周长为20 cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为( )A.△CDE与△ABF的周长都等于10 cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10 cmC.△CDE与△ABF全等,且周长都为5 cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定10.已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2,判断正确的是( ) A.x1+x2>1,x1·x2>0 B.x1+x2<0,x1·x2>0C.0<x1+x2<1,x1·x2>0D.x1+x2与x1·x2的符号都不确定第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6小题,每小题3分,共18分)11.一个底面直径是80 cm,母线长为90 cm的圆锥的侧面展开图的圆心角的度数为.12.某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是.13.等腰三角形一腰上的高与另一腰的夹角为 6°,则该等腰三角形的底角的度数为.14.把多项式6xy2-9x2y-y3因式分解,最后结果为.15.已知m,n是方程x2+2x-5=0的两个实数根,则m2-mn+3m+n= .16.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=-mx+1与y=两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,),则D点坐标为(1,-).④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有.(只需填正确命题的序号)三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤)17.(10分)计算(1)(5分)计算:2cos 0°+ -2)-1+-2;(2)(5分)解方程:22x -2-2x=0.18.(6分)如图,一艘海轮位于灯塔P的北偏东6 °方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东 °方向上的B处,这时,海轮所在的B 处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)19.(5分)已知实数a 是不等于3的常数,解不等式组 -2 - ,2 x -2a2x 0,并依据a 的取值情况写出其解集.20.(9分)学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的个数)从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答下列问题.(1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳绳成绩的一个什么结论?(2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩(结果保留整数);(3)若从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.21.(7分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连结DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.22.(7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元.23.(8分)如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m> ,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.24.(8分)如图,AB是☉O的直径,点C在☉O上,过点C作☉O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连结AD,与CM交于点E,若☉O的半径为3,ED=2,求△ACE的外接圆的半径.x-1,抛物线y=ax2+bx+2经过点25.(12分)如图,已知直线l的解析式为y=2A(m,0),B(2,0),D ,三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.答案全解全析:一、选择题1.C A选项是整数,是有理数,错误;B选项是整数,是有理数,错误;C选项正确;D选项是分数,是有理数,错误,故选C.评析本题考查有理数、无理数的定义,属容易题.2.D 旅客上飞机前的安检意义重大,必须用全面调查,故A选项不符合题意;学校招聘教师,对应聘人员的面试宜用全面调查,故B选项不符合题意;了解全校学生的课外读书时间,数量不大,宜用全面调查,故C选项不符合题意;了解一批灯泡的使用寿命,具有破坏性,不适合用全面调查.故选D.评析本题考查抽样调查和全面调查的区别,一般来说,对于具有破坏性、精确度要求不高的调查,应选择抽样调查;对于精确度要求高、事关重大的调查往往选用全面调查,属容易题.3.A ∵点A(-1,4)的对应点为C ,7 ,∴平移规律为向右平移5个单位,向上平移3个单位,∴按此规律,点B(-4,-1)的对应点D的坐标为(1,2).故选A.4.B 观察三视图发现该几何体为空心圆柱,其内径为6,外径为8,高为10,所以其体积为 0× π× 2-π× 2 =70π,故选B.评析本题考查由三视图判断几何体的形状,解决本题的关键是得到此几何体的形状,属容易题.5.B 由题意得a(1+10%)(1-10%)=0.99a(元).故选B.评析本题主要考查列代数式,属容易题.6.C 如图所示,连结OB、OC,过O作OD⊥BC于D,∵☉O的面积为2π,∴☉O的半径为∵△ABC为正三角形,∴∠BOC=2×60°= 20°,∠BOC=60°.∵OB=,∴∠BOD=2∴BD=OB·sin∠BOD=2·sin 60°=6,2∴BC=2BD= 6,∴OD=OB·cos∠BOD= 2·cos 60°= 22,∴△BOC 的面积=2·BC·OD=2× 6× 22=2,∴△ABC 的面积=3S △BOC = × 2=2.故选C.评析 本题考查三角形的外接圆与外心,属容易题.7.D 由题图可知,a<b<0<c,∴ac<bc,故A 选项错误;∵a<b,∴a -b<0,∴ a -b|=b-a,故B 选项错误;∵a<b<0,∴-a>-b,故C 选项错误;∵-a>-b,c>0,∴-a-c>-b-c,故D 选项正确.故选D.评析 本题考查不等式的基本性质和绝对值的意义,属容易题.8.C A 项,原式=3 6× 22=3 ,故A 选项错误;B 项,原式=|a|3,故B 选项错误;C 项,原式=2÷ - =2· 22 - =- ,故C 选项正确;D 项,原式=-a 9÷a 3=-a 6,故D 选项错误.故选C.评析 本题考查分式的混合运算,整式的运算以及二次根式的化简,熟练掌握基本运算法则是解答此题的关键,属容易题.9.B ∵AO=CO,EF⊥AC,即EF 垂直平分AC,∴EA=EC,∴△CDE 的周长=CD+DE+CE=CD+AD=10 cm,同理可求出△ABF 的周长为10 cm. 在△AOE 和△COF 中, ∵ ∠ ∠ ,,∠ ∠ ,∴△AOE≌△COF,∴AE=CF. ∵AD=BC, ∴DE=BF,∴在△CDE 和△ABF 中, ,∠∠ , ,∴△CDE≌△ABF,故选B.评析 本题考查了线段的垂直平分线的性质,全等三角形的判定,属容易题. 10.C ∵点A(a,c)在第一象限的一支曲线上, ∴a>0,c>0.∵点B(b,c+1)在该函数图象的另外一支上, ∴b<0,c+ >0,即c>-1,∴c>0,∴x 1·x 2=>0. ∵点A 、B 都在y=的图象上, ∴,-,∴,-, ∴x 1+x 2=- =.∵c>0,∴0<<1,即0<x 1+x 2<1,故选C. 评析 本题考查一元二次方程根与系数的关系,属难题. 二、填空题 11.答案 60°解析 ∵圆锥的底面直径是80 cm.∴圆锥的侧面展开图(扇形)的弧长为 0π cm,设圆心角为n°,则由题意得,解得n=160.0π=π·9012.答案 1.6解析∵这组数据的平均数是10,∴ 0+ 0+ 2+x+ ÷ = 0,解得x=10,∴这组数据的方差是[ × 0-10)2+(12-10)2+(8-10)2]=1.6.评析本题考查了方差的计算方法,属容易题.13.答案 6 °或27°解析在三角形ABC中,设AB=AC,BD⊥AC于D.①若三角形是锐角三角形,则∠A=90°- 6°= °,此时,底角= 0°- ° ÷2=6 °;②若三角形是钝角三角形,则∠BAC= 6°+90°= 26°,此时,底角= 0°- 26° ÷2=27°.综上,该等腰三角形底角的度数是6 °或27°.评析本题考查等腰三角形的性质和三角形内角和定理,属容易题.14.答案-y(3x-y)2解析6xy2-9x2y-y3=-y(y2-6xy+9x2)=-y(3x-y)2.评析本题考查用提取公因式法和公式法分解因式,属容易题.15.答案8解析由于m,n是方程x2+2x-5=0的两个实数根,故m2+2m=5,m+n=-2,mn=-5,所以m2-mn+3m+n=m2+2m+m+n-mn=5-2+5=8.16.答案①解析每一条对角线都平分一组对角的平行四边形是菱形,①正确.当m>0时,-m<0,函数y=-mx+1中,y随着x的增大而减小,函数y=的图象在第一、三象限内,且在每一象限内y随着x的增大而减小,②错误.由图可得,△AOF≌△DOG,∴OG=OF= ,DG=AF=,∴D点坐标为(,- ,③错误.由④的题意,画树状图如下:∴两次取到的小球标号的和等于4的概率为6,④错误.三、解答题17.解析 (1)原式=2×2+ -2+2(3分)= -( +2)+2(4分)=- 2.(5分)(2)去分母得3x 2-6x-x 2-2x=0,(1分) 2x 2-8x=0,(2分) ∴x=0或x=4.(3分) 经检验:x=0是增根,∴x= 是原方程的解.(5分)评析 本题考查二次根式的混合运算以及特殊角的三角函数值、负指数幂运算、解分式方程,属容易题.18.解析 过点P 作PD⊥AB 于D,(1分) 由题意知∠DPB=∠PBD= °,在Rt△PBD 中,sin B=sin °=, ∴PB= 2PD.(2分)∵点A 在P 的北偏东6 °方向上, ∴∠APD=2 °. 在Rt△PAD 中,cos∠APD=cos 2 °=,∴PD=PAcos 2 °= 0cos 2 °, 分) ∴PB= 0 2cos 2 ° 海里).(6分)评析 本题考查方位角的含义,作垂线构造直角三角形是解决本题的关键,属容易题.19.解析 -2 - ,2x -2a2x 0,①②解①得x≤ , 分) 解②得x<a.(2分)∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x≤ , 分) 当a<3时,不等式组的解集为x<a.(5分)评析 本题考查一元一次不等式组的解法及分类讨论思想,很新颖,属容易题. 20.解析 (1)中位数落在第四组.(1分)由此可以估计初三学生60秒跳绳在120个以上的人数达到一半以上.(3分) (2) =2 70 0 90 2 0 0 0 0 70≈ 2 . 6分)(3)记第一组的两名学生为A 、B,第六组的三名学生为1、2、3,(7分) 则从这5名学生中抽取两名学生有以下10种情况: AB,A1,A2,A3,B1,B2,B3,12,13,23, 在同一组的是AB,12,13,23,∴P= 0=2.(9分)评析 本题考查频数分布直方图以及对数据的分析,属容易题. 21.证明 ∵四边形ABCD 是矩形, ∴AD=BC,AB=CD. 又∵AC 是折痕,∴BC=CE=AD, 分)AB=AE=CD,(2分)又DE=ED,∴△ADE≌△CED. 分)2 ∵△ADE≌△CED,∴∠EDC=∠DEA,又△ACE与△ACB关于AC所在直线对称,∴∠OAC=∠CAB,而∠OCA=∠CAB,∴∠OAC=∠OCA, 分)∴2∠OAC=2∠DEA, 6分)∴∠OAC=∠DEA,∴DE∥AC. 7分)评析本题考查轴对称变换(折叠问题),矩形的性质以及全等三角形的判定与性质,属容易题.22.解析设基本电价为x元/千瓦时,提高电价为y元/千瓦时,(1分)由题意得 0 0 2 ,060 0,(3分)解之得0.6,0.7,(4分)∴ 月份的电费为 60×0.6=96元,5月份的电费为 0×0.6+2 0×0.7= 0 + 6 =269元.答:这位居民4、5月份的电费分别为96元和269元.(7分)评析本题考查二元一次方程组的应用,读懂题意,找出合适的等量关系是解题关键,属容易题.23.解析 ∵y=过(1,4)点,∴k= ,反比例函数解析式为y=.(1分)(2)证明:∵B m,n ,A , ,∴AC= -n,BC=m-1,ON=n,OM=1,(2分)∴=-=-1,而B(m,n)在y=上,∴=m,∴=m-1,而=-,∴=,(4分)又∵∠ACB=∠NOM=90°,∴△ACB∽△NOM. 分)∵△ACB与△NOM的相似比为2,∴m-1=2,∴m= ,∴B点坐标为 ,.(6分)设AB所在直线的解析式为y=kx+b,∴ k b,,∴k=-,b= 6,∴AB 所在直线的解析式为y=- x+ 6 .(8分)评析 本题主要考查反比例函数的性质,属中等难度题.24.解析 (1)证明:连结OC,(1分)∵AB 为☉O 的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,又∵CM 是☉O 的切线,∴OC⊥CM,∴∠ACM+∠ACO=90°. 2分)∵CO=AO,∴∠BAC=∠ACO,∴∠ACM=∠ABC. 分)2 ∵BC=CD,∴OC∥AD,又∵OC⊥CE,∴AD⊥CE,∴△AEC 是直角三角形,∴△AEC 的外接圆的直径为AC,(4分)又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,而∠ABC=∠ACM,∴∠BAC=∠ECD,又∠CED=∠ACB=90°, ∴△ABC∽△CDE,∴ =, 而☉O 的半径为3,∴AB=6,∴6 =2,∴BC 2=12,∴BC=2 ,(6分)在Rt△ABC 中,∴AC= 6- 2=2 分)∴△ACE 的外接圆的半径为 6.(8分)评析 本题考查圆的切线性质、勾股定理、圆周角定理和相似三角形的判定与性质,属中等难度题.25.解析 ∵y=ax 2+bx+2经过点B 、D,∴ 2 2 0,2 , 解之得a=- ,b=- 2, ∴y=- x 2- 2x+2.(2分) ∵A m,0 在抛物线上,∴0=- m 2- 2m+2,解得m=-4,∴A -4,0),(3分)图象(略).(4分)(2)已知直线l 的解析式为y= 2x-1,∴S= 2AB·PF= 2×6·PF=3 - 2- 2x 2 - 2x (5分)=- x 2-3x+9=- (x+2)2+12,(6分)其中-4<x<0,(7分)∴S最大=12,此时点P的坐标为(-2,2).(9分) (3)证明:∵直线PB过点P(-2,2)和点B(2,0), ∴PB所在直线的解析式为y=-2x+1,(10分)设Q,2a-是y=2x-1上的任一点,则Q点关于x轴的对称点为,-2a,将,-2a代入y=-2x+1显然成立,(11分)∴直线l上的任意一点关于x轴的对称点一定在PB所在直线上.(12分) 注:本卷中各题如有不同解法,可依据情况酌情给分.。
2014年包头中考数学试卷一、选择题:本大题12小题,每小题3分,共计36分。
每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑。
1.下列实数是无理数的是A .-2 B.31 C.4 D.5 2.下列计算正确的是 A .()11---2 B.()010=- C.11-=- D. ()112-=-- 3.2013年我国GDP 总值为5.69万亿元,增速达7.7%,将5.69万亿元用科学记数法表示为A.12109.56⨯元B. 131069.5⨯元C. 121069.5⨯元D. 1310569.0⨯元4.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6 名学生成绩的中位数是A.7B.8C.9D.105.计算 60tan 30cos 45sin 2∙+,其结果是A.2B.1C.25D.45 6.长为9,6,5,4的四根木条,组成三角形,选法有A.1种B.2种C.3种D.4种7.下列说法正确的是A . 必然事件发生的概率为0 B.一组数据1,6,3,9,8的极差为7C.“面积相等的两个三角形全等”是必然事件D.“任意一个三角形的外角和是180度”这一事件是不可能事件。
8.在平面直角坐标系中,将抛物线23x y =先向右平移一个单位,再向上平移2个单位,得到的抛物线的解析式是A.()2132++=x yB. ()2132-+=x yC. ()2132+-=x yD. ()2132--=x y 9.如图,在正方形ABCD 中,对角线BD 的长为2,若将BD 绕点B 旋转后,点D 落在BC 的延长线上的点D ‘处,点D 经过的路径为D D '弧,则图中阴影部分的面积是A.12-π B.212-π C. 214-π D. 2-π 10.如图。
在三角形ABC 中,点D 、E 、F 分别在边ABAC 、BC 上,且D E ∥BC ,EF ∥AB ,若AD=2BD则BFCF 的值为A. 21B.31C.41D.32 11.已知下列命题: ○1若b a >,则bc ac > ○2若1=a ,则a a = ○3内错角相等; ○490度的圆周角所对的弦是直径 其中原命题与逆命题均为真命题的个数是A. 1个B. 2个C.3个D. 4个12.关于x 的一元二次方程()01222=+-+m x m x 的两个实数根分别为21,x x 且0,02121>>+x x x x 则m 的取值范围是 A. 21≤m B.021≠≤m m 且 C.1<m D. 0m 1≠<且m二、填空题:本大题共8小题,每小题3分共24分。
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前内蒙古呼和浩特市2014年中考试卷数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数是无理数的是( )A .1-B .0C .πD .132.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命3.已知线段CD 是由线段AB 平移得到的,点(1,4)A -的对应点为(4,7)C ,则点(4,1)B --的对应点D 的坐标为( )A .(1,2)B .(2,9)C .(5,3)D .(9,4)--4.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π5.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则最后的单价是( )A .a 元B .0.99a 元C .1.21a 元D .0.81a 元6.已知O e 的面积为2π,则其内接正三角形的面积为( )A. B. CD7.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac bc >B .||a b a b -=-C .a b c -<-<D .a c b c --->- 8.下列运算正确的是( )AB3a C .2221111()()b a a b a b b a++÷-=-D .936()()a a a -÷=-9.已知矩形ABCD 的周长为20cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于E ,F (不与顶点重合),则以下关于CDE △与ABF △判断完全正确的一项为 ( )A .CDE △与ABF △的周长都等于10cm ,但面积不一定相等B .CDE △与ABF △全等,且周长都为10cmC .CDE △与ABF △全等,且周长都为5cmD .CDE △与ABF △全等,但它们的周长和面积都不能确定10.已知函数1||y x =的图象在第一象限的一支曲线上有一点(,)A a c ,点(,1)B b c +在该函数图象的另外一支上,则关于一元二次方程20ax bx c ++=的两根1x ,2x 判断正确的是( )A .121x x +>,120x x g >B .120x x +<,120x x g >C .1201x x +<<,120x x g >D .12x x +与12x x g 的符号都不确定第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 .12.某校五个绿化小组一天的植树棵数如下:10,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是 .13.等腰三角形一腰上的高与另一腰的夹角为36︒,则该等腰三角形的底角的度数为 .14.把多项式22369xy x y y --因式分解,最后结果为.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)15.已知m ,n 是方程2250x x +-=的两个实数根,则23m mn m n -++= . 16.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形; ②当0m >时,1y mx =-+与my x=两个函数都是y 随着x 的增大而减小; ③已知正方形的对称中心在坐标原点,顶点A ,B ,C ,D 按逆时针依次排列,若A 点坐标为(1,3),则D 点坐标为(1,3)-;④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为18.其中正确的命题有 (只需填正确命题的序号).三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:112cos30(32)||2-+++-o ;(2)解方程:2231022x x x x-=+-.18.(本小题满分6分)如图,一艘海轮位于灯塔P 的北偏东65o 方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45o 方向上的B 处,这时,海轮所在的B 处距离灯塔P 有多远?(结果用非特殊角的三角函数及根式表示即可)19.(本小题满分5分)已知实数a 是不等于3的常数,解不等式组233,11(2)0,22x x a x -+-⎧⎪⎨-+⎪⎩≥<并依据a 的取值情况写出其解集.20.(本小题满分9分)学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的个数)从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答下列问题.(1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳绳成绩的一个什么结论?(2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩(结果保留整数);(3)若从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)21.(本小题满分7分)如图,四边形ABCD 是矩形,把矩形沿AC 折叠,点B 落在点E 处,AE 与DC 的交点为O ,连接DE .(1)求证:ADE CED △≌△; (2)求证:DE AC ∥.22.(本小题满分7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4,5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4,5月份的电费分别为多少元?23.(本小题满分8分)如图,已知反比例函数ky x=(0x >,k 是常数)的图象经过点(1),4A ,点,()B m n ,其中1m >,AM x ⊥轴,垂足为M ,BN y ⊥轴,垂足为N ,AM 与BN 的交点为C .(1)写出反比例函数解析式; (2)求证:ACB NOM △∽△;(3)若ACB △与NOM △的相似比为2,求出B 点的坐标及AB 所在直线的解析式.24.(本小题满分8分)如图,AB 是O e 的直径,点C 在O e 上,过点C 作O e 的切线CM . (1)求证:ACM ABC ∠=∠;(2)延长BC 到D ,使BC CD =,连接AD 与CM 交于点E ,若O e 的半径为3,2ED =,求ACE △的外接圆的半径.25.(本小题满分12分)如图,已知直线l 的解析式为112y x =-,抛物线22y ax bx =++经过点(,0)A m ,(2,0)B ,5(1,)4D 三点.(1)求抛物线的解析式及A 点的坐标,并在图示坐标系中画出抛物线的大致图象; (2)已知点(,)P x y 为抛物线在第二象限部分上的一个动点,过点P 作PE 垂直x 轴于点E ,延长PE 与直线l 交于点F ,请你将四边形PAFB 的面积S 表示为点P 的横坐标x 的函数,并求出S 的最大值及S 最大时点P 的坐标;(3)将(2)中S 最大时的点P 与点B 相连,求证:直线l 上的任意一点关于x 轴的对称点一定在PB 所在直线上.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共22页)数学试卷 第8页(共22页)内蒙古呼和浩特市2014年中考试卷数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】无理数就是无限不循环小数,由此可判断π是无理数,故选C. 【考点】无理数的定义 2.【答案】D【解析】选择普查还是抽样调查要根据所要调查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查了解一批灯泡的使用寿命,具有破坏性,工作量大,不适合全面调查,故选D. 【考点】抽样调查和全面调查的区别 3.【答案】A【解析】平移中点的变化规律是横坐标右移加,左移减;纵坐标上移加,下移减.因为点(1,4)A -的对应点 为()4,7C ,所以平移规律为向右平移5个单位,向上平移3个单位,又因为点()4,1B --,所以点D 的坐 标为(1,2),故选A.【考点】坐标与图形变化平移 4.【答案】B【解析】由三视图可以判断此几何体为空心圆柱,其内径为6,外径为8,高为10,圆柱的体积=⨯底面高积,所以此空心圆柱的体积为2210(4π3π70)π⨯-=,故选B.【考点】三视图计算几何体的体积 5.【答案】B【解析】原价提高10%后商品新单价为%(1)10a +元,再按新价降低10%后单价为()(110%10%)1a +-元,由题意得110%1 10% ()()0.99a a +-=g (元),故选B. 【提示】找到相应关系是解答此题的关键. 【考点】列代数式解应用题 6.【答案】C【提示】根据题意画出图形,利用数形结合求解是解答此题的关键.【考点】垂径定理,等边三角形的性质7.【答案】D【解析】∵由图可知,0a b c<<<,∴ac bc<,故A错误;∵a b<,∴0a b-<,∴||a b b a-=-,B错误;∵0a b<<,∴a b->-,C错误;∵a b->-,0c>,∴a c b c-->--,故选D.【考点】实数,数轴,绝对值,实数大小的比较8.【答案】C==A3||a=,B错误;22222222222221111()()()()()()()()a b b a b a a b a b a ba b a b a b a b a b b a b a b a++-+++÷-=÷==+--g,C正确;93936()a a a a a-÷=-÷=-,D错误,故选C.【考点】分式的混合运算,同底数幂的除法,二次根式的混合运算9.【答案】B5/ 11数学试卷 第11页(共22页)数学试卷 第12页(共22页)【考点】矩形的性质,全等三角形的判定与性质,线段垂直平分线的性质 10.【答案】C【解析】∵点,()A a c 在第一象限的一支曲线上,∴0a >,0c >,1ac =,∴点1(),B b c +在该函数图像的另外一支上,∴0b <,1()1b c -+=,∴12011x x bc b <+=-=+<,120cx x a=>,故选C. 【提示】熟练掌握根与系数的关系和反比例函数图象在各个象限点的特征的解答本题的关键. 【考点】根与系数的关系,反比例函数图像上点的坐标特征第Ⅱ卷二、填空题 11.【答案】160︒【考点】圆锥的计算 12.【答案】1.6【解析】根据题意有1010128510x ++++÷=(),10x =, ∴这组数据的方差是22223(1010)(1210)([]810)165s ⨯-+-+-==..【考点】方差 13.【答案】63︒或27︒【解析】解:在三角形ABC 中,如图所示,AB AC =,BD AC ⊥于D .①若ABC △是锐角三角形,903654A ∠=︒-︒=︒,底角(18054)263ABC C ∠=∠=︒-︒÷=︒;若ABC △是钝角三角形,3690126BAC ∠=︒+︒=︒,(180126)227ABC C ∠=∠=︒-︒÷=︒ .所以此等腰三角形底角的度数是63︒或27︒.【考点】等腰三角形的性质,三角形内角和定理 14.【答案】2(3)y x y --【解析】因式分解的一般步骤:(1)提取公因式;(2)运用公式进一步分解,所以22322269(69)(3)xy x y y y y xy x y x y --=-+=---.【考点】提取公因式法,公式法分解因式 15.【答案】8【解析】由m 、n 是方程2250x x +-=的两个实数根,得2m n +=-,5mn =-,且2250m m +-=,7 / 11而223(25)502558m mn m n m m m n -++=+-+++=-++=.【考点】根与系数的关系,一元二次方程的解 16.【答案】①【解析】当0m >时,函数my x=的图像在第一象限、第三象限,y 随着x 的增大而减小,故○2错误;正方形的对称中心在坐标原点,顶点A ,B ,C ,D 按逆时针依次排列,若A点坐标为,则D 点坐标为) 1-,故○3错误;在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为316,故○4错误. 【考点】命题与定理,菱形的性质,一次函数及反比例函数的性质,图形与坐标及概率 三、解答题 17.【答案】(1)32- (2)4x =【解析】解:(1)原式122=+12)2=+3=2-(2)去分母得223620x x x x ---=,2280x x -=∴0x =或4x =经检验,0x =是增根,∴4x =是原方程的解.【提示】对于第(2)题,分式方程要检验,这点要切记.【考点】二次根式的混合运算,负指数幂运算,解分式方程,特殊角的三角函数值 18.【答案】︒数学试卷 第15页(共22页)数学试卷 第16页(共22页)【考点】直角三角形的应用,方向角问题19.【答案】当3a >时,不等式组的解集为3x ≤;当3a <时,不等式组的解集为x a <.【解析】解:23311(2)022x x a x -+≥-⎧⎪⎨-+<⎪⎩①② 解①得3x ≤, 解②得x a <.∵a 是不等于3的常数,∴当3a >时,不等式组的解集为3x ≤; 当3a <时,不等式组的解集为x a <.【考点】一元一次不等式组20.【答案】(1)解:(1)中位数落在第四组,可以估计初三学生60秒跳绳再120个以上的人数达到一半以上. (2)121 (3)25【考点】频数(率)分布直方图21.【答案】证明:(1)∵四边形ABCD 是矩形,AD BC =,AB CD =,又∵AC 是折痕,BC CE AD ==,AB AE CD ==.又DE ED =,∴ADE CED △≌△.【解析】证明:(2)∵ADE CED △≌△,∴EDC DEA ∠=∠,ACE △与ACB △关于AC 所在直线对称, ∴OAC CAB ∠=∠,而OCA CAB ∠=∠,∴OAC OCA ∠=∠. ∴22OAC DEA ∠=∠,∴OAC DEA ∠=∠,∴DE AC ∥.9 / 11【考点】翻折变换(折叠问题),全等三角形的判定与性质,矩形的性质 22.【答案】96元、296元【解析】解:设基本电价为x 元/千瓦时,提高电价为y 元/千瓦时,由题意得18015021318060180x y x y +=⎧⎨+=⎩解得0.60.7x y =⎧⎨=⎩∴4月份的电费为1600.696⨯=(元),5月份的电费为1800.62300.7108161269⨯+⨯=+=(元).【提示】解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解. 【考点】二元一次方程组的应用 23.【答案】(1)4y x=(3)416y x =-+【考点】反比例函数的综合应用 24.【答案】(1)证明:连接OC .∵AB 为O e 的直径,∴90ACB ∠=︒,∴90ABC BAC ∠+∠=︒,又∵CM 是O e 的切线,∴OC CM ⊥, ∴90ACM ACO ∠+∠=︒.∴CO AO =,∴BAC ACO ∠=∠,∴ACM ABC ∠=∠数学试卷 第19页(共22页)数学试卷 第20页(共22页)(2【考点】切线的性质,勾股定理,圆周角定理,相似三角形 25.【答案】(1)(4,0)- (2)(2,2)P -11 / 11 其中40x <<.∴S 的最大值是12,此时点的坐标为(2,2)-.【考点】待定系数法求抛物线的解析式;待定系数法求直线的解析式,函数的最值问题,四边形的面积求法,x 轴的对称点的坐标特征。
2014年内蒙古包头市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分) 1.下列实数是无理数的是( ) A.-2 B.31C.4D.5 2.下列计算正确的是( )A.(-1)-1=1 B.(-1)0=0 C.1-=1- D.-(-1)2=-13.2013年我国GDP 总值为56.9万亿元,增速达7.7%,将56.9万亿元用科学记数法表示为( ) A.56.9×1012元 B.5.69×1013元 C.5.69×1012元 D.0.569×1012元4.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中 位数是( )A.7B.8C.9D.10 5.计算sin 245°+cos30°•tan60°,其结果是( ) A.2 B.1 C.25 D.45 6.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有( )A.1种B.2种C.3种D.4种 7.下列说法正确的是( )A.必然事件发生的概率为0B.一组数据1,6,3,9,8的极差为7C.“面积相等的两个三角形全等”这一事件是必然事件D.“任意一个三角形的外角和等于180°”这一事件是不可能事件 8.在平面直角坐标系中,将抛物线y=3x 2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是( ) A.y=3(x+1)2+2 B.y=3(x+1)2﹣2 C.y=3(x ﹣1)2+2 D.y=3(x ﹣1)2﹣29.如图,在正方形ABCD 中,对角线BD 的长为.若将BD 绕点B 旋转后,点D 落在BC 延长线上的点D ′处, 点D 经过的路径为DD'⌒,则图中阴影部分的面积是( ) A.2π-1 B.2π-21 C.4π-21D.2-π10.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB .若AD=2BD ,则的值为( ) A.21 B.31 C.41 D.3211.已知下列命题:①若a >b ,则ac >bc ; ②若a=1,则=a ; ③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A.1个B.2个C.3个D.4个12.关于x 的一元二次方程x 2+2(m ﹣1)x+m 2=0的两个实数根分别为x 1,x 2,且x 1+x 2>0,x 1x 2>0,则m 的取 值范围是( )A.21≤m B.21≤m 且m ≠0 C.m <1 D.m <1且m ≠0 二、填空题(本大题共8小题,每小题3分,共24分) 13.计算:﹣=.14.如图,已知∠1=∠2,∠3=73°,则∠4的度数为 度.15.某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平 均分为 分.16.计算:(x+1)2﹣(x+2)(x ﹣2)= . 17.方程﹣=0的解为x= .18.如图,AB 是⊙O 的直径,BC 是弦,点E 是的中点,OE 交BC 于点D .连接AC ,若BC=6,DE=1,则AC的长为 .19.如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数y=的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD =10,则k 的值 为 .20.如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论: ①∠AEF=∠BCE ; ②AF+BC >CF ;③S △CEF =S △EAF +S △CBE ; ④若=,则△CEF ≌△CDF .其中正确的结论是 .(填写所有正确结论的序号)21.有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.22.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,点E在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)23.甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.24.如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.(1)求证:△PCD是等腰三角形;(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.25.如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM 方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.26.已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.(1)求该抛物线的解析式及点M的坐标;(2)连接ON,AC,证明:∠NOB=∠ACB;(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D B B A C D C C A A B二、填空题:共8小题,每小题3分,共24分.13.14.10715.9.4 16.2x+5 17.218.8 19.﹣16 20.①③④三、解答题:共6小题,共60分.21.(8分)解答:解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的概率为:=.22.(8分)解答:解:过点D作DF⊥BC,∵AD∥BC,∠ABC=90°,∴四边形ABFD为矩形,∵∠BCD=45°,∴DF=CF,∵AB=2,∴DF=CF=2,∴由勾股定理得CD=2;∵AD=1,∴BF=1,∴BC=2+1,∵∠AEB=60°,∴tan60°=,∴=,∴BE=2,∴CE=BC﹣BE=2+1﹣2=2﹣1.23.(10分)解答:解:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.∴y1=;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+900=2100×5+900=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.24.(10分)解答:(1)证明:连结OC,如图,∵PC为⊙O的切线,∴OC⊥PC,∴∠OCP=90°,即∠1+∠PCD=90°,∵GE⊥AB,∴∠GEA=90°,∴∠2+∠ADE=90°,∵OA=OC,∴∠1=∠2,∴∠PCD=∠ADE,而∠ADE=∠PDC,∴∠PCD=∠PDC,∴△PCD是等腰三角形;(2)解:连结OD,BG,如图,在Rt△COF中,∠F=30°,BF=2,∴OF=2OC,即OB+2=2OC,而OB=OC,∴OC=2,∵∠FOC=90°﹣∠F=60°,∴∠1=∠2=30°,∴∠PCD=90°﹣∠1=60°,∴△PCD为等边三角形,∵D为AC的中点,∴OD⊥AC,∴AD=CD,在Rt△OCD中,OD=OC=1,CD=OD=,∴△PCD的周长为3;在Rt△ADE中,AD=CD=,∴DE=AD=,AE=DE=,∵AB为直径,∴∠AGB=90°,而∠GAE=∠BAG,∴Rt△AGE∽Rt△ABG,∴AG:AB=AE:AG,∴AG2=AE•AB=×4=6,∴AG=6.25.(12分)解答:解:(1)∵t=1,∴OE=1.5厘米,OF=2厘米,∵AB=3厘米,OB=4厘米,∴==,==∵∠MON=∠ABE=90°,∴△EOF∽△ABO.(2)在运动过程中,OE=1.5t,OF=2t.∵AB=3,OB=4.∴.又∵∠EOF=∠ABO=90°,∴Rt△EOF∽Rt△ABO.∴∠AOB=∠EOF.∵∠AOB+∠FOC=90°,∴∠EOF+∠FOC=90°,∴EF⊥OA.(3)如图,连接AF,∵OE=1.5t,OF=2t,∴BE=4﹣1.5t∴S△FOE=OE•OF=×1.5t×2t=t2,S△ABE=×(4﹣1.5t)×3=6﹣t,S梯形ABOF=(2t+3)×4=4t+6∵S△AEF=S四边形ABOF∴S△FOE+S△ABE=S梯形ABOF,∴t2+6﹣t=(4t+6),即6t2﹣17t+12=0,解得t=或t=.∴当t=或t=时,S△AEF=S四边形ABOF.26.(12分)解答:解:(1)∵抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,∴,解得.∴抛物线为y=﹣x2+x+2;∴抛物线为y=﹣x2+x+2=﹣(x﹣)2+,∴顶点M(,).(2)如图1,∵A(﹣1,0),B(2,0),C(0,2),∴直线BC为:y=﹣x+2,当x=时,y=,∴N(,),∴AB=3,BC=2,OB=2,BN==,∴==,==,∵∠ABC=∠NBO,∴△ABC∽△NBO,∴∠NOB=∠ACB;(3)如图2,作EG⊥BC于G,∵直线BC为y=﹣x+2,∴设E(m,﹣m2+m+2),直线EG的解析式为y=x+b,则直线EG为y=x+(﹣m2+2),解得,∴G (m 2,﹣m 2+2), ∵EG=,∴(m ﹣m 2)2+(﹣m 2+2+m 2﹣m ﹣2)2=()2,解得m=1,∴﹣m 2+m+2=2, ∴E (1,2),(4)如图2,延长EN 交y 轴于F , ∵m=1, 由(3)得G(,)∴N 点与G 点重合 ∴EN ⊥BC∴直线EF 为y=x+1, ∴F (0,1), ∵N(21,23) ∴FN==,∵EN=,且EF ⊥BC ,∴E 、F 两点关于直线BC 对称.。
2014年市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•)下列实数是无理数的是()A.﹣2 B.C.D.分析:根据无理数是无限不循环小数,可得答案.解答:解;A、B、C、都是有理数,D、是无理数,故选:D.点评:本题考查了无理数,无理数是无限不循环小数.2.(3分)(2014•)下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣1考点:负整数指数幂;绝对值;有理数的乘方;零指数幂.分析:根据负整指数幂,可判断A,根据非0的0次幂,可判断B,根据负数的绝对值是正数,可判断C,根据相反数,可判断D.解答:解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣1)0=1,故B错误;C、|﹣1|=1,故C错误;D、﹣(﹣1)2=﹣1,故D正确;故选:D.点评:本题考查了负整指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.(3分)(2014•)2013年我国GDP总值为56.9万亿元,增速达7.7%,将56.9万亿元用科学记数法表示为()A.56.9×1012元B.5.69×1013元C.5.69×1012元D.0.569×1013元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:56.9万亿元=5.69×1013,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•)在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7B.8C.9D.10考点:中位数.分析:根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.解答:解:把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.故选;B.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).5.(3分)(2014•)计算sin245°+cos30°•tan60°,其结果是()A.2B.1C.D.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算即可.解答:解:原式=()2+×=+=2.故选:A.点评:此题比较简单,解答此题的关键是熟记特殊角的三角函数值.6.(3分)(2014•)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种考点:三角形三边关系.分析:要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.解答:解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.7.(3分)(2014•)下列说确的是()A.必然事件发生的概率为0B.一组数据1,6,3,9,8的极差为7C.“面积相等的两个三角形全等”这一事件是必然事件D.“任意一个三角形的外角和等于180°”这一事件是不可能事件考点:随机事件;方差;概率的意义.分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件,可得答案.解答:解:A、必然事件发生的概率为1,故A错误;B、一组数据1,6,3,9,8的级差为8,故B错误;C、面积相等两个三角形全等,是随机事件,故C错误;D、”任意一个三角形的外角和等于180°”是不可能事件,故D正确;故选:D.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事.8.(3分)(2014•)在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2 B.y=3(x+1)2﹣2 C.y=3(x﹣1)2+2 D.y=3(x﹣1)2﹣2考点:二次函数图象与几何变换.分析:先根据抛物线的顶点式得到抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),则抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.解答:解:∵抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x﹣1)2+2.故选C.点评:本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a(x﹣k)2+h,其中对称轴为直线x=k,顶点坐标为(k,h),若把抛物线先右平移m个单位,向上平移n个单位,则得到的抛物线的解析式为y=a(x﹣k﹣m)2+h+n;抛物线的平移也可理解为把抛物线的顶点进行平移.9.(3分)(2014•)如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为,则图中阴影部分的面积是()A.﹣1 B.﹣C.﹣D.π﹣2考点:扇形面积的计算;正方形的性质;旋转的性质.分析:首先根据正方形的性质可得∠DBD′=45°,BC=CD,然后根据勾股定理可得BC、CD长,再计算出扇形BDD′和△BCD的面积可得阴影部分面积.解答:解:∵四边形ABCD是正方形,∴∠DBD′=45°,BC=CD,∵BD的长为,∴BC=CD=1,∴S扇形BDD′==,S△CBD=1×1=,∴阴影部分的面积:﹣,故选:C.点评:此题主要考查了正方形的性质,扇形的面积和三角形的面积计算,关键是掌握扇形的面积公式:S=.10.(3分)(2014•)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥A B.若AD=2BD,则的值为()A.B.C.D.考点:平行线分线段成比例.分析:根据平行线分线段成比例定理得出===2,即可得出答案.解答:解:∵DE∥BC,EF∥AB,AD=2BD,∴==2,==2,∴=,故选A.点评:本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截得的对应线段成比例.11.(3分)(2014•)已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个考点:命题与定理.分析:先对原命题进行判断,再判断出逆命题的真假即可.解答:解;①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则=a是真命题,逆命题是假命题;③错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选:A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.12.(3分)(2014•)关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值围是()A.m≤B.m≤且m≠0C.m<1 D.m<1且m≠0考点:根的判别式;根与系数的关系.分析:先由根的判别式可得方程有两个实数根则△≥0,根据根与系数的关系得出x1+x2=﹣2(m﹣1),x1x2=m2,再由x1+x2>0,x1x2>0,解出不等式组即可.解答:解:∵△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,∴m≤,∵x1+x2=﹣2(m﹣1)>0,x1x2=m2>0∴m<1,m≠0∴m≤且m≠0.故选:B.点评:此题考查了根的判别式和根与系数的关系,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,根与系数的关系是x1+x2=﹣,x1x2=.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2014•)计算:﹣= .考点:二次根式的加减法.分析:首先化简二次根式进而合并同类二次根式进而得出答案.解答:解:﹣=×2﹣×=﹣=.故答案为:.点评:此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.14.(3分)(2014•)如图,已知∠1=∠2,∠3=73°,则∠4的度数为107 度.考点:平行线的判定与性质.专题:计算题.分析:根据已知一对同位角相等,利用同位角相等两直线平行得到a与b平行,利用两直线平行同旁角互补得到一对角互补,再利用对顶角相等即可确定出∠4的度数.解答:解:∵∠1=∠2,∴a∥b,∴∠5+∠3=180°,∵∠4=∠5,∠3=73°,∴∠4+∠3=180°,则∠4=107°.故答案为:107点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.15.(3分)(2014•)某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为9.4 分.考点:加权平均数.分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:这5个分数的平均分为(9.5×2+9.4×2+9.2)÷5=9.4;故答案为:9.4.点评:此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据公式列出算式.16.(3分)(2014•)计算:(x+1)2﹣(x+2)(x﹣2)= 2x+5 .考点:完全平方公式;平方差公式.专题:计算题.分析:原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果.解答:解:原式=x2+2x+1﹣x2+4=2x+5.故答案为:2x+5.点评:此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.17.(3分)(2014•)方程﹣=0的解为x= 2 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x﹣3﹣x﹣1=0,解得:x=2,经检验x=2是分式方程的解.故答案为:2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(3分)(2014•)如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为8 .考点:垂径定理;勾股定理;三角形中位线定理.专题:计算题.分析:连接OC,根据圆心角与弧之间的关系可得∠BOE=∠COE,由于OB=OC,根据等腰三角形的性质可得OD⊥BC,BD=C D.在直角三角形BDO中,根据勾股定理可求出OB,进而求出OD长,再根据三角形中位线定理可得AC的长.解答:解:连接OC,如图所示.∵点E是的中点,∴∠BOE=∠COE.∵OB=OC,∴OD⊥BC,BD=D C.∵BC=6,∴BD=3.设⊙O的半径为r,则OB=OE=r.∵DE=1,∴OD=r﹣1.∵OD⊥BC即∠BDO=90°,∴OB2=BD2+OD2.∵OB=r,OD=r﹣1,BD=3,∴r2=32+(r﹣1)2.解得:r=5.∴OD=4.∵AO=BO,BD=CD,∴OD=A C.∴AC=8.点评:本题考查了在同圆或等圆中等弧所对的圆心角相等、等腰三角形的性质、勾股定理、三角形中位线定理等知识,有一定的综合性.19.(3分)(2014•)如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B 在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为﹣16 .考点:相似三角形的判定与性质;反比例函数系数k的几何意义.分析:证△DCO∽△ABO,推出===,求出=()2=,求出S△ODC=8,根据三角形面积公式得出OC×CD=8,求出OC×CD=16即可.解答:解:∵OD=2AD,∴=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴===,∴=()2=,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=16,∴k=﹣16,故答案为:﹣16.点评:本题考查了反比例函数图象上点的坐标特征,相似三角形的性质和判定的应用,解此题的关键是求出△ODC的面积.20.(3分)(2014•)如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是①③④.(填写所有正确结论的序号)考点:矩形的性质;全等三角形的判定与性质.分析:根据同角的余角相等可得∠AEF=∠BCE,判断出①正确,然后求出△AEF和△BCE相似,根据相似三角形对应边成比例可得=,然后根据两组边对边对应成比例,两三角形相似求出△AEF和△ECF,再根据相似三角形对应角相等可得∠AFE=∠EFC,过点E作EH⊥FC于H,根据角平分线上的点到角的两边距离相等可得AE=DH,利用“HL”证明△AEF和△HEF,根据全等三角形对应边相等可得AF=FH,同理可得BC=CH,然后求出AF+BC=CF,判断出②错误;根据全等三角形的面积相等可得S△CEF=S△EAF+S△CBE,判断出③正确;根据锐角三角函数的定义求出∠BCE=30°,然后求出∠DCF=∠ECF=30°,再利用“角角边”证明即可.解答:解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴=,∵点E是AB的中点,∴AE=BE,∴=,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=DH,在△AEF和△HEF中,,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE=====2×=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故答案为:①③④.点评:本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,解直角三角形,熟记各性质是解题的关键,难点在于求出△AEF和△ECF相似并得到∠AFE=∠EF C.三、解答题(本大题共6小题,共60分)21.(8分)(2014•)有四正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四卡片中随机地摸取一不放回,将该卡片上的数字记为m,再随机地摸取一,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.考点:列表法与树状图法;一次函数图象与系数的关系.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先可得所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3),再利用概率公式即可求得答案.解答:解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3);(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三四象限的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2014•)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,点E在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)考点:梯形;勾股定理.分析:过点D作DF⊥BC,根据∠BCD=45°,得DF=CF,再由AB=2,可得DF=CF=2,由勾股定理得CD的长,因为AD=1,所以BC=2+1,根据∠AEB=60°,可得BE,进而得出CE的长.解答:解:过点D作DF⊥BC,∵AD∥BC,∠ABC=90°,∴四边形ABFD为矩形,∵∠BCD=45°,∴DF=CF,∵AB=2,∴DF=CF=2,∴由勾股定理得CD=2;∵AD=1,∴BF=1,∴BC=2+1,∵∠AEB=60°,∴tan60°=,∴=,∴BE=2,∴CE=BC﹣BE=2+1﹣2=2﹣1.点评:本题考查了梯形的计算以及勾股定理,是基础知识要熟练掌握.23.(10分)(2014•)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.考点:一次函数的应用.分析:(1)根据两家商场的优惠方案分别列式整理即可;(2)根据收费相同,列出方程求解即可;(3)根据函数解析式分别求出x=5时的函数值,即可得解.解答:解:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.∴y1=;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+900=2100×5+900=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.点评:本题考查了一次函数的应用,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.(10分)(2014•)如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.(1)求证:△PCD是等腰三角形;(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.考点:切线的性质;等腰三角形的判定;相似三角形的判定与性质.专题:证明题.分析:(1)连结OC,根据切线的性质得∠OCP=90°,即∠1+∠PCD=90°,由GE⊥AB得∠GEA=90°,则∠2+∠ADE=90°,利用∠1=∠2得到∠PCD=∠ADE,根据对顶角相等得∠ADE=∠PDC,所以∠PCD=∠PDC,于是根据等腰三角形的判定定理得到△PCD是等腰三角形;(2)连结OD,BG,在Rt△COF中根据含30度的直角三角形三边的关系可计算出OC=2,由于∠FOC=90°﹣∠F=60°,根据三角形外角性质可计算出∠1=∠2=30°,则∠PCD=90°﹣∠1=60°,可判断△PCD为等边三角形;再由D为AC的中点,根据垂径定理得到OD⊥AC,AD=CD,在Rt△OCD中,可计算出OD=OC=1,CD=OD=,所以△PCD的周长为3;然后在Rt△ADE中,计算出DE=AD=,AE=DE=,根据圆周角定理由AB为直径得到∠AGB=90°,再证明Rt△AGE∽Rt△ABG,利用相似比可计算出AG.解答:(1)证明:连结OC,如图,∵PC为⊙O的切线,∴OC⊥PC,∴∠OCP=90°,即∠1+∠PCD=90°,∵GE⊥AB,∴∠GEA=90°,∴∠2+∠ADE=90°,∵OA=OC,∴∠1=∠2,∴∠PCD=∠ADE,而∠ADE=∠PDC,∴∠PCD=∠PDC,∴△PCD是等腰三角形;(2)解:连结OD,BG,如图,在Rt△COF中,∠F=30°,BF=2,∴OF=2OC,即OB+2=2OC,而OB=OC,∴OC=2,∵∠FOC=90°﹣∠F=60°,∴∠1=∠2=30°,∴∠PCD=90°﹣∠1=60°,∴△PCD为等边三角形,∵D为AC的中点,∴OD⊥AC,∴AD=CD,在Rt△OCD中,OD=OC=1,CD=OD=,∴△PCD的周长为3;在Rt△ADE中,AD=CD=,AE=DE=,∵AB为直径,∴∠AGB=90°,而∠GAE=∠BAG,∴Rt△AGE∽Rt△ABG,∴AG:AB=AE:AG,∴AG2=AE•AB=×4=6,∴AG=6.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的判定、垂径定理、圆周角定理和三角形相似的判定与性质.25.(12分)(2014•)如图,已知∠MON=90°,A是∠MON部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;(2)在运动过程中,不论t取何值时,总有EF⊥O A.为什么?(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)运用=和夹角相等,得出△EOF∽△ABO.(2)证明Rt△EOF∽Rt△ABO,进而证明EF⊥O A.(3)由已知S△AEF=S四边形ABOF.得出S△FOE+S△ABE=S梯形ABOF,求出t的值.解答:解:(1)∵t=1,∴OE=1.5厘米,OF=2厘米,∵AB=3厘米,OB=4厘米,∵∠MON=∠ABE=90°,∴△EOF∽△ABO.(2)在运动过程中,OE=1.5t,OF=2t.∵AB=3,OB=4.∴.又∵∠EOF=∠ABO=90°,∴Rt△EOF∽Rt△ABO.∴∠AOB=∠EOF.∵∠AOB+∠FOC=90°,∴∠EOF+∠FOC=90°,∴EF⊥O A.(3)如图,连接AF,∵OE=1.5t,OF=2t,∴BE=4﹣1.5t∴S△FOE=OE•OF=×1.5t×2t=t2,S△ABE=×(4﹣1.5t)×3=6﹣t,S梯形ABOF=(2t+3)×4=4t+6∵S△AEF=S四边形ABOF∴S△FOE+S△ABE=S梯形ABOF,∴t2+6﹣t=(4t+6),即6t2﹣17t+12=0,解得t=或t=.∴当t=或t=时,S△AEF=S四边形ABOF.点评:本题主要考查了相似形综合题,解题的关键是利用S△FOE+S△ABE=S梯形ABOF求t的值.26.(12分)(2014•)已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.(1)求该抛物线的解析式及点M的坐标;(2)连接ON,AC,证明:∠NOB=∠ACB;(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法即可求得解析式,把解析式转化成顶点式即可求得顶点坐标.(2)根据有两组对应边对应成比例且夹角相等即可求得△ABC∽△NBO,由三角形相似的性质即可求得.(3)作EF⊥BC于F,根据抛物线的解析式先设出E点的坐标,然后根据两直线垂直的性质求得F点的坐标,根据勾股定理即可求得.(4)延长EF交y轴于Q,根据勾股定理求得FQ的长,再与EF比较即可.解答:解:(1)∵抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,∴,解得.∴抛物线为y=﹣x2+x+2;∴抛物线为y=﹣x2+x+2=﹣(x﹣)2+,∴顶点M(,).(2)如图1,∵A(﹣1,0),B(2,0),C(0,2),∴直线BC为:y=﹣x+2,当x=时,y=,∴N(,),∴AB=3,BC=2,OB=2,BN==,∴==,==,∵∠ABC=∠NBO,∴△ABC∽△NBO,∴∠NOB=∠ACB;(3)如图2,作EF⊥BC于F,∵直线BC为y=﹣x+2,∴设E(m,﹣m2+m+2),直线EF的解析式为y=x+b,则直线EF为y=x+(﹣m2+2),解得,∴F(m2,﹣m2+2),∵EF=,∴(m﹣m2)2+(﹣m2+2+m2﹣m﹣2)2=()2,解得m=1,∴﹣m2+m+2=2,∴E(1,2),(4)如图2,延长EF交y轴于Q,∵m=1,∴直线EF为y=x+1,∴Q(0,1),∵F(,),∴FQ==,∵EF=,EF⊥BC,∴E、F两点关于直线BC对称.点评:本题考查了待定系数法求解析式,抛物线的顶点的求法,直线的交点问题,勾股定理的应用等.。