八年级数学上册第2课时 直角三角形的两个锐角互余
- 格式:ppt
- 大小:1.98 MB
- 文档页数:4
人教版八年级数学上册第十一章《直角三角形的性质和判定》教案一、教学目标【知识与技能】掌握直角三角形的两个锐角互余。
掌握有两个角互余的三角形是直角三角形。
【过程与方法】会用直角三角形的性质进行有关推理和计算。
【情感态度与价值观】让学生体会从一般到特殊的思想。
二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】探索并掌握直角三角形的两个锐角互余。
【教学难点】经历直角三角形性质的探索过程,掌握有两个角互余的三角形是直角三角形。
能利用直角三角形的性质和判定解决一些简单问题,会用直角三角形的性质进行有关推理和计算。
五、课前准备教师:课件、三角尺、量角器等。
学生:三角尺、直尺、量角器。
六、教学过程(一)导入新课本节课开始之前,先给大家讲一个故事:在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.你知道其中的道理吗?老大的度数为90°,老二若是比老大的度数大,那么老二的度数要大于90°,而三角形的内角和为180°,相互矛盾,因而是不可能的.(出示课件2)(二)探索新知1.探索直角三角形的性质教师问1:三角形的内角和是多少度?学生回答:三角形内角和为180°.教师问2:我们学习过的三角形按角分类,分为哪些呢?学生回答:所有的三角形只能分为三类:锐角三角形、直角三角形、钝角三角形.今天我们将要一块儿学习三角形里面特殊又别致的一个三角形,大家知道是什么吗?出示直角三角形的图形:学生回答:直角三角形.教师讲解:那么老师说它不一般,而且很特殊,那它到底有些什么样的特殊地方呢?下面我就请大家作为探宝者,把它的秘密都给发掘出来教师问3:如下图所示是我们常用的三角板,两锐角的度数之和为多少度? (出示课件4)学生回答:30°+60°=90°,45°+45°=90°.教师让同学们利用手里的工具(直尺、量角尺),随意构建任何大小的直角三角形,等同学们画完以后,让同位互换所画的三角形.教师问4:请同学们量出自己手中的直角三角形的两个锐角,计算一下它们的和是多少度?学生回答:两个锐角的和是90°.教师问5:如图,在直角三角形ABC中,∠C=90°,两锐角的和等于多少呢?如何证明呢?(出示课件5)学生回答:在直角三角形ABC中,因为∠C=90°,由三角形内角和定理,得∠A +∠B+∠C=180°,即∠A +∠B=90°.教师问6:由此,你可以得到直角三角形有什么性质呢?学生回答:直角三角形的两个锐角互余.教师总结:(出示课件6)直角三角形的性质定理:直角三角形的两个锐角互余.应用格式:在Rt△ABC 中,∵∠C =90°,∴∠A +∠B =90°.直角三角形的表示:直角三角形可以用符号“Rt△”表示,直角三角形ABC 可以写成Rt△ABC .探究1:利用直角三角形的性质证明角相等或求角的度数例1:(1)如图,∠B=∠C=90°,AD交BC于点O,∠A与∠D有什么关系?(出示课件7)师生共同解答如下:方法一(利用平行的判定和性质):∵∠B=∠C=90°,∴AB∥CD,∴∠A=∠D.方法二(利用直角三角形的性质):∵∠B=∠C=90°,∴∠A+∠AOB=90°,∠D+∠COD=90°.∵∠AOB=∠COD,∴∠A=∠D.(2)如图,∠B=∠D=90°,AD交BC于点O,∠A与∠C有什么关系?请说明理由.(出示课件8)师生共同解答如下:解:∠A=∠C. 理由如下:∵∠B=∠D=90°,∴∠A+∠AOB=90°,∠C+∠COD=90°.∵∠AOB=∠COD,∴∠A=∠C.出示课件9,学生自主练习解答。
初中数学试卷直角三角形知识导引1、直角三角形的性质:(1)直角三角形的两个锐角互余;(2)直角三角形斜边上的中线等于斜边的一半;(3)直角三角形中30°角所对的直角边等于斜边的一半;(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°。
2、直角三角形的判定方法:(1)有一个角是直角的三角形是直角三角形;(2)有两个角互余的三角形是直角三角形;(3)如果一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。
3、注意直角三角形的性质和判定之间的互逆关系。
4、等腰直角三角形是特殊的直角三角形,它的两个底角都是45°,且两条直角边相等,等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。
典例精析例1:已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为( ) A 、45° B 、75° C 、45°或75° D 、60°例2:两个大小不同的等腰直角三角板按如图①所示放置,图②是由它抽象出的几何图形,点B ,C ,E 在同一条直线上,连结CD 。
(1)请找出图②中的全等三角形并给予证明(说明:结论中不得含有未标识的字母);(2)试说明:CD ⊥BE 。
例3:如图所示,四边形ABCD 由一个∠ACB=30°的Rt △ABC 与等腰Rt △ACD 拼成,E 为斜边AC 的中点,则∠BDE= 。
例3—1:如图,已知AD ⊥BD ,AC ⊥BC ,E 为AB 的中点,试判断DE 与CE 是否相等并说明理由。
例4:已知:在△ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∠ABC 的平分线BE 交AD 于点F ,试说明AE=AF 。
例5:如图,在△ABC 中,∠A=90°,AB=AC ,∠ABC 的平分线BD 交AC 于点D ,CE ⊥BD ,交其延长线于点E ,求证:CE=21BD探究活动例:小华将一张矩形纸片(如图1)沿对角线AC剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两张三角形纸片按如图3所示的位置摆放,△DEF纸片的直角顶点D 落在纸片△ABC的斜边AC上,直角边DF落在AC所在的直线上。
专题六 直角三角形一、直角三角形性质:1、 直角三角形的两个锐角互余2、 直角三角形斜边上的中线等于斜边的一半3、 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
4、 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°5、 勾股定理:直角三角形两直角边a,b 的平方和,等于斜边c 的平方。
a 2+b 2=c 2二、直角三角形判定:1、有两个角互余的三角形是直角三角形2、如果三角形的三条边长a,b,c 满足关系:a 2+b 2=c 2,那么这个三角形是直角三角形。
3、直角三角形全等的判定:SAS,ASA,AAS,SSS,HL三、角平分线的性质:1、角的平分线上的点到角的两边的距离相等2、角的内部到角的两边距离相等的点在角的平分线上四、练习1如图,AB ∥CD ,∠CAB 和∠ACD 的平分线相较于H 点,E 为AC 的中点,EH=2.那么△AHC 是直角三角形吗?为什么?若是,求出AC 的长。
2、如图,在R t △ABC 中,∠ACB=90°,CD 垂直于AB,垂足为点D ,DB=21BC,求∠A 的度数。
3、已知,在△ABC 中,∠B =21∠A =31∠C ,AB=8cm. (1)求AB 边上的中线长,(2)求AC, BC 的长,(3)AB 边上的高AB C DEH4、如图,在RtABC 中,∠C=90°,ED 是线段AB 的垂直平分线,已知∠1=31∠ABC ,求∠A 的度数。
6、 如图,在边长为4的正方形ABCD 中,F 为CD 的中点,E 是BC 上一点,且EC=41BC. 求证:△AEF 是直角三角形。
7、 如图,D 为BC 的中点,DE ⊥AB 于点E,DF ⊥AC 于点F,且DE=DF.试问:AB 与AC 有什么关系?8、 如图,已知BD 平分∠ABC,BA=BC,点P 在BD 上,作P M ⊥AD,P N ⊥CD,垂足分别为点M,N.求证:P M=PN .9、 如图,求作一点P,使PM=PN,并且使点P 到∠AOB 的两边OA,OB 的距离相等。
第十一章三角形11.1 与三角形有关的角11.2.1三角形的内角第1课时直角三角形的两个锐角互余一、教学目标1.了解直角三角形两个锐角的关系.2.掌握直角三角形的判定.3.会运用直角三角形的性质和判定进行相关计算.二、教学重难点重点:掌握直角三角形的性质及判定.难点:利用直角三角形的性质与判定解决有关问题.三、教学过程【新课导入】[复习导入]1.三角形的内角和是多少度?2.按角的大小分类,三角形可以分为哪三类?3.直角三角形中,有一个角一定是°.[学生回答]学生根据老师提出的问题,复习与本节课相关的知识(180°;锐角三角形、直角三角形和钝角三角形;90)【新知探究】知识点1 直角三角形的性质[课件展示]问题1:如下图所示的是我们常用的一副三角板,你知道它们两锐角的度数之和吗?通过量角器测量一下吧![动手操作]学生利用量角器测量,教师根据学生量得的数据,总结得到结论30°+60°=90°,45°+45°=90°.[提出问题]对于任意的三角形,这个结论成立吗?[课件展示]如图,在△ABC中,已知∠C=90°,(1)你能求出∠A ,∠B的度数吗?(2)你能求出∠A +∠B的度数吗?你是怎么得到的?学生独立思考,教师点名回答,总结:∠A +∠B=90°.[提出问题]由此,你可以得到直角三角形有什么性质呢?[归纳总结]直角三角形的性质:直角三角形的两个锐角互余.[提出问题]在几何问题中,怎样来书写这个性质呢?(在△ABC 中,∵∠C =90°,∴∠A +∠B =90°.)为了书写方便,直角三角形可以用符号“Rt△”表示,直角三角形ABC 可以写成Rt△ABC .此时,提醒学生注意:Rt△后必须紧跟表示直角三角形的三个顶点的大写字母,不能单独使用.[课件展示]教师利用多媒体展示以下例题:例1 如图,∠C=∠D=90 °,AD,BC相交于点E. ∠CAE与∠DBE有什么关系?为什么?【变式】如图,∠B=∠C=90°,AD交BC于点O,∠A与∠D有什么关系?[提出问题]与例1有哪些共同点与不同点?让学生对比两题的图形[归纳总结][课件展示]跟踪训练1.(2021苏州模拟)在一个直角三角形中,有一个锐角等于40°,则另一个锐角的度数是( B )A.40°B.50°C.60°D.70°[课件展示]跟踪训练2.在△ABC中,∠A=90°,∠B=2∠C,则∠C的度数为( A )A.30°B.45°C.60°D.30°或60°[课件展示]跟踪训练3.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD∥AB交BD于点D,已知∠1=32°,求∠D的度数.解:∵∠BAC=90°,∠1=32°,∴∠ABC=90°-32°=58°.∵BD平分∠ABC,∴∠ABD= ∠ABC=29°.∵CD∥AB,∴∠D=∠ABD=29°.提醒学生注意:在直角三角形中,若已知一个锐角或者两个锐角之间的关系,可以直接运用两个锐角互余求解,不需要再利用三角形的内角和定理求解.知识点2 直角三角形的判定[提出问题]有两个角互余的三角形是直角三角形吗?如何验证?提示学生运用三角形内角和去验证.(在△ABC中,由三角形内角和可知∠A +∠B +∠C=180°,又∠A +∠B=90°,所以∠C=90°. 于是△ABC是直角三角形.)[归纳总结]直角三角形的判定:有两个角互余的三角形是直角三角形.[提出问题]在几何问题中,怎样来书写这个判定方法呢?对比刚才的“直角三角形的性质”写一写吧!(在△ABC 中,∵∠A +∠B =90°,∴△ABC 是直角三角形.)[归纳总结]直角三角形的性质与判定之间的关系:[课件展示]教师利用多媒体展示以下例题:[归纳总结]【课堂小结】【课堂训练】1.如图,在△ABC中,∠ACB=90°,且CD∥AB.∠B=60°,则∠1等于( A )A.30°B.40° C.50°D.60°2.如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为( A )A.40°B.50°C.60°D.70°3.下列说法中错误的是( D )A.在△ABC中,若∠A:∠B:∠C=2:2:4,则△ABC为直角三角形B.在△ABC中,若∠A=∠B-∠C,则△ABC为直角三角形C.在△ABC中,若∠A= ∠B= ∠C,则△ABC为直角三角形D.在△ABC中,∠A=∠B=2∠C,则△ABC为直角三角形4.如图,将一张长方形纸片剪去一部分后得到一个三角形,则图中∠1+∠2=_____90°___.5.在△ABC中,若∠A=51°,∠B=39°,则这个三角形是____直角________三角形.6.(2020•白银模拟)在直角三角形中,锐角α是另一个内角的一半,则锐角α的度数为45°或30° .7.如图,CE⊥AD,垂足为E,∠A=∠C,△ABD是直角三角形吗?为什么?8.如图,∠AOB=50°,点P是边OB上一个动点(不与点O重合),当∠A的度数为多少时,△AOP为直角三角形.【教学反思】上课开始,通过复习引入,为本节课做好铺垫.本节课是在学生学习了与三角形内角和基础上,让学生动手操作,量量角器上的两个锐角的度数,初步了解“直角三角形的两锐角之和为90°”,但测量有误差,激发学生探索欲望,学生需要再证明这一结论成立.通过例1与其变式,例2与其变式的学习,归纳出两类基本图形,也为以后的课程(全等三角形,相似三角形)做好了准备.。