现代激光应用技术 第三章 激光谐振腔与模式
- 格式:ppt
- 大小:1.91 MB
- 文档页数:6
第3章光学谐振腔与激光模式光学谐振腔是一种能够限制光传播方向的设备,由一对透明的反射面(通常为镜子)组成。
当光线进入谐振腔后,会在腔内来回反射,形成驻波模式。
这些驻波模式中的一部分具有特定的频率和空间分布,称为激光模式。
本章将介绍光学谐振腔的基本原理和激光模式的特性。
3.1光学谐振腔的基本原理光学谐振腔的基本原理是利用反射面对光的反射和透射的性质来实现光的限制和增强。
最简单的光学谐振腔由两面平行的镜子组成,光线在镜子之间来回反射。
当光线以特定的角度入射时,会形成驻波模式,这些模式中的一小部分就是激光模式。
3.1.1反射率和透射率光学谐振腔的镜子通常具有高反射率和透射率。
反射率表示光线被镜子反射回来的能力,透射率表示光线通过镜子透射出去的能力。
光学谐振腔中,镜子的反射率远大于透射率,这样就能够限制光线的传播方向。
3.1.2相位和波面光学谐振腔中,入射光经反射后改变了传播方向,并且与反射面之间的距离也发生了变化。
这样就会引入相位差,相位差会决定光线的相位和波面的位置。
光学谐振腔产生的驻波模式有着特定的相位和波面位置。
3.1.3腔长和频率光学谐振腔的腔长决定了光线来回反射的次数,也决定了驻波模式中的相位差。
当光线来回反射一次,相位差为2π,驻波模式的频率就是传播速度和腔长的比值。
3.2激光模式的特性激光模式是光学谐振腔中驻波模式中的一部分,具有特定的空间分布和频率。
激光模式的特性决定了激光器的输出特性和性能。
3.2.1模式间距和频宽光学谐振腔支持的激光模式的频率是离散的,相邻两个激光模式之间的频率差称为模式间距。
模式间距决定了激光器的频率稳定性和波长选择性。
激光器的频宽则决定了激光输出的光谱宽度和相干性。
3.2.2模式体积和光强分布激光模式的体积决定了激光束的大小。
通常情况下,激光模式的体积越小,激光束越窄。
激光模式的光强分布决定了激光束的空间分布和光功率分布。
3.2.3模式竞争和多模腔当光学谐振腔支持的激光模式过多时,模式之间会发生竞争。
光学谐振腔与激光工作原理在现代科技发展的浪潮中,激光技术成为了各个领域中不可或缺的重要工具。
而要理解激光的工作原理,我们首先需要了解光学谐振腔的概念和作用。
光学谐振腔是一种能够增强光场的装置,它由两个反射镜构成,其中一个镜子是半透明的,允许一部分光线透过。
当光线进入谐振腔后,会在两个反射镜之间来回反射,形成一个闭合的光学回路。
这种来回反射的过程会导致光线在谐振腔内积累,形成一个强光场。
谐振腔的光场强度与谐振腔的品质因子(Q因子)有关。
Q因子是一个衡量谐振腔能量损耗程度的参数,它越大,能量损耗越小,光场在谐振腔内积累的时间越长,光场强度也越高。
在激光器中,光学谐振腔扮演着至关重要的角色。
激光器由一个激发介质和一个光学谐振腔组成。
激发介质可以是气体、固体或液体,它能够吸收外界能量并将其转化为光子能量。
当激发介质受到外界激发时,它会产生一束光线,这束光线会被光学谐振腔反复反射,形成一个强光场。
光学谐振腔的另一个重要作用是选择性放大。
在谐振腔内,只有与谐振频率相匹配的光波才能得到放大,其他频率的光波则会被衰减。
这种选择性放大使得激光器能够产生单色、相干的激光。
激光的工作原理可以通过三个过程来解释:激发、放大和反馈。
首先是激发过程。
在激光器中,激发介质受到外界能量激发后,其内部的原子或分子会处于一个激发态。
当激发态的原子或分子回到基态时,它们会释放出能量,这些能量以光子的形式传播出来。
接下来是放大过程。
在光学谐振腔中,光子会被不断反射,与激发介质相互作用。
当光子与激发介质发生相互作用时,激发介质会将能量传递给光子,使其能量增强。
这个过程称为光子与激发介质的相互作用,也是激光放大的基础。
最后是反馈过程。
在光学谐振腔中,部分光子透过半透明镜子逸出,形成激光输出。
而逸出的光子也会被反射回来,继续参与放大过程。
这种反射和放大的循环使得激光得以持续输出。
激光的特点是单色性、相干性和定向性。
单色性指的是激光的频率非常纯粹,只有一个特定的频率。
激光谐振腔摘要:本实验通过对He-Ne激光器的调节加强学生对激光谐振腔以及相关知识的理解,熟悉和掌握激光器调节的原理和技巧。
关键词:光模式;谐振腔;He-Ne激光器Laser resonatorDuo Wang(School of Science, BUPT. Beijing, 100876)Abstract:In this study, through the regulation of the He-Ne laser to enhance students' understanding of the laser resonator and knowledge and master the principles and techniques of laser adjustment. Keywords:Light mode; Resonator; He-Ne laser自1960年激光器问世以来,作为一种新光源,激光器具有光束发散角小、亮度高、单色性和相干性好的特点。
He-Ne激光器是一种应用很广的典型激光器件,它是由(1)起放大作用的工作物质;(2)具有选频(或者说滤波)和正反馈作用的光学谐振腔;(3)激励能源等三部分组成。
激光模式的研究对激光器研制和激光应用技术都有很大意义。
1 实验原理1.1谐振腔和纵模频率由两块互相平行的平面反射镜组成的平行平面腔是一种典型的光学谐振腔。
其原理如图1所示。
图 1 平行平面腔示意图平行于轴线传播的平面波A在两反射镜间经过偶数次发射后得到光波B、C……,这些光波和A叠加在一起,根据干涉现象的原理,A、B、C等只有当它们的相位相同是才能互相加强,腔内才能发生“谐振”,最后才能形成激光。
设谐振腔长度为L,腔内工作物质的折射率为μ,光波的频率为ν,相应的真空中波长为λ0=cν⁄,式中c是真空中的光速。
工作物质中的波长为λ=cμν⁄,于是可得平行平面腔的谐振条件为L=Nλ2=Nλ02μ(1)式中N是整数。