实验一 常用电子仪器使用练习
- 格式:doc
- 大小:177.50 KB
- 文档页数:11
实验⼀常⽤仪器的使⽤(⽰波器、万⽤表)实验⼀、常⽤电⼦仪器仪表使⽤模拟电⼦技术实验中,常⽤的电⼦仪器仪表主要有双踪⽰波器、低频信号发⽣器、低频交流毫伏表、直流稳压电源、万⽤表等。
这些仪器仪表的主要⽤途以及与实验电路的联系如图所⽰。
⼀、实验⽬的初步了解常⽤电⼦仪器的功能与使⽤⽅法;掌握⽤⽰波器获取稳定波形并测量有关参数的⽅法。
2、会⽤万⽤表测试晶体⼆极管、三极管;学习使⽤半导体特性图⽰仪测试晶体管的⽅法。
⼆、实验仪器双踪⽰波器: GOS620;函数信号发⽣器:SG1651;交流毫伏表: SG2172;直流稳压电源: SS1792C;数字万⽤表: MS8222D 半导体特性图⽰仪:XJ4810或XJ4820三、实验内容及步骤1、⽤交流毫伏表测量低频信号发⽣器输出的正弦信号电压:将低频信号发⽣器(或称信号源)的输出端接⾄交流毫伏表输⼊端(注意:两仪器必须“共地”)。
将信号源波形选择置“正弦”,频率调为“ 1kHz”,输出衰减先置于“0dB”,调节“输出幅度”旋钮,使LED数字表头指⽰值V S 为 11V 左右(峰—峰值)。
然后,将毫伏表量程由最⼤档位100V逐级切换为10V档,观察该表读数,使读数为4V。
依次按下信号源“输出衰减”⾄20dB、40dB、60dB,并相应调整毫伏表量程。
分别记录毫伏表读数,结果填⼊下表:2、⽤⽰波器观察波形将⽰波器“ Y1轴输⼊”端接信号源输出端(两仪器仍必须“共地”),参照附录I.2中有关GOS620双踪⽰波器观察波形的⽅法,调节“Y1灵敏度”,“X灵敏度”及“触发⽅式,触发电平”等旋钮,使荧光屏上得到⼀稳定的正弦波。
保= 4V,依次改变f S为:100Hz、1kHz、10kHz、100kHz,并适当持信号源VS调整X轴扫描速度,观察所测波形。
3、⽤⽰波器测量波形的周期和幅度将频率为 1kHz、幅度为3V左右的正弦信号送⼊⽰波器输⼊端。
将⽰波器扫描开关“T/cm”上的微调旋钮置“校准”位置,此时,“T/cm”的指⽰值即为屏幕上横向每格(1cm)代表的时间,再观察被测波形⼀个周期在屏幕⽔平轴上占据的格数,即可得信号周期T wT w =T/cm×格数调节⽰波器 Y通道的灵敏度开关“V/cm”,使屏幕上的波形⾼度适中,此时,“V/cm”的指⽰值即为屏幕上纵向每格代表的电压值,再观察波形的⾼度(峰—峰)在屏幕纵轴上占据的格数,即可得信号幅度V (峰—峰):V (峰—峰)=V/cm×格数注意:被测信号若经⽰波器 10:1探头输⼊,测得的电压值再乘10,才是实际值。
电工电路实验:常用电子仪器的使用练习一、实验目的1.了解示波器的基本测量原理,掌握示波器各主要开关和旋钮的使用方法。
2.掌握用示波器测量电压和周期的方法。
3.学习信号发生器和交流毫伏表的使用。
二、预习要求1.阅读附录C中DS1000型数字示波器简介。
了解面板主要旋钮的位置和功能以及示波器测量交、直流电压幅值、频率、相位的方法。
2.阅读附录B中DG-3-04型信号源的使用方法。
3.弄清楚正弦信号的峰值电压、峰-峰值电压、有效值电压等概念的含义,以及它们之间的换算关系。
三、实验原理示波器是现代测量中常用的电子仪器之一,它能直接测量正弦信号的幅度和周期(或频率)。
双踪示波器能同时显示两个信号的波形,并进行比较测量。
1.数字示波器的使用要点(1)打开示波器电源,示波器CH1/CH2通过测试线与信号源相连,按下“AUTO”按钮,使示波器正确显示信号波形。
(2)按下“Measure”按钮,测量信号电压大小时,选择一旁的“电压测量”菜单,通过多功能按钮的“最大值”“最小值”“峰-峰值”或“均方根值”等菜单进行选择。
通过屏幕下方的数据直接读出信号的电压值。
(3)测量信号的周期或频率时,通过多功能按钮选择“周期”或“频率”等菜单进行选择。
通过屏幕下方的数据直接读出信号的周期或频率。
(4)数字示波器屏幕左下角显示的数据即“V/div”,右下角显示的数据即“s/div”。
2.模拟示波器的使用要点(1)将示波器调出一条水平扫描线,确定示波器处于正常工作状态。
打开示波器查看有无一条水平扫描线,若有则说明示波器已处于正常工作状态,可以进行测量。
若没有出现一条水平扫描线,可将示波器“AC,GND,DC”旋钮打在GND位置上,调节“辉度”旋钮、“聚焦”旋钮,若没有出现一条水平扫描线,可调节垂直和水平位移旋钮,直至出现一条水平扫描线为止。
(2)稳定显示信号的波形。
确定触发源所选的通道与正在测量的通道一致,然后调节“触发电平”调节旋钮,直至所显示的波形稳定为止,便于进行下面的测量。
常用电子仪器的使用实验一、实验目的1.熟悉示波器的工作原理及面板功能,掌握使用示波器测量信号幅值、频率及相位的基本方法;2.掌握电子电路实验中常用的电子仪器——示波器、函数信号发生器、交流毫伏表等正确使用方法。
二、实验类型验证性实验三、预习要求1.阅读第一章有关函数信号发生器、毫伏表和示波器部分内容,并回答下列问题。
(1)测量毫伏级正弦交流电压信号的有效值时,应当使用数字万用表的交流电压挡还是使用交流毫伏表?为什么?答:(2)交流毫伏表可以用来测量非正弦波电压吗?交流毫伏表的读数是被测信号的什么值?答:(3)当示波器显示屏上的波形高度超出显示屏时应如何调整哪个旋钮?当显示屏上的波形不在屏幕中央时应如何调节?答:(4)如何调节函数信号发生器得到频率为1kHz、有效值为10mV的正弦信号?答:2.如图4.3所示RC移相电路,试分别用理论计算和Multisim软件仿真分析的方法求解阻抗角θ,已知C=0.01μF,R=10kΩ。
(1)理论分析:(2)仿真分析:○1建立仿真电路(2)利用仿真结果测量相位差由图可知R u 和i u 两波形在X 轴方向的时间差21T T T ∆=-= ,则相位差为 。
四、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表等。
它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。
实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图4.1所示。
接线时应注意,为防止外界干扰,各仪器的公共接地端应接在一起,称为共地。
信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。
图4.1 模拟电子电路中常用电子仪器布局图1.示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。
竭诚为您提供优质文档/双击可除常用电子仪器的使用实验报告答案篇一:实验报告_常用电子仪器的使用实验一常用电子仪器的使用一、实验目的1.对本实验室的示波器、稳压电源、函数信号发生器、交流毫伏表、万用表等仪器的使用方法有基本了解,为今后的实验打下基础。
2.学会对有源单口网络等效内阻的测量。
3.利用示波器观察信号波形,测量振幅和周期(频率)。
二、常用电子仪器的介绍1.直流稳压电源(DcReguLATeDpoweRsuppLY)本实验室采用DF1733和DF1731sb2A两种稳压电源。
DF1733是采用三只电源变压器,三路完全独立输出的三路直流稳压电源,三路完全相同,其中一路的原理如图1-1所示。
图1-1DF1733其中一路稳压原理框图由图1-1可见,直流稳压电源由整流滤波电路、辅助电源基准电压、电压(电流)采样电路、比较放大器、调整电路和保护电路组成。
输入220V的交流电压经过降压变压器分别供给主回路整流器和辅助电源整流器。
主回路变压器的付边有二组抽头,使输出直流电压为0~15V和15~30V两档。
主回路整流滤波电路是由四只二极管构成桥式整流电路,每只二极管的最大电流为3A和一只大电容(2200μF)组成。
辅助电源产生三组电压,一组电压为(+12V)供比较放大器和集成电路的直流电源用。
另两组电压经过温度补偿的基准稳压二极管稳压后,分别提供电压比较放大器的基准电压和过载放大器的基准电压。
电压采样电路将输出电压采样送到电压比较放大器的反相端,基准电压送到电压比较放大器的同相端,经过电压比较放大器(实际上为差动放大器),比较放大去控制调整电路,使输出电压为0~15V和15~30V。
电流采样过载放大器的原理与电压比较放大器相似,区别只在于一旦发生过载,使调整管截止(约为1.5A),输出电流大小变小,保护稳压电源不至因电流过大而烧毁。
这时面板上的发光二极管导通并发光。
调整电路由大功率晶体管和中功率推动管组成。
实验一常用电子仪器仪表使用练习实验目的掌握示波器、函数信号发生器、交流毫伏表使用及常见电子元件认识,了解电压表负载效应,为做好电子电路实验打下基础。
概述接下去我们将进行电子电路的实验,在接触这些实验之前,我们应该熟悉掌握电子仪器、仪表的使用。
电子仪器、仪表的使用练习实验应舍得花时间,因为直接关系到后续实验结果的正确性及实验顺利与否。
这要求学者不仅要温习物理课程中所涉及的示波器显示原理,还要预习本书附录部分的“常用仪器使用介绍”,或结合看电子示波器原理、使用及电子学实验技术录像片后再做,会顺手得多。
实验器材1、双踪示波器一台2、函数信号发电器一台3、交流毫伏表一台4、可调直流稳压源(0~30V)一只5、MF-500或MF-30、MF-47万用表一只6、色环电阻、三极管、二极管、电容器若干实验内容1、交流信号波形观察:1)把1KHZ、1V左右的正弦电压信号(从什么仪器获得?)输入给示波器,分别调出几个完整波形。
2)用毫伏表测量信号发生器正弦电压输出。
完成表1-1测量要求(最好是在阅读下一步内容“3”后再做)。
3)示波器使用练习,参考表1-1,完成表1-2内容,实际上,表1-1与表1-2可以统一起来一并操作完成.表1-22、轻松演练1)用交流毫伏表测量函数信号发生器的输出电压(f=100Hz),在0dB时,调节幅度旋钮,测量值为3v,当幅度旋钮不再旋动,衰减位置分别为20dB、40dB、60dB,把毫伏表指示值记录下来。
2)用示波器测量直流电压:首先显示出“水平时基线”,选定基线位置(使用那些功能键?)根据所测量电压值选取合适的垂直偏向灵敏度(校准否?)及符合直流测量的示波器输入耦合方式。
测量结果填入表1-3所示。
3、万用表使用练习(用万用表Ω档测量电阻):1)测量电阻时,有必要对电阻元件特性、标称值进行一定的介绍。
根据电阻器结构的特征可分为薄型膜电阻器、线绕电阻、敏感电阻等。
例:碳膜电阻值范围为0.75Ω~10M Ω金属膜电阻值范围为1Ω~几百M Ω,精度可达0.5%,额定功率一般不超过2W 。
实验一常用电子仪器使用练习、用万用表测试二极管、三极管模拟电子技术基础实验常用的电子仪器有:1、通用示波器20MHZ2、低频信号发生器 HG1021型3、晶体管毫伏表:DA-164、万用表(500型)或数字万用表5、直流稳压电源+12V、500mA为了在实验中能准确地测量数据,观察实验现象,必须学会正确地使用这些仪器的方法,这是一项重要的实验技能,因此以后每次实验都要反复进行这方面的练习。
一、实验目的(一)学习或复习示波器、低频信号发生器、晶体管毫伏表及直流稳压电源的使用方法。
(二)学习用万用表辨别二极管、三极管管脚的方法及判断它们的好坏。
(三)学习识别各种类型的元件。
二、实验原理示波器是一种用途很广的电子测量仪器。
利用它可以测出电信号的一系列参数,如信号电压(或电流)的幅度、周期(或频率)、相位等。
通用示波器的结构包括示波管、垂直放大、水平放大、触发、扫描及电源等六个主要部分,各部分作用见附录。
YX4320型波器。
三、预习要求实验前必须预习实验时使用的示波器、低频信号发生器,万用表的使用说明及注意事项等有关资料。
四、实验内容及步骤(一)电子仪器使用练习1、将示波器电源接通1至2分钟,调节有关旋钮,使荧光屏上出现扫描线,熟悉“辉度”、“聚焦”、“X轴位移”、“Y轴位移”等到旋钮的作用。
2、启动低频信号发生器,调节其输出电压(有效值)为1~5V,频率为1KHZ,用示波器观察信号电压波形,熟悉“Y轴衰减”和“Y轴增幅”旋钮的作用。
3、调节有关旋钮,使荧光屏上显示出的波形增加或减少(例如在荧光屏上得到一个、三个或六个完整的正弦波),熟悉“扫描范围”及“扫描微调”旋钮的作用。
4、用晶体管毫伏表测量信号发生器的输出电压。
将信号发生器的“输出衰减”开关置0db、20db、40db、60db位置,测量其对应的输出电压。
测量时晶体管毫伏表的量程要选择适当,以使读数准确。
注意不要过量程。
(二)用万用表辨别二极管的极性、辨别二极管e、b、c各极、管子的类型(PNP 或NPN)及其好坏。
实验一常用电子仪器使用练习、用万用表测试二极管、三极管模拟电子技术基础实验常用的电子仪器有:1、通用示波器20MHZ2、低频信号发生器 HG1021型3、晶体管毫伏表:DA-164、万用表(500型)或数字万用表5、直流稳压电源+12V、500mA为了在实验中能准确地测量数据,观察实验现象,必须学会正确地使用这些仪器的方法,这是一项重要的实验技能,因此以后每次实验都要反复进行这方面的练习。
一、实验目的(一)学习或复习示波器、低频信号发生器、晶体管毫伏表及直流稳压电源的使用方法。
(二)学习用万用表辨别二极管、三极管管脚的方法及判断它们的好坏。
(三)学习识别各种类型的元件。
二、实验原理示波器是一种用途很广的电子测量仪器。
利用它可以测出电信号的一系列参数,如信号电压(或电流)的幅度、周期(或频率)、相位等。
通用示波器的结构包括示波管、垂直放大、水平放大、触发、扫描及电源等六个主要部分,各部分作用见附录。
YX4320型波器。
三、预习要求实验前必须预习实验时使用的示波器、低频信号发生器,万用表的使用说明及注意事项等有关资料。
四、实验内容及步骤(一)电子仪器使用练习1、将示波器电源接通1至2分钟,调节有关旋钮,使荧光屏上出现扫描线,熟悉“辉度”、“聚焦”、“X轴位移”、“Y轴位移”等到旋钮的作用。
2、启动低频信号发生器,调节其输出电压(有效值)为1~5V,频率为1KHZ,用示波器观察信号电压波形,熟悉“Y轴衰减”和“Y轴增幅”旋钮的作用。
3、调节有关旋钮,使荧光屏上显示出的波形增加或减少(例如在荧光屏上得到一个、三个或六个完整的正弦波),熟悉“扫描范围”及“扫描微调”旋钮的作用。
4、用晶体管毫伏表测量信号发生器的输出电压。
将信号发生器的“输出衰减”开关置0db、20db、40db、60db位置,测量其对应的输出电压。
测量时晶体管毫伏表的量程要选择适当,以使读数准确。
注意不要过量程。
(二)用万用表辨别二极管的极性、辨别二极管e、b、c各极、管子的类型(PNP 或NPN)及其好坏。
1、利用万用表测试晶体二极管。
(1)鉴别正、负极性万用表欧姆档的内部电路可以用图1-1(b)所示电路等效,由图可见,黑棒为正极性,红棒为负极性。
将万用表选在R×100档,两棒接到二极管两端如图1-1(a),若表针指在几KΩ以下的阻值,则接黑棒一端为二极管的正极,二极管正向导通;反之,如果表针指向很大(几百千欧)的阻值,则接红棒的那一端为正极。
(2)鉴别性能将万用表的黑棒接二极管正极,红棒接二极管负极,测得二极管的正向电阻。
一般在几KΩ以下为好,要求正向电阻愈小愈好。
将红棒接二极管的正极,黑棒接二极管负极,可测量出反向电阻。
一般应大于200KΩ以上。
2、利用万用表测试小功率晶体三极管晶体三极管的结构犹如“背靠背”的两个二极管,如图1-2所示。
测试时用R ×100档。
(1)判断基极b和管子的类型用万用表的红棒接晶体管的某一极,黑棒依次接其它两个极,若两次测得电阻都很小(在几KΩ以下),则红棒接的为PNP型管子的基极b;若量得电阻都很大(在几百KΩ以上),则红棒所接的是NPN型管子的基极b。
若两次量得的阻值为一大一小,应换一个极再试量。
(2)确定发射极e和集电极c以PNP型管子为例,基极确定以后,用万用表两根棒分别接另两个未知电极,假设红棒所接电极为c,黑棒所接电极为e,用一个100KΩ的电阻一端接b,一端接红棒(相当于注入一个I b),观察接上电阻时表针摆动的幅度大小。
再把两棒对调,重测一次。
根据晶体管放大原理可知,表针摆动大的一次,红棒所接的为管子的集电极c,另一个极为发射极e。
也可用手捏住基极b与红棒(不要使b极与棒相碰),以人体电阻代替100KΩ电阻,同样可以判别管子的电极。
如图1-3所示。
对于NPN型管,判断的方法相类似,读者可自行思考。
测试过程中,若发现晶体管任何两极之间的正、反电阻都很小(接近于零),或是都很大(表针不动),这表明管子已击穿或烧坏。
(三)选择一些不同类型的电阻、电位器、电容、电感、变压器等常用元件加以辩认。
五、报告要求(一)说明使用示波器观察波形时,为了达到下列要求,应调节哪些旋钮?1、波型清晰且亮度适中;2、波型在荧光屏中央且大小适中;3、波型完整;4、波型稳定;(二)说明用示波器观察正弦波电压时,若荧光屏上分别出现下列图形时,是哪些旋钮位置不对,应如何调节?(三)总结用万用表测试二极管和三极管的方法。
实验二 单级放大电路一、实验目的1、熟悉电子元器件和模拟电路实验箱。
2、掌握放大器静态工作点的调试方法及其对放大器性能的影响。
3、学习测量放大器Q 点,A V ,i r ,o r 的方法,了解共射极电路特性。
4、学习放大器的动态性能。
二、实验原理图2-1为电阻分压式单管放大器实验电路图。
它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值图2-1 共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算CC B2B1B1B U R R R U +≈CEBEB E I R U U I ≈-≈)R R (I U U E C C CC CE +-=电压放大倍数 beLCV r R R βA // -= 输入电阻 R i = R B1 // R B2 // r be 输出电阻 R O ≈ R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。
在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。
一个优质放大器,必定是理论设计与实验调整相结合的产物。
因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大器的测量和调试一般包括:放大器静态工作点的测量与调试,及放大器各项动态参数的测量与调试等。
1、 放大器静态工作点的测量与调试 (1) 静态工作点的测量测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。
一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用E E E C R U I I =≈ 算出I C (也可根据 CCCC C R U U I -=,由U C 确定I C ),同时也能算出E B BE U U U -=,E C CE U U U -=。
为了减小误差,提高测量精度,应选用内阻较高的直流电压表。
(2) 静态工作点的调试放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。
静态工作点是否合适,对放大器的性能和输出波形都有很大影响。
如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。
这些情况都不符合不失真放大的要求。
所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。
如不满足,则应调节静态工作点的位置。
(a) (b)图2-2 静态工作点对u O 波形失真的影响改变电路参数U CC 、R C 、R B (R B1、R B2)都会引起静态工作点的变化,如图2-3所示。
但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。
图2-3 电路参数对静态工作点的影响最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。
所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。
如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。
2、放大器动态指标测试放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。
(1)电压放大倍数A V 的测量调整放大器到合适的静态工作点,然后加入输入电压u i ,在输出电压u O 不失真的情况下,用交流毫伏表测出u i 和u o 的有效值U i 和U O ,则i0V U UA =(2) 输入电阻R i 的测量 为了测量放大器的输入电阻,按图2-4 电路在被测放大器的输入端与信号源之间串入一已知电阻R ,在放大器正常工作的情况下,用交流毫伏表测出U S 和U i ,则根据输入电阻的定义可得R U U U R U U I U R i S iR i i i i -===图2-4 输入、输出电阻测量电路测量时应注意下列几点:① 由于电阻R 两端没有电路公共接地点,所以测量R 两端电压 U R 时必须分别测出U S 和U i ,然后按i S R U U U -=求出U R 值。
② 电阻R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取R 与R i 为同一数量级为好,本实验可取R =1~2K Ω。
(3) 输出电阻R 0的测量按图2-4电路,在放大器正常工作条件下,测出输出端不接负载 R L 的输出电压U O 和接入负载后的输出电压U L ,根据O LO LL U R R R U +=即可求出L LO O 1)R U U(R -=在测试中应注意,必须保持R L 接入前后输入信号的大小不变。
(4) 最大不失真输出电压U OPP 的测量(最大动态范围)如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。
为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节R W (改变静态工作点),用示波器观察u O ,当输出波形同时出现削底和缩顶现象(如图2-5)时,说明静态工作点已调在交流负载线的中点。
然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出U O (有效值),则动态范围等于0U 22。
或用示波器直接读出U OPP 来。
图 2-5 静态工作点正常,输入信号太大引起的失真(5) 放大器幅频特性的测量放大器的幅频特性是指放大器的电压放大倍数AU与输入信号频率f 之间的关系曲线。
单管阻容耦合放大电路的幅频特性曲线如图2-6所示,Aum为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的2/1倍,即0.707Aum所对应的频率分别称为下限频率fL 和上限频率fH,则通频带LHBW fff-=。