因式分解专题复习及讲解(很详细)
- 格式:doc
- 大小:883.50 KB
- 文档页数:36
第四讲 因式分解【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (2013•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= . 思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(2013•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (2013•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (2013•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (2013•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(2013•温州)因式分解:m2-5m= .2.m(m-5)3.(2013•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(2013•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (2013•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4.点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练 5.(2013•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】7.2(31)3x --8.(2013•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(2013•张家界)下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x-1C .x 2-1D .x 2-6x+91.D2.(2013•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1)2.C3.(2013•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(2013•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(2013•太原)分解因式:a 2-2a= .5.a (a-2)6.(2013•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(2013•厦门)x2-4x+4=()2.8.x-29.(2013•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(2013•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(2013•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(2013•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(2013•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(2013•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(2013•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(2013•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(2013•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(2013•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。
专题04 因式分解考点一:因式分解1. 因式分解的概念:把一个多项式写成几个整式的乘法的形式,这种变形叫做因式分解。
2. 因式分解的方法:①提公因式法:()cbamcmbmam++=++公因式的确定:公因式=各项系数的最小公倍数×相同字母(式子)的最低次幂。
若多项式首项是负的,则公因式为负。
用各项除以公因式得到另一个式子。
②公式法:平方差公式:()()bababa-+=-22。
完全平方公式:()2222bababa±=+±③十字相乘法:利用十字交叉线将二次三项式进行因式分解的方法叫做十字相乘法。
对于一个二次三项式cbxax++2,若满足21aaa⋅=,21ccc⋅=,且bcaca=+1221,那么二次三项式cbxax++2可以分解为:()()22112cxacxacbxax++=++。
当1=a时,二次三项式是cbxx++2,此时只需21ccc⋅=,且bcc=+21,则cbxx++2可分解为:()()212cxcxcbxx++=++。
④分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解--分组分解法.即先对题目进行分组,然后再分解因式。
(分组分解法一般针对四项及以上的多项式)3. 因式分解的具体步骤:(1)先观察多项式是否有公因式,若有,则提取公因式。
(2)观察多项式的项数,两项,则考虑平方差公式;三项则考虑完全平方式与十字相乘法。
四项及以上则考虑分组分解。
(3)检查因式分解是否分解完全。
必须分解到不能分解位置。
再无特比说明的情况下,任何因式分解的题目都必须在有理数范围内进行分解。
1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是( )A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x【分析】根据因式分解的定义判断即可.【解答】解:A选项不是因式分解,故不符合题意;B选项计算错误,故不符合题意;C选项是因式分解,故符合题意;D选项不是因式分解,故不符合题意;故选:C.2.(2022•永州)下列因式分解正确的是( )A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)C.a2+4a+4=(a+4)2D.a2+b=a(a+b)【分析】根据因式分解的定义和因式分解常用的两种方法:提公因式法和公式法判断即可.【解答】解:A选项,ax+ay=a(x+y),故该选项不符合题意;B选项,3a+3b=3(a+b),故该选项符合题意;C选项,a2+4a+4=(a+2)2,故该选项不符合题意;D选项,a2与b没有公因式,故该选项不符合题意;故选:B.3.(2022•湘西州)因式分解:m2+3m= .【分析】直接利用提取公因式法分解因式即可.【解答】解:原式=m(m+3).故答案为:m(m+3).4.(2022•广州)分解因式:3a2﹣21ab= .【分析】直接提取公因式3a,进而分解因式得出答案.【解答】解:3a2﹣21ab=3a(a﹣7b).故答案为:3a(a﹣7b).5.(2022•常州)分解因式:x2y+xy2= .【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).6.(2022•柳州)把多项式a2+2a分解因式得( )A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)【分析】直接提取公因式a,进而分解因式得出答案.【解答】解:a2+2a=a(a+2).故选:A.7.(2022•菏泽)分解因式:x2﹣9y2= .【分析】直接利用平方差公式分解因式得出答案.【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).8.(2022•烟台)把x2﹣4因式分解为 .【分析】利用平方差公式,进行分解即可解答.【解答】解:x2﹣4=(x+2)(x﹣2),故答案为:(x+2)(x﹣2).9.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9= .【分析】将m+n看作整体,利用完全平方公式即可得出答案.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.10.(2022•苏州)已知x+y=4,x﹣y=6,则x2﹣y2= .【分析】直接利用平方差公式将原式变形,代入得出答案.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.11.(2022•衡阳)因式分解:x2+2x+1= .【分析】本题运用完全平方公式进行因式分解即可.【解答】解:x2+2x+1=(x+1)2,故答案为:(x+1)2.12.(2022•济南)因式分解:a2+4a+4= .【分析】利用完全平方公式进行分解即可.【解答】解:原式=(a+2)2,故答案为:(a+2)2.13.(2022•宁波)分解因式:x2﹣2x+1= .【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.14.(2022•河池)多项式x2﹣4x+4因式分解的结果是( )A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)2【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣2)2.故选:D.15.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是( )A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)【分析】把所给公式中的b换成﹣b,进行计算即可解答.【解答】解:∵a3+b3=(a+b)(a2﹣ab+b2),∴a3﹣b3=a3+(﹣b3)=a3+(﹣b)3=[a+(﹣b)][(a2﹣a•(﹣b)+(﹣b)2]=(a﹣b)(a2+ab+b2)故选:A.16.(2022•绵阳)因式分解:3x3﹣12xy2= .【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3x(x2﹣4y2)=3x(x+2y)(x﹣2y).故答案为:3x(x+2y)(x﹣2y).17.(2022•丹东)因式分解:2a2+4a+2= .【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2.故答案为:2(a+1)2.18.(2022•辽宁)分解因式:3x2y﹣3y= .【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:3x2y﹣3y=3y(x2﹣1)=3y(x+1)(x﹣1),故答案为:3y(x+1)(x﹣1).19.(2022•恩施州)因式分解:a3﹣6a2+9a= .【分析】先提公因式a,再利用完全平方公式进行因式分解即可.【解答】解:原式=a(a2﹣6a+9)=a(a﹣3)2,故答案为:a(a﹣3)2.20.(2022•黔东南州)分解因式:2022x2﹣4044x+2022= .【分析】原式提取公因式2022,再利用完全平方公式分解即可.【解答】解:原式=2022(x2﹣2x+1)=2022(x﹣1)2.故答案为:2022(x﹣1)2.21.(2022•常德)分解因式:x3﹣9xy2= .【分析】利用提公因式法和平方差公式进行分解,即可得出答案.【解答】解:x3﹣9xy2=x(x2﹣9y2)=x(x+3y)(x﹣3y),故答案为:x(x+3y)(x﹣3y).22.(2022•怀化)因式分解:x2﹣x4= .【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(1﹣x2)=x2(1+x)(1﹣x).故答案为:x2(1+x)(1﹣x).23.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?( )A.﹣12B.﹣3C.3D.12【分析】根据十字相乘法可以将多项式39x2+5x﹣14分解因式,然后再根据多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),即可得到a、b、c的值,然后计算出a+2c的值即可.【解答】解:∵39x2+5x﹣14=(3x+2)(13x﹣7),多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),∴a=2,b=13,c=﹣7,∴a+2c=2+2×(﹣7)=2+(﹣14)=﹣12,故选:A.24.(2022•内江)分解因式:a4﹣3a2﹣4= .【分析】先利用十字相乘法因式分解,再利用平方差公式进行因式分解.【解答】解:a4﹣3a2﹣4=(a2+1)(a2﹣4)=(a2+1)(a+2)(a﹣2),故答案为:(a2+1)(a+2)(a﹣2).25.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为 .【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a2﹣b2=a﹣b,由此可得原式=a+b+9=10.方法二:将原式分为三部分,即a2﹣(b2﹣2b+1)+10,把前两部分利用平方差进行因式分解,其中得到一因式a+b﹣1=0.从而得出原式的值.【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.26.(2022•黔西南州)已知ab=2,a+b=3,求a2b+ab2的值是 .【分析】将a2b+ab2因式分解,然后代入已知条件即可求值.【解答】解:a2b+ab2=ab(a+b),∵ab=2,a+b=3,∴原式=2×3=6.故答案为:6.。
因式分解复习步骤详解因式分解是数学中常见的一种运算方式,用于将一个多项式拆分成更简单的因子。
以下是因式分解的详细步骤:1. 提取公因数:首先检查多项式中是否存在公共因子,如果有,可将其提取出来。
这样做可以简化表达式,减少计算量。
提取公因数:首先检查多项式中是否存在公共因子,如果有,可将其提取出来。
这样做可以简化表达式,减少计算量。
2. 判定多项式类型:进行因式分解前,需要确定多项式的类型。
常见的类型包括二次多项式、立方多项式等。
不同类型的多项式会使用不同的因式分解方法。
判定多项式类型:进行因式分解前,需要确定多项式的类型。
常见的类型包括二次多项式、立方多项式等。
不同类型的多项式会使用不同的因式分解方法。
3. 观察多项式结构:观察多项式的结构,寻找一些规律或特殊模式。
例如,是否存在平方差、立方差等特点。
这些特点可以帮助我们确定因式分解的起点。
观察多项式结构:观察多项式的结构,寻找一些规律或特殊模式。
例如,是否存在平方差、立方差等特点。
这些特点可以帮助我们确定因式分解的起点。
4. 使用因式分解公式:根据多项式的类型,选择适当的因式分解公式进行分解。
常见的因式分解公式有二次差方公式、立方差方公式等。
使用因式分解公式:根据多项式的类型,选择适当的因式分解公式进行分解。
常见的因式分解公式有二次差方公式、立方差方公式等。
5. 检验分解结果:进行因式分解后,需要检验分解结果是否正确。
可以通过将因子相乘得到原多项式,或借助计算机软件进行验证。
检验分解结果:进行因式分解后,需要检验分解结果是否正确。
可以通过将因子相乘得到原多项式,或借助计算机软件进行验证。
6. 合并同类项:在因式分解完成后,需要合并分解得到的各个因子中的同类项,得到最简形式的多项式。
合并同类项:在因式分解完成后,需要合并分解得到的各个因子中的同类项,得到最简形式的多项式。
通过以上步骤,我们可以在解决数学问题时运用因式分解的方法。
因式分解是数学中的一项基础技能,熟练掌握这一技能可以提高解题的效率。
八年级数学因式分解专题一、提公因式法1. 分解因式:6x^2 3x解析:公因式为3x,原式= 3x(2x 1)2. 分解因式:8a^3b^2 + 12ab^3c解析:公因式为4ab^2,原式= 4ab^2(2a^2 + 3bc)3. 分解因式:3(x y)^2 6(y x)解析:将(y x)变形为-(x y),公因式为3(x y),原式= 3(x y)(x y + 2)二、公式法4. 分解因式:x^2 4解析:使用平方差公式 a² b² = (a + b)(a b),原式=(x + 2)(x 2) 5. 分解因式:9 y^2解析:原式=(3 + y)(3 y)6. 分解因式:4x^2 12x + 9解析:使用完全平方公式 (a b)² = a² 2ab + b²,原式=(2x 3)^2 三、分组分解法解析:原式=(am + an) + (bm + bn) = a(m + n) + b(m + n) = (m + n)(a + b) 8. 分解因式:x^2 y^2 + ax + ay解析:原式=(x + y)(x y) + a(x + y) = (x + y)(x y + a)9. 分解因式:2ax 10ay + 5by bx解析:原式=(2ax bx) + (-10ay + 5by) = x(2a b) 5y(2a b) = (2a b)(x 5y)四、十字相乘法10. 分解因式:x^2 + 3x + 2解析:1×2 = 2,1 + 2 = 3,原式=(x + 1)(x + 2)11. 分解因式:x^2 5x + 6解析:(-2)×(-3) = 6,-2 + (-3) = -5,原式=(x 2)(x 3)12. 分解因式:2x^2 5x 3解析:2×(-1) = -2,2×3 = 6,6 + (-1) = 5,原式=(2x + 1)(x 3)五、综合运用13. 分解因式:3x^3 12x^2 + 12x解析:公因式为3x,原式= 3x(x^2 4x + 4) = 3x(x 2)^2解析:将4(x + y 1)变形为4[(x + y) 1],原式=(x + y)^2 4(x + y) + 4 = (x + y 2)^215. 分解因式:(a^2 + 1)^2 4a^2解析:使用平方差公式,原式=(a^2 + 1 + 2a)(a^2 + 1 2a) = (a + 1)^2(a 1)^216. 分解因式:x^4 18x^2 + 81解析:原式=(x^2 9)^2 = [(x + 3)(x 3)]^2 = (x + 3)^2(x 3)^217. 分解因式:a^4 2a^2b^2 + b^4解析:原式=(a^2 b^2)^2 = [(a + b)(a b)]^2 = (a + b)^2(a b)^218. 分解因式:(x^2 + 4)^2 16x^2解析:使用平方差公式,原式=(x^2 + 4 + 4x)(x^2 + 4 4x) = (x + 2)^2(x 2)^219. 分解因式:x^2 4xy + 4y^2 9解析:前三项使用完全平方公式,原式=(x 2y)^2 9 = (x 2y + 3)(x 2y 3)20. 分解因式:4x^2 4xy + y^2 z^2解析:前三项使用完全平方公式,原式=(2x y)^2 z^2 = (2x y + z)(2x y z)。
因式分解一、知识梳理1、因式分解的概念把一个多项式化为几个整式的积的形式,叫做把多项式因式分解. 注:因式分解是“和差”化“积”,整式乘法是“积”化“和差”故因式分解与整式乘法之间是互为相反的变形过程,因些常用整式乘法来检验因式分解.2、提取公因式法把ma+mb+mc,分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+除以m所得的商,像这种分解因式的方法叫做提公因式法.用式子表求如下:ma+mb+mc=m(a+b+c)注:i 多项式各项都含有的相同因式,叫做这个多项式各项的公因式. ii 公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母;③指数:相同字母的最低次幂.3、运用公式法把乘法公式反过用,可以把某些多项式分解因式,这种分解因式的方法叫做运用公式法.ⅰ)平方差公式注意:①条件:两个二次幂的差的形式;②平方差公式中的a、b可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成的形式,并弄清a、b分别表示什么.ⅱ)完全平方公式注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成公式原型,弄清a、b分别表示的量.补充:常见的两个二项式幂的变号规律:4、十字相乘法借助十字叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法.对于二次项系数为l的二次三项式,寻找满足的ab、,则有5、分组分解法定义:分组分解法,适用于四项以上的多项式,例如没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式,即可达到分解因式的目的。
例如:这种利用分组来分解因式的方法叫分组分解法.原则:用分组分解法把多项式分解因式,关键是分组后能出现公因式或可运用公式.6、求根公式法:如果有两个根,那么二、典型例题及针对练习考点1 因式分解的概念例1、在下列各式中,从左到右的变形是不是因式分解?注:左右两边的代数式必须是恒等,结果应是整式乘积,而不能是分式或者是n个整式的积与某项的和差形式..考点2 提取公因式法2注:提取公因式的关键是从整体观察,准确找出公因式,并注意如果多项式的第一项系数是负的一般要提出“-”号,使括号内的第一项系数为正.提出公因式后得到的另一个因式必须按降幂排列.[补例练习]1。
因式分解法知识点一、知识概述《因式分解法》①基本定义:因式分解法呢,就是把一个多项式化成几个整式乘积的形式。
简单说,就像是把一个大的“数学组合体”拆成几个小“零件”相乘的样子。
比如说多项式$x^2 - 4$,把它变成$(x + 2)(x - 2)$,这就是因式分解。
②重要程度:在数学这个学科里,它可太重要了。
在解方程里经常要用,如果不会因式分解,很多方程都解不出来。
而且在分式运算、化简代数式等方面也是超级重要的。
就好比在一个建筑工程里,它是基础中的基础,要是不会,后面一系列高楼大厦(复杂的数学问题)都盖不起来。
③前置知识:那得先掌握整式乘法的知识,像单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这些。
还得知道基本的代数式运算规则,加减乘除啥的。
比如说不知道乘法规则,怎么能知道怎么把一个多项式拆成乘法的形式呢?④应用价值:实际应用啊,就比如在物理计算里,如果要化简一个关于力或者速度的表达式,可能就用到因式分解把式子变简单去计算。
再比如安排人员分组计算的时候,若关系用式子表示出来,因式分解能帮助快速算出分组个数和每组人数的关系。
二、知识体系①知识图谱:在数学这个大乐园里,因式分解算是代数部分的一个重要“景点”。
它跟很多地方都有联系,像是解方程的桥上、分式化简的城堡旁。
②关联知识:跟整式、方程、分式、代数式求值都有关系啊。
就像在一个大家庭里,它和其他成员相互帮助,整式为它提供原材料,方程依靠它来破解答案,分式需要它梳理关系,代数式求值借助它来变身简化。
③重难点分析:- 掌握难度:说实话,这个对于初学者有点难。
因为有时候要观察多项式的特点,不是一眼就能看出来怎么分解的。
- 关键点:关键就在于对多项式的形式要特别敏感。
看到多项式得能想到它可能用哪种分解方法,比如看到平方差形式,就知道可以用平方差公式。
④考点分析:- 在考试中的重要性:考试里经常出现啊,特别是在代数部分的考试中。
不管是选择题、填空题还是解答题,都有可能露面。
专题4.14因式分解(全章复习与巩固)(知识讲解)【知识点一】因式分解与整式乘法的识别把一个多项式化成几个整式的积的形式,叫因式分解。
【知识点二】因式分解的方法(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++【知识点三】因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
【典型例题】类型一、因式分解的概念✭✭求参数1.下列各式从左到右的变形属于因式分解的是()A .()2212x x x x+=+B .()()2111a a a -=+-C .()()2111x x x +-=-D .()222312a a a -+=-+【答案】B【分析】根据因式分解的定义解答即可.解:A .()2212x x x x +=+不是将多项式化成整式乘积的形式,故A 选项不符合题意;B .()()2111a a a -=+-是将多项式化成整式乘积的形式,故B 选项符合题意;C .()()2111x x x +-=-不是将多项式化成整式乘积的形式,故C 选项不符合题意;D .()222312a a a -+=-+不是将多项式化成整式乘积的形式,故D 选项不符合题意;故选:D .【点拨】本题主要考查了分解因式的定义,掌握定义是解题的关键.即把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式.举一反三:【变式】下列各式,从左到右的变形中,属于因式分解的是()A .()a m n am an+=+B .()()2222a b c a b a b c+-=+--C .()2221x x x x -=-D .()()2166446x x x x -+=+-+【答案】C【分析】根据因式分解的定义去判断即可.解:A 、因为()a m n am an +=+是单项式乘以多项式,不是因式分解,故A 不符合题意;B 、因为()()2222a b c a b a b c +-=+--不是因式乘积的形式,不是因式分解,故B 不符合题意;C 、因为()2221x x x x -=-是因式分解,故C 符合题意;D 、因为()()2166446x x x x -+=+-+不是因式乘积的形式,不是因式分解,故D 不符合题意;故选C .【点拨】本题考查了因式分解即把一个多项式写成几个因式积的形式,熟练掌握定义是解题的关键.2.三个多项式:24x y y -,22x y xy -,244x y xy y -+的最大公因式是()A .()2y x +B .()4y x -C .2(2)y x -D .()2y x -【答案】D【分析】先把三个多项式因式分解,再进行解答即可.解:∵()()2422x y y y x x -=+-,()222x y xy xy x -=-,2244(2)x y xy y y x -+=-,∴最大公因式是()2y x -.故选D .【点拨】本题主要考查了最大公因式,熟练掌握最大公因式的定义,将三个多项式分解因式,是解题的关键.举一反三:【变式】下列各组中,没有公因式的一组是()A .ax bx -与by ay -B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b ya -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键类型二、公因式✭✭提取公因式进行因式分解3.若关于x 的二次三项式23x x k -+的因式是()2x -和()1x -,则k 的值是____.【答案】2【分析】先利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 的值即可.解:由题意得:()()2232132x x k x x x x -+=--=-+,2k ∴=.故答案为:2.【点拨】此题考查了多项式乘以多项式法则,因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.举一反三:【变式】已知多项式4x mx n ++能分解为()()2223x px q x x +++-,则p =______,q =______.【答案】2-;7.【分析】把()()2223x px q x x +++-展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.解:∵()()2223x px q x x +++-432322222333x px qx x px qx x px q=+++++---()()()432223233x p x q p x q p x q=++++-+--4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+-=⎩,解得:27p q =-⎧⎨=⎩.故答案为:2-,7.【点拨】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -;(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(2)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+;(2)()1mn m n -+;(3)()223374x y xy x -+;(4)()()22x y x y-+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222xx y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.类型三、公式法进行因式分解➽➼平方差公式✭✭完全平方公式5.因式分解:(1)﹣2a 3+12a 2﹣18a(2)9a 2(x ﹣y )+4b 2(y ﹣x )【答案】(1)﹣2a (a ﹣3)2(2)(x ﹣y )(3a +2b )(3a ﹣2b )【分析】(1)原式提取公因式,再利用完全平方公式分解即可.(2)原式变形后,提取公因式,再利用平方差公式分解即可.解:(1)原式=﹣2a (a 2﹣6a +9)=﹣2a (a ﹣3)2(2)原式=(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ).【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.举一反三:【变式】因式分解:(1)224x y -(2)32296a a b ab -+【答案】(1)()()22x y x y +-;(2)()23a a b -.【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.解:(1)22224(2)(2)(2)x y x y x y x y -=-=+-;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点拨】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.6.分解因式:(1)2225()9()m n m n +--(2)22441a b a --+【答案】(1)()()444m n n m ++;(2)()()2121a b a b +---【分析】(1)将m n +和m n -看成两个整体,利用平方差公式分解因式得到()()8228m n m n ++,再提取公因式即可.(2)利用分组法先将原式分成2441a a -+和2b -两组,2441a a -+可利用完全平方公式分解,再和2b -组合,由平方差公式分解即可.(1)解:2225()9()m n m n +--()()()()5353m n m n m n m n =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533m n m n m n m n =++-+-+()()8228m n m n =++()()444m n m n =++.(2)22441a b a --+()22441a a b =-+-()2221a b =--()()2121a b a b =-+--()()2121a b a b =+---.【点拨】本题考查了因式分解的方法,分组法、公式法和提公因式法本题都涉及了,熟练掌握完全平方公式、平方差公式是解题的关键.举一反三:【变式】分解因式:(1)228168ax axy ay -+-(2)()22222936x y x y +-;【答案】(1)28()a x y --;(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =--(2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、因式分解➽➼十字相乘法✭✭分组分解法7.将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)用十字相乘法,分解因式即可;(2)用十字相乘法,分解因式即可;(3)用十字相乘法,分解因式即可.(1)解:∵78x x ⨯-,即78x x x -=-,∴256(7)(8)x x x x --=+-;(2)解:∵28x x ⨯--,即2810x x x --=-,∴21016(2)(8)x x x x -+=--;(3)解:22103(310)x x x x --=-+-,∵52x x ⨯-,即523x x x -=,∴原式(5)(2)x x =-+-.【点拨】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号.二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式】用十字相乘法解方程:(1)2560x x +-=;(2)2230x x --=.【答案】(1)6x =-或1x =;(2)3x =或=1x -【分析】根据十字相乘法可分别求解(1)(2).(1)解:2560x x +-=(6)(1)0x x +-=,60x +=或10x -=,6x =-或1x =;(2)解:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -.【点拨】本题主要考查利用因式分解进行求解方程,熟练掌握因式分解是解题的关键.8.因式分解:323412x x y x y +--.【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y-+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】因式分解:(1)a 2-ab +ac -bc ;(2)x 3+6x 2-x -6.【答案】(1)(a -b)(a +c);(2)(x +1)(x -1)(x +6)试题分析:根据因式分解的方法进行因式分解即可.解:(1)原式()()()()a a b c a b a b a c =-+-=-+.(2)原式()()()()()()()()()322226616116116x x x x x x x x x x x =-+-=-+-=-+=+-+类型五、因式分解综合9.将下列各式分解因式.(1)3416x x -;(2)()2212a x ax +-;(3)()24a b a b --;(4)()()()()2233a b a b a b b a -+++-.【答案】(1)()()41212x x x +-;(2)()221a x x ++;(3)()22a b --;(4)()()28a b a b -+【分析】(1)先提取公因式,然后进一步利用平方差公式进行因式分解即可;(2)利用提公因式法进行因式分解即可;(3)先将括号去掉,然后移项,根据完全平方公式进行因式分解即可;(4)利用提公因式法以及平方差公式综合进行因式分解即可.解:(1)3416x x -=()2414x x -=()()41212x x x +-;(2)()2212a x ax +-=()221a x x ⎡⎤+-⎣⎦=()221a x x ++;(3)()24a b a b --=2244ab a b --=()2244a ab b --+=()22a b --;(4)()()()()2233a b a b a b b a-+++-=()()()()2233a b a b a b a b -+-+-=()()()2233a b a b a b ⎡⎤-+-+⎣⎦=()()()4422a b a b a b -+-=()()28a b a b -+.【点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.举一反三:【变式】因式分解:(1)2273xy x-(2)2292a b ab+-+(3)228x x --【答案】(1)3(3+1)(31)-x y y ;(2)(3)(3)+++-a b a b ;(3)(2)(4)x x +-【分析】(1)根据提取公因式,平方差公式,即可分解因式;(2)根据完全平方公式法、平方差公式,即可分解因式;(3)根据十字相乘法分解因式,即可得到答案.解:(1)2273xy x-23(91)x y =-3(31)(31)x y y =+-;(2)2292a b ab+-+2229a ab b =++-22()3a b =+-(3)(3)a b a b =+++-;(3)228x x --(2)(4)x x =+-.【点拨】本题主要考查分解因式,掌握提取公因式法、公式法、十字相乘法分解因式,是解题的关键.类型五、因式分解的应用10.阅读材料,回答下列问题:若22228160m mn n n -+-+=,求m ,n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=,即22()(4)0m n n +--=,又2()0m n -≥,2(4)0n -≥,∴2()0m n -=,2(4)0n -=,∴4n =,4m =.(1)若22440a b a +-+=,求a ,b 的值;(2)已知ABC 的三边a ,b ,c 满足2222220a b c ab ac ++--=.判断ABC 的形状,并说明理由.【答案】(1)2,0a b ==;(2)等边三角形,理由见分析.【分析】(1)参照例题,将等式转化为两个完全平方的和等于0的形式,进而求得a ,b 的值;(2)方法同(1).解:(1)∵22440a b a +-+=,∴()22440a a b ++-=,即2220()a b -+=,又22(2)0,0a b -≥≥,22(2)0,0a b ∴-==,2,0a b ∴==.(2)∵2222220a b c ab ac ++--=,2222(2)(2)0a ab b b ac c ∴-++-+=,即22()()0a b b c -+-=,又22()0,()0a b b c -≥-≥,∴22()0,()0a b b c -=-=,,a b b c ∴==,a b c ==∴.ABC ∴ 是等边三角形.【点拨】本题考查了因式分解的应用,完全平方公式,掌握完全平方公式是解题的关键.举一反三:【变式】已知:1a b +=,154ab =-(1)求22ab a b +的值(2)求22a b +的值(3)若22a b k -=-,求非负数k 的值【答案】(1)154-;(2)172;(3)k =【分析】(1)将代数式22ab a b +用提公因式法因式分解为()ab a b +,再将1a b +=,154ab =-代入计算即可;(2)将22a b +变形为()22a b ab +-,再将1a b +=,154ab =-代入计算即可;(3)类似的方法将()2a b -变形为()24a b ab +-,代入计算后求出a b -的值,继而根据22a b k -=-计算出符合条件的k 的值即可.(1)解:∵1a b +=,154ab =-,∴()221515144ab a b ab a b +=+=-⨯=-;(2)解:∵1a b +=,154ab =-,∴()2222a b a b ab+=+-15124⎛⎫=-- ⎪⎝⎭1512=+172=;(3)解:∵()()224a b a b ab-=+-1514164⎛⎫=--= ⎪⎝⎭,∴4a b -=±当4a b -=时,224k -=,k =∵k 为非负数,∴k =当4a b -=-时,224k -=-,22k =-(舍去),∴k =【点拨】本题考查了完全平方公式的应用以及提取公因式分解因式,能够灵活应用完全平方公式是解题的关键.11.阅读材料:()()()2222244454529232322x x x x x x x ⎛⎫⎛⎫+-=++--=+-=+++- ⎪ ⎪⎝⎭⎝⎭()()51x x =+-上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:223x x +-;(2)求多项式2610x x +-的最小值;(3)已知a 、b 、c 是△ABC 的三边长,且满足222506810a b c a b c +++=++,求△ABC 的周长.【答案】(1)()()31x x +-;(2)19-;(3)12【分析】(1)先配方后,再利用平方差公式进行因式分解;(2)配方后根据平方的非负性求最小值;(3)配方后根据非负性求出a ,b ,c 的值即可.(1)解:223x x +-222113x x =++--2(1)4x =+-(12)(12)x x =+++-;(3)(1)x x =+-;(2)2226106919(3)19x x x x x +-=++-=+-,∵2(3)0x +≥,∴多项式2610x x +-的最小值为19-;(3)由题意得:2226810500a b c a b c ++---+=,∴2226981610250a a b b c c +++++--=-.∴222(3)4)(0(5)a b c -+-+-=.又∵2(3)0a -≥,2(04)b -≥,2(05)c -≥,∴30a -=,40b -=,50c -=,∴3a =,4b =,5c =,∴ABC 的周长为34512++=.【点拨】本题考查了配方法因式分解以及因式分解的应用,掌握完全平方公式是解题的关键.举一反三:【变式】先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.【答案】(1)-4;(2)13或14【分析】(1)仿照例题的思路,配成两个完全平方式,然后利用偶次方的非负性,进行计算即可解答;(2)仿照例题的思路,配成两个完全平方式,再利用偶次方的非负性,先求出a ,b 的值,然后分两种情况,进行计算即可解答.解:(1)∵22421212x y xy y ++-+222231212x xy y y xy =+++-+2()3x y =++2(2)y -,=∴0x y +=,20y -=,∴2x =-,2y =,∴2(2)4=⨯-=-xy .(2)∵2210841a b a b +=+-,∴2210258160a a b b -+++=-,∴22(5)(4)0a b -+-=,∴50a -=,40b -=,∴5a =,4b =.由于ABC 是等腰三角形,所以5c =或4.①若5c =,则ABC 的周长为55414++=;②若4c =,则ABC 的周长为54413++=.所以ABC 的周长为13或14.【点拨】本题考查了配方法的应用,偶次方的非负性,三角形的三边关系,熟练掌握完全平方式是解题的关键.。
第一讲:因式分解(注:在看以下内容时,用红笔标注不懂的地方以及自己感觉容易粗心出错的地方,并记下来) 知识点: 一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+2. 概念内涵:(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ 3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++222)(2b a b ab a -=+-3. 易错点点评:因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底. 4. 运用公式法: (1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式: ①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. 3. 注意: 分组时要注意符号的变化. 五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅=, 21c c c ⋅=,且满足1221c a c a b +=,往往写成的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ 2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++abq ba p =+=3. 规律内涵:(1)理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. 4. 易错点点评:(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.c 2a 2c 1a 1ba 11(注:不必一周之类完成,能完成多少完成多少)第一次作业一、填空(每空1分,共15分)1、把一个多项式化为的形式,叫做因式分解。
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
n m n a a +=同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
35())a b b += 、幂的乘方法则:mnm aa ((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:幂的乘方法则可以逆用:即考点四、十字相乘法(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q ++分解成()()()b x a x ab x b a x q px x ++=+++=++22例题讲解1、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=51 2 解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例题讲解2、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x2、二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题讲解1、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x。
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+-- (7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a (9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
思考:十字相乘有什么基本规律?例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a . 解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。
于是98a ∆=-为完全平方数,1a =例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -2 3 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
1 8b1 -16b8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++ =)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式 例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1 -2(-3y)+(-4y)= -7y (-1)+(-2)=-3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x -- (3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a (5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++ (9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、换元法。
例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++解:(1)设2005=a ,则原式=a x a ax ---)1(22=))(1(a x ax -+=)2005)(12005(-+x x(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。
原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x练习13、分解因式(1))(4)(22222y x xy y xy x +-++(2)90)384)(23(22+++++x x x x(3)222222)3(4)5()1(+-+++a a a例14、分解因式(1)262234+---x x x x观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。
这种多项式属于“等距离多项式”。
方法:提中间项的字母和它的次数,保留系数,然后再用换元法。
解:原式=)1162(222x x x x x +---=[]6)1()1(2222-+-+x x xx x 设t x x =+1,则21222-=+t xx ∴原式=[]6)2222---t t x (=()10222--t t x=()()2522+-t t x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+215222x x x x x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+21··522·x x x x x x =()()1225222+++-x x x x =)2)(12()1(2--+x x x (2)144234+++-x x x x解:原式=22241(41)x x x x x -+++=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+1141222x x x x x 设y x x =-1,则21222+=+y xx ∴原式=22(43)x y y -+=2(1)(3)x y y -- =)31)(11(2----xx x x x =()()13122----x x x x 练习14、(1)673676234+--+x x x x(2))(2122234x x x x x +++++六、添项、拆项、配方法。