吊桥实例分析之塔克马桥的坍塌与重建[详细]
- 格式:ppt
- 大小:1.46 MB
- 文档页数:54
⼤桥风振事故原理分析以及有效防范措施举例2019-05-10摘要:⽂章通过对塔科马⼤桥的风振事故来探究风振的原理,来概述了风洞试验的发展,以及风振有效的防护措施。
关键词:⼤桥蛇形共振;桥梁抗风;风振动防范;塔科马⼤桥1 理论概述建造⼤桥的时候我们不仅仅要考虑⼤桥的承载能⼒,美观度以及经济性,此外我们建造的⼤桥,⼤跨度桥常常因为柔度⾮常⼤,⽽受风荷载影响很⼤,⼤桥在未知的风的作⽤下会产⽣⼗分巨⼤的变形以及振动。
随着桥梁跨度的增⼤,⾮线性因素也愈加明显,不确定的因素也就变得很⼤很⼤,这就给已经⾮常复杂的风-车-桥系统研究加⼤了难度。
在风速较⼤的地区⽐如芝加哥,修建跨江、跨海铁路⼤桥时,为了确保桥梁结构及列车运⾏安全,必须要综合考虑风和列车荷载对桥梁的动⼒作⽤。
在国内外关于车桥耦合振动及桥梁抗风研究的基础上,需要考虑⼤跨度桥梁的⼏何⾮线性因素。
我们有必要来探究下⼤桥共振的原因,我们说的⼤桥看成不是⼀个刚体并有⾃振,在车辆通过⼤桥的时候对⼤桥产⽣压⼒,⼤桥就会受⼒变形,若这个⼒与⼤桥⾃⾝的震动吻合就会产⽣共振,然⽽这个问题要控制在⼀个安全范围内才对⼤桥不⾄于造成破坏。
概括来讲,该问题属于⽓动弹性振动问题.美国的塔卡马⼤桥就是这样被垮的。
原因是桥垂直⽅位的结构上的板引起了桥发⽣⼀系列振动。
桥对风有相当⼤的阻⼒,因此风被桥遮挡,⾼强度的⽓流只能从结构板上⽅经过,最后压向了桥表⾯。
由于通过的⽓流由于连续的被曲折就加快了它流动的速度,由伯努利定律可知在竖直⽅向上结构板的上⽅及下⽅将产⽣明显的压降。
⽆所谓的是风⼀直从板正前⽅吹过来,它的原因是上下⽅产⽣的压⼒降低会导致相互的抵消。
⿇烦的事是若风⽅向随机且不停地产⽣变换,这将导致压⼒产⽣不断地波动变化。
产⽣的压⼒差若加在了整个桥⾯之上,⽽且因为能够挡住风的竖直⽅向的结构板后,将产⽣涡流并且不断的加强,将会最终导致桥⾯开始振动。
从理论上讲当桥⾯经受⼀定流速的⽓流吹动,就不可避免地会产⽣⾃激振动.除此之外⼀个因素是某个桥墩由于流体的涡振产⽣松动,这使得桥墩产⽣周期性的振动,使桥⾯产⽣低频振荡,车桥耦合振动的概率很⼩,由于车辆的激励频率要⾼好多.2 桥梁风致病害典型案例分析我们举⼀个⾮常有名的例⼦吧,就是著名的塔科马⼤桥由于风振产⽣的倒塌事故。
塔科马海峡大桥倒塌事故的调查与原因分析姓名1:黄金钊(1123310319) 姓名2:赵光远(1123310318)【摘要】:塔科马海峡桥(Tacoma Narrows Bridge)位于美国华盛顿州,旧桥于1940年建成,该桥是华盛顿州耗资640万美元建成的悬索大桥,享有世界单跨桥之王的称号.该桥主跨853.4m,全长1 810.56m,桥宽11.9m,而梁高仅1.3m.通过两年时间的施工,于1940年7月1日建成通车,大桥刚投入使用就出现了上下起伏。
四个月后,同年11月7日上午约十一点,塔科马大桥在震动中倒塌。
【关键词】:塔科马大桥,倒塌,风压,振动,原因一·工程事故的调查20世纪上半叶,美国奥林匹克半岛尚未开发,看到其资源的经济潜力,越来越多的人希望在这里建造大桥。
1923年即有一个委员会在做建桥的可行性研究。
1927年塔科马商会路桥委员会确认了建桥的可行性并组成了一个集资委员会负责前期的勘测筹款。
1928年塔科马商会正式宣布建桥,并开始筹款,然而在未来的五年中并没有筹得足够的资金。
开始时桥梁采用当时流行的悬索结构,华盛顿州的工程师克拉克.艾尔德里奇早先提出一个初步设计,采用25英尺高钢桁架梁,预计造价1100万美元,他将设计方案交给多个专家审核,其中一个来自纽约的工程师赖昂.莫伊塞夫认为他可以花更少的钱建桥,他将梁高减为8英尺高的钢板梁,由于梁高的变矮使桥更优雅,更具观赏性,同时也降低了成本,预计造价600万美元。
莫伊塞夫是纽约曼哈顿大桥的设计者,旧金山金门大桥的主要设计者,在桥梁设计上小有名气,因此他的设计被接受。
经过波折的资金筹集,终于在1938年11月23日由太平洋桥梁公司开始上部结构的施工。
桥的夸高比高达350,跨宽比达72,桥梁没有足够的刚度,从而经不住风的侵袭。
大桥在1940年6月底建成后不久(通车于1940年7月1日),人们就发现大桥在微风的吹拂下会出现晃动甚至扭曲变形的情况。
部分桥梁垮塌事故分析文本摘要:本文细数了国内外多座桥梁严重垮塌事故,其事故成因有认知不足、设计施工缺陷、自然灾害、管理养护不周等。
前事不忘,后事之师,这些事故提醒着我们桥梁工程师要以高度的责任感来完成桥梁的建设,确保桥梁质量安全。
关键词:魁北克大桥塔科马大桥九江大桥1、Quebec Bridge事故原因:设计考虑不足,构件失稳位于加拿大的圣劳伦斯河之上的Quebec Bridge本该是著名设计师Theodore Cooper的一个真正有价值的不朽杰作。
作为当时世界上最长跨度的钢悬臂桥,库帕忘乎所以地把大桥的主跨由490米延伸至550米,以此节省建造桥墩基础的成本。
然而就在这座桥即将竣工之际,悲剧发生了。
1907年8月29日,大桥杆件发生失稳,突然倒塌,19000吨钢材和86名建桥工人落入水中,只有11人生还。
由于库帕的过分自信而忽略了对桥梁重量的精确计算,导致了一场事故。
1913年,这座大桥的建设重新开始,然而不幸的是悲剧再次发生。
1916年9月,中间跨度最长的一段桥身在被举起过程中突然掉落塌陷。
结果13名工人被夺去了生命。
事故的原因是举起过程中一个支撑点的材料指标不到位造成的。
1917年,在经历了两次惨痛的悲剧后,魁北克大桥终于竣工通车,这座桥至今仍然是世界上最长的悬臂跨度大桥。
2、Tacoma Narrows Bridge事故原因:理论认知有限,风毁塔科马海峡大桥位于美国华盛顿州的塔科马海峡。
第一座塔科马海峡大桥于建于1938年11月到1940年7月,中跨853m。
在建造最后阶段,人们就发现大桥在微风的吹拂下会出现晃动甚至扭曲变形的情况,司机在桥上驾车时可以见到另一端的汽车随着桥面的扭动一会儿消失一会儿又出现的奇观。
1940年11月7日,大桥在远低于设计风速的19m/s(相当于八级大风)风速下发生强烈的风致振动,桥面经历了70min振幅不断增大的反对称扭转振动,最终导致桥面折断坠落到峡谷中。
塔科马大桥坍塌原因分析塔科马大桥坍塌原因分析摘要:塔科马海峡桥(Tacoma Narrows Bridge)位于美国华盛顿州,旧桥于1940年建成,同年11月,在19m/s的低风速下颤振而破坏,震动了世界桥梁界,从而引发了科学家们对桥梁风致振动问题的研究,形成了桥梁风工程的新学科,并将风振动研究不断提高到新的科学水平。
关键词:共振、风振动、扭振正文:大桥坍塌理论价值当时,人们对这种狭长的桥梁设计找不出可以指责的地方,认为桥梁具有一定的承载能力就足以安全了,其实不然。
因为那时人们对于悬索桥的空气动力学特性知之甚少,这场灾难在当时说来是属于不可预测的,或称不可抗拒的。
但是,塔科马海峡大桥的坍塌事故还是引起了工程技术人员的关注,它的经验与教训对以后的大桥设计产生了很大的影响,从此开始了现代桥梁的风洞研究与试验。
在今天看来,塔科马海峡大桥坍塌那天,海上的风并不是很大,事故的真正原因就是梁体刚度不足,在风振的作用下桥梁屈曲失稳。
桥梁在风的作用下产生了上下振动,振幅不断增大并伴随着梁体的扭曲,吊索拉断,加大了吊索间的跨度,使梁体支撑不均,直至使梁体破坏。
风是怎样作用在桥上的呢,为什么相当均匀的风,会使桥产生脉冲式的振动,然后变为扭转振动呢,研究的结果表明,是桥上竖直方向的桥面板引起了桥的振动,它对风的阻力很大,风被挡之后,大量的气流便从桥面板的上方经过然后压向桥面。
由于吹过的气流因不断地被屈折而使速度增加,所以在桥面板的上方和下方压力降低。
如果风总是从桥梁横向的正前方吹来,那倒不要紧,因为上下方的压力降低会互相抵消。
但是,如果风的方向不停地变换的话,压力就会不断地变化。
这一压力差作用在整个桥面上,并因挡风的竖直结构板后所产生的涡流而得到加强,结果桥就开始形成波浪式振动,过大的振动又拉断了桥梁结构,最终使桥梁坍塌。
幽默的美国人后来在谈起塔科马海峡大桥时诙谐的称之为舞动的格蒂(Galloping Gertie)。
塔科马海峡大桥Tacoma Narrows Bridge每一名建筑工程师都了解这样一个事实:在上个世纪上半叶,横跨于美国华盛顿州普吉特海峡塔科马峡谷上的一座钢结构大桥被风“刮”断了。
我回到自己的寓所,再次观看网络中有关塔科马大桥悲壮的史诗般镜头: 1940年7月1日,造型优美的塔科马钢铁大桥建成通车。
大桥刚投入使用就出现上下起伏的振动,引得许多人驱车前往享受这种奇妙的感觉。
11月7日晨7:00,顺峡谷刮来的8级大风带着人耳不能听到的振荡,激起了大桥本身的谐振。
在持续3个小时的大波动中,整座大桥的上下起伏竟达1米之多。
10:00时振动变得更加强烈了,其幅度之大简直令人难以置信。
数千吨重的钢铁大桥由刚性变成了柔性,像一条缎带一样以8.5米的振幅左右来回起伏飘荡。
高达数米的长长波浪在沉重的结构上缓慢爬行,从侧面看起来就像是一条正在发怒的巨蟒。
在整个过程中共振在不断地逐渐加强,但是谁也想不到将会产生什么样的后果。
结局本来是设计师们应该预料到的,现在它马上就要发生了。
11:10,正在桥上观测的一位教授保证说:大桥绝对安全。
可他话音刚落,大桥就开始断裂,教授沿着桥上的标志线安全地退了下来。
就在这一瞬之间,桥上那承受着大桥重量的钢索在怪物般起伏的进攻下失去了束缚力,猝然而断。
大桥的主体从天而降,整个拍落到万丈深渊。
桥上的其他构件也难逃噩运,仿佛电影中的慢镜头一样,各种构件像巨人手中的玩具一样飞旋而去。
当时正在桥中央的一名记者赶忙钻出汽车,拼命抓住桥边的栏杆,用手和膝盖爬行着脱了险。
整座大桥坍塌了!车里的小狗和汽车一起从桥上掉落,成为这次事故的唯一牺牲者。
在观看这些镜头的同时,由于近来对桥梁发展史的偏爱,我专门注意了塔科马大桥的跨径——853米。
网络有关区域除了存有事故本身的资料,还张贴有许多有趣的轶闻,比如——事故发生后人们才得知,大桥投保额达800万美元的保险金早已被保险公司的一名外勤工作人员私吞,为此他当然锒铛入狱。
桥梁垮塌事故案例分析讲义桥梁垮塌事故在城市建设和交通发展中,是一种严重的灾难事件,不仅会对人们的生命财产安全造成巨大威胁,还会对社会和经济产生重大影响。
因此,及时对桥梁垮塌事故进行案例分析,提取事故原因以及教训,对于预防类似事故的再次发生具有重要意义。
下面是一份桥梁垮塌事故案例分析的讲义,供参考。
一、案例简介在市的县,一座高速公路桥梁在通行期间突然垮塌,造成多人伤亡和交通瘫痪,严重影响了当地的交通运输和经济发展。
二、事故原因分析1.设计问题:经初步调查,该桥梁存在设计异常的问题。
设计上的失误导致桥梁在通行过程中承受了超过其设计荷载的重量,从而引发了桥梁的垮塌。
教训:合理的桥梁设计是确保其承重能力和结构稳定性的基础,设计应当符合国家相关标准和规范,严格按照实际情况进行计算和验证,确保桥梁的安全性。
2.施工质量问题:进一步调查发现,桥梁的施工质量也存在一定问题。
部分焊接点和连接点的质量不达标,导致桥梁结构强度不足。
教训:在桥梁施工过程中,要严格按照工艺要求进行施工,确保焊接和连接工作的质量,加强工艺监督和质量检验,杜绝施工质量问题。
3.维护管理不到位:对于这座已经通行多年的桥梁,维护和保养工作存在缺失。
定期检查和维护不到位,导致一些问题长期得不到及时修复,最终导致垮塌事故的发生。
教训:桥梁是公共交通设施,需要定期进行检查和维护,及时修复存在的问题,确保桥梁的安全和可靠运行。
同时,要加强桥梁管理工作,制定更为完善的管理措施和制度。
4.监管不到位:对于桥梁的建设、维护和管理,市政府相关部门的监管存在漏洞。
没有进行足够的监督和检查,导致桥梁问题得不到及时发现和解决。
教训:相关部门要加强对桥梁建设和维护的监管,确保工作的规范和标准执行,定期进行检查和评估,提高监督和管理水平。
三、预防措施1.完善设计审查制度:加强对桥梁设计的审查和验证工作,确保设计符合相关标准和规范,设计方案科学合理。
3.健全维护管理机制:建立完善的桥梁维护管理制度,包括定期检查、维护和修复工作。
塔科马桥风振致毁——风与桥AbstractHistorically, the collapse of the Tacoma Narrows Bridge in 1940, after only a few months of service, prompted most of the research on aerodynamic stability of bridge.Before the Tacoma Narrows Bridge collapsed, bridge engineer were content to design for static loads produced by lateral winds, and the conventional design of bridges was focused mostly on the strength of aeroelastic investigation in structural design which included the rigidity, damping characteristics and the aerodynamic shape of the bridge. At the present time, it is considered more scientific to eliminate the cause than to build up the structure to resist the effect. The aerodynamic phase of the problem is the real challenge to bridge engineers, and in response to this challenge, we now have the new science of bridge aerodynamics.Basically, the research and knowledge of aeronautics and aerodynamics were brought to bear on the bridge problem, treating the deck section as an airfoil, i.e. like the wing cross-section of an aircraft. The results have been equally applicable to suspension and cable-stayed bridge. The development of the suspension bridge theory led to more economical, more slender and more ambitious structures. It was in the interest of maintaining these advantages and at the same time restoring aerodynamic stability that extensive research was started.When the first cable-stayed bridge was build in Sweden in 1955, the problem lf aerodynamic stability in bridge design did receive considerable study. However, that study did not then lead to explicit design rules and formulas. It should be noted that all extensive research done so far has not yet completed our knowledge of this problem.1、塔科马桥风毁介绍1940年11月7日,美国华盛顿州塔科马桥因风振致毁。