华师大版-数学-八年级上册-- 命题与定理
- 格式:ppt
- 大小:1.87 MB
- 文档页数:32
华师大版数学八年级上册13.5《逆命题与逆定理》说课稿一. 教材分析华师大版数学八年级上册13.5《逆命题与逆定理》是本节课的主题。
这部分内容是在学生已经掌握了命题与定理的基础上进行学习的,是进一步引导学生深入理解数学概念,培养学生逻辑思维能力的重要内容。
逆命题与逆定理是数学中的基本概念,理解这两个概念有助于学生更好地理解命题与定理的本质。
通过学习逆命题与逆定理,学生能够更深入地理解数学的逻辑结构,提高解决问题的能力。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,对命题与定理有一定的了解。
但是,对于逆命题与逆定理的理解可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实例来理解逆命题与逆定理的概念,并通过练习来巩固所学知识。
三. 说教学目标本节课的教学目标是让学生理解逆命题与逆定理的概念,能够运用逆命题与逆定理来解决问题,提高学生的逻辑思维能力。
四. 说教学重难点本节课的重难点是逆命题与逆定理的理解和运用。
学生需要通过实例来理解逆命题与逆定理的概念,并通过练习来掌握运用逆命题与逆定理的方法。
五. 说教学方法与手段在教学过程中,我会采用讲解法、示例法、练习法等教学方法。
通过讲解法,我来向学生解释逆命题与逆定理的概念;通过示例法,我来引导学生通过实例来理解逆命题与逆定理;通过练习法,我来让学生通过练习来巩固所学知识。
六. 说教学过程1.导入:我会通过一个简单的实例来导入本节课的内容,让学生初步感受逆命题与逆定理的概念。
2.讲解:我会详细讲解逆命题与逆定理的概念,并通过示例来让学生更好地理解这两个概念。
3.练习:我会给出一些练习题,让学生通过练习来巩固所学知识。
4.总结:我会对本节课的内容进行总结,让学生加深对逆命题与逆定理的理解。
七. 说板书设计板书设计如下:逆命题与逆定理逆命题:将一个命题的条件和结论互换得到的命题。
逆定理:如果一个命题的条件是另一个命题的结论,另一个命题的条件是这个命题的结论,那么这两个命题叫做逆定理。
华师大版数学八年级上册13.5《逆命题与逆定理》教学设计一. 教材分析《逆命题与逆定理》是华师大版数学八年级上册第13.5节的内容。
本节主要让学生了解逆命题和逆定理的概念,理解它们之间的关系,并能够运用逆定理判断命题的真假。
教材通过实例引入逆命题和逆定理的概念,接着给出了它们的定义和性质,最后通过例题和练习题来巩固所学知识。
二. 学情分析学生在学习本节内容前,已经学习了命题、定理和证明等基本知识,具备了一定的逻辑思维能力。
但逆命题和逆定理的概念较为抽象,学生可能难以理解和接受。
因此,在教学过程中,需要通过具体实例和生活中的问题来引导学生理解和掌握逆命题和逆定理。
三. 教学目标1.了解逆命题和逆定理的概念,理解它们之间的关系。
2.能够写出给定命题的逆命题,并能判断其真假。
3.能够运用逆定理判断命题的真假。
4.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.逆命题和逆定理的概念。
2.判断逆命题的真假。
3.运用逆定理判断命题的真假。
五. 教学方法1.实例引入:通过具体实例引导学生理解和掌握逆命题和逆定理。
2.小组讨论:让学生分组讨论,共同探索逆命题和逆定理的关系,提高学生的合作能力。
3.练习巩固:通过大量练习题,让学生巩固所学知识,提高解题能力。
4.引导思考:引导学生思考生活中的问题,培养学生解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示逆命题和逆定理的定义和性质。
2.练习题:准备适量练习题,用于巩固所学知识。
3.实例:准备生活中的实例,用于引导学生理解和掌握逆命题和逆定理。
七. 教学过程1.导入(5分钟)通过生活中的实例,如“如果一个人是学生,那么他一定是人类。
”引导学生思考,让学生知道一个命题可以分为题设和结论两部分,并且题设和结论可以互换位置。
2.呈现(10分钟)讲解逆命题和逆定理的概念,给出它们的定义和性质。
让学生理解逆命题是将原命题的题设和结论互换位置得到的新命题,而逆定理是如果一个命题的逆命题是真命题,那么这个命题也是真命题。
华东师大版八年级上册数学教学设计《互逆命题与互逆定理》一. 教材分析华东师大版八年级上册数学《互逆命题与互逆定理》一课,是在学生学习了命题与定理的基础上进行的。
本节课的主要内容是让学生理解互逆命题的概念,掌握互逆定理的证明过程,并能运用互逆定理解决实际问题。
教材通过丰富的例题和练习,引导学生探索互逆命题和互逆定理的规律,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了命题与定理的基本概念,具备了一定的逻辑思维能力。
但是,对于互逆命题和互逆定理的理解和应用,还需要进一步的引导和培养。
因此,在教学过程中,教师需要关注学生的学习需求,针对学生的实际情况,采取适当的教学策略,帮助学生理解和掌握互逆命题和互逆定理。
三. 教学目标1.知识与技能目标:让学生理解互逆命题的概念,掌握互逆定理的证明过程,能运用互逆定理解决实际问题。
2.过程与方法目标:通过探索互逆命题和互逆定理的规律,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:互逆命题的概念,互逆定理的证明过程。
2.难点:互逆定理在实际问题中的应用。
五. 教学方法1.情境教学法:通过设置情境,引导学生主动探索互逆命题和互逆定理的规律。
2.小组合作学习:学生进行小组讨论和合作,培养学生的团队合作精神。
3.案例教学法:通过分析实际案例,帮助学生理解互逆定理的应用。
六. 教学准备1.教学PPT:制作包含互逆命题和互逆定理的定义、证明过程和应用实例的PPT。
2.教学案例:准备一些实际问题,用于引导学生运用互逆定理解决。
3.学习材料:为学生准备相关的学习材料,以便学生在课堂上进行自主学习。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何利用已学的命题和定理来解决这些问题。
通过问题的讨论,激发学生的学习兴趣,引出本节课的主题——互逆命题与互逆定理。
13.1 命题、定理与证明(第一课时)一、说教材1、教材的地位和作用命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一。
而正确找出命题的题设和结论,是基础,特别是题设和结论不明显的命题,和难以判断真假的命题,是学习的重点。
本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题。
二、说教学目标知识与技能目标:了解命题、真命题、假命题、定理的含义能识别真假命题。
会区分命题的题设和结论。
过程与方法目标:通过命题的真假,培养分类思想。
通过命题的构成,培养学生分析法。
通过命题的构成,培养语言推理技能。
情感态度与价值观目标:通过命题、定理的具体含义,让学生体会到数学的严谨性。
通过学习命题真假,培养学生尊重科学、实事求是的态度。
通过学习命题的构成,使学生获得成功的体验,锻炼克服困难的意志,建立自信心。
三、教学重点:定义、命题、公理、定理的概念;四、教学难点:判定什么定义、命题、定理、公理,及找出命题的题设和结论。
五、说教法学法通过“目标定向,自主合作”,以实现学习目标为目的,以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真、假命题。
因此就内容看来,可能会较为枯燥、单调;因此在教学设计时,根据不同的学习任务进行了不同的教学设计。
在命题的概念教学中,与以往直接的告知学生概念不同,采用了让学生对两组语句进行比较、区别,然后再学生充分讨论的感性认识基础上,在提出命题的概念,能有效促进学生对命题概念的理解,然后再通过学生举例来加强巩固概念。
在命题的构成这一环节中,通过一个问题的思考与探讨,让学生了解到命题是由题设和结论两部分构成,同时感受到命题的常用表述形式,然后教师再加以总结分析,使学生对知识的认识更加透彻。
华师大版数学八年级上册13.1《命题、定理与证明》教学设计一. 教材分析《命题、定理与证明》是华师大版数学八年级上册第13.1节的内容。
本节内容是学生学习数学证明的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
本节内容主要包括命题、定理与证明的定义,以及如何写出完整的证明过程。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和运算规则有一定的了解。
但学生在逻辑思维和证明方面可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导学生逐步理解和掌握证明的方法。
三. 教学目标1.了解命题、定理与证明的定义,理解它们之间的关系。
2.学会写出完整的证明过程,培养学生的逻辑思维能力。
3.通过对本节内容的学习,使学生能够运用证明的方法解决实际问题。
四. 教学重难点1.重点:命题、定理与证明的定义,证明过程的写法。
2.难点:理解命题的假设和结论,掌握证明的方法。
五. 教学方法1.采用问题驱动法,引导学生主动探究命题、定理与证明的关系。
2.通过实例分析,让学生了解证明的过程和方法。
3.利用小组合作学习,培养学生团队合作精神,提高学生的逻辑思维能力。
六. 教学准备1.准备相关的教学PPT,内容包括命题、定理与证明的定义及示例。
2.准备一些实际的数学问题,用于引导学生进行证明练习。
3.准备黑板,用于板书重要的概念和证明过程。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际的数学问题,引导学生思考如何用数学语言来描述这些问题,从而引入命题的概念。
2.呈现(10分钟)通过PPT讲解命题、定理与证明的定义,让学生理解它们之间的关系。
同时,给出一些简单的命题和定理,让学生初步了解证明的过程。
3.操练(10分钟)让学生分组讨论,尝试对给出的命题进行证明。
教师巡回指导,解答学生的问题,并引导学生写出完整的证明过程。
4.巩固(10分钟)让学生自主完成一些证明练习题,检验学生对证明方法的掌握程度。