低压燃气管道水力计算公式
- 格式:doc
- 大小:141.50 KB
- 文档页数:5
燃气管道输送水力计算一、适用公式燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。
但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。
整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。
二、低压燃气管道水力计算公式:1、层流状态 Re≤2100λ=64/Re Re=dv/γΔP/L=1.13×1010(Q0/d4)γρ0(T/T0)2、临界状态 Re=2100~3500λ=0.03+(Re -2100)/(65 Re-1×105)ΔP/L=1.88×106[1+(11.8 Q0-7×104dγ)/(23.0Q-1×105dγ)](Q02/d5)ρ(T/T)3、紊流状态 Re≥35001)钢管λ=0.11[(Δ/d)+(68/ Re)]0.25ΔP/L=6.89×106[(Δ/d)+192.26(dγ/ Q0)]0.25(Q2/d5)ρ(T/T)2)铸铁管λ=0.102[(1/d)+4960(dγ/ Q)]0.284ΔP/L=6.39×106[(1/d)+4960(dγ/ Q0)]0.284(Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q——燃气流量(Nm3/h)d——管道内径(mm)ρ——燃气密度(kg/Nm3)γ——0℃和101.325kPa时的燃气运动粘度(m2/s)Δ——管壁内表面的绝对当量粗糙度(mm) Re——雷诺数T——燃气绝对温度(K) T——273Kv——管内燃气流动的平均速度(m/s)(摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)二、燃气的输配工况条件起点压力——10KPa 最大流速——10m/s燃气密度——1.658kg/Nm3(20℃和浓度20%时)纯轻烃燃气运动粘度——1.92×10-6m2/s(0℃和101.325kPa时)燃气运动粘度——11.1×10-6m2/s(0℃和101.325kPa时)三、钢管阻力降的计算与查表结果注:1、——*因计算数据与实际数据误差过大,已无计算、列表的必要。
燃气管网水力计算公式
1)庭院燃气管道的计算公式:
Q=N Q K K n t ∑0
式中:
Q ——庭院燃气管道的计算流量(Nm 3/h );
K t ——不同类型用户的同时工作系数,当缺乏资料时,可取K t =1; K 0——相同燃具或者相同组合燃具数;
N ——相同燃具或相同组合燃具数;
Q n ——相同燃具或相同组合燃具的额定流量(Nm 3/h )
2)中压管网水力计算公式:
Z T T d
Q 1027.1L P P 052102221ρλ⨯=- ⎥⎦⎤⎢⎣
⎡+-=λλRe 51.23.7d K 2lg 1 式中:
P 1,P 2 ——管道始、末端的燃气绝对压力(kP a );
Z ——压缩因子,当燃气压力小于1.2MPa (表压)时,压缩因子取1.0; L ——管段计算长度(km);
Q ——燃气流量(Nm 3/s);
d ——管道内径(m);
ρo ——燃气的密度(Kg/Nm 3);
λ——摩擦阻力系数;
K ——管壁内表面的当量粗糙度(mm );
Re ——雷诺数(无量纲);
3)低压燃气管道单位长度的摩擦阻力损失应按下式计算:
0527T T d
1026.6p ρλQ l ⨯=∆ 式中: △P ——燃气管道摩擦阻力损失(Pa );
λ——燃气管道摩擦阻力系数;
Q ——燃气管道的计算流量(m 3/h );
d ——管道内径(mm );
ρ——燃气的密度(kg/ m 3);
T ——设计中所采用的燃气温度(K );
T 0——273.15(K);。
户内燃气管道水力计算1)计算方法:户内燃气管道压力降ΔP = 管段压力降 + 燃气表压力降 — 附加压力管段压力降 = 沿程压力降 + 局部阻力2)管段压力降计算➢ 方法一:计算局部阻力损失法当燃气流经三通、弯头、变径管、阀门等管道附件时,由于几何边界的急剧改变,燃气流线的变化,必然产生额外的压力损失,称之为局部阻力损失。
在进行城市燃气管网水力计算时,管网的局部阻力损失一般不逐项计算,可按燃气管道摩擦阻力损失的5%-10%进行估算。
对于街坊内庭院管道和室内管道,由于管道附件较多,压力损失主要消耗在局部阻力损失,常需要按下式逐一计算。
△P j =∑ξ22W ρ0式中 △P j ——局部阻力的压力损失(Pa );∑ξ——计算管段中局部阻力系数的总和(局部阻力系数可查得); W ——管段中燃气流速(m/s ); ρ0——燃气的容重(kg/Nm 3)。
管段压力降△P =△P l +△P j (△P l —沿程压力降) ➢ 方法二:当量长度计算法局部阻力损失一般用当量长度来计算,各种管件折成相同管径管段的当量长度L 2。
则管段的计算长度L 等于管段实际长度L 1与局部阻力系数的当量长度L 2之和。
局部阻力系数对应的当量长度可根据下式计算:L 2=λξd ∑⋅式中 d——管道内径(m );λ——燃气管道的摩擦阻力系数,计算公式同公式3、4、5、6; 计算长度L=L 1+ L 2,单位长度摩擦阻力损失同公式2。
3)附加压力计算由于燃气与空气的密度不同,当管段始末端存在标高差值时,在燃气管道中将产生附加压头。
因此,计算室内燃气管道及地面标高变化相当大的室外或厂区的低压燃气管道时,应考虑因高程差而引起的燃气附加压力。
燃气的附加压力可按下式计算:附P ∆=g (ρk -ρm )·△H =9.81×(1.293-0.75)×△H 式中 附P ∆ —沿燃气流动方向管段终端及始端的标高差,计算时注意正负号(Pa );ρk — 空气的密度(kg/m 3),一般取1.293;ρm — 燃气的密度(kg/m 3),为方便计算,这里统一取0.75; △H — 燃气管道终、起点的高程差(m)。
庭院燃气管道水力计算1)低压燃气管道的基本计算公式(单位长度的摩擦阻力损失) 低压燃气管道单位长度的摩擦阻力损失应按下式计算:L ∆P =6.26×107λ52dQ ρ0T T (公式2)式中 △P——燃气管道摩擦阻力损失(Pa );λ——燃气管道摩擦阻力系数;计算方法如下公式3-公式6计算。
L——燃气管道的计算长度(m ); Q——燃气管道的计算流量(m 3/h ); d——管道内径(mm ); ρ——燃气的密度(kg/m 3);T ——设计中所采用的燃气温度(K ), 本设计中取燃气温度为15℃; T 0——273.15(K );不同流态下, 摩擦阻力系数λ值不同, 计算公式如下:层流状态(Re<2100): (公式3) 临界状态(Re=2100~3500): (公式4)紊流状态(Re>3500): 钢管 (公式5)铸铁管284.0Q d 5158d 1102236.0⎪⎪⎭⎫ ⎝⎛+=v λ (公式6)式中 λ——燃气管道摩擦阻力系数;Re ——雷诺数, , d 为管道内径(m ), 为管道断面的平均流速(m/s ), d——管道内径(mm );Q——燃气管道的计算流量(m 3/h );v ——燃气的运动粘度(m 2/s );△——管壁内表面的当量绝对粗糙度, 对钢管: 输送天然气和气态液化石油气时取0.1;输送人工煤气时取0.15。
对于庭院燃气管道, 燃气在管道中的运动状态绝大多数在紊流过渡区, 因此一般取, 相应的单位长度的摩擦阻力损失计算公式为:L ∆P=6.9×10625.0Q d 2.192d ⎪⎪⎭⎫ ⎝⎛+∆v 52d Q ρ0T T(公式7) 2)低压燃气管网压降及压降分配(1)城镇低压燃气管道从调压柜到最远端燃具的管道允许阻力损失城市燃气管网与用户的连接有两种方法: 一、通过用户调压器与燃具连接, 这样管网中压力的波动不影响用户处的压力, 燃器具就能在相对恒定压力下工作;二、用户直接与低压管网相接, 这样, 随着管网中流量的变化和压力的波动, 燃具前的压力也随之变化。
第四章 燃气管网的水力计算燃气管网水力计算的任务是根据燃气的计算流量和允许的压力降来确定管径;在有些情况下,已知管径和压力降,求管道的通过能力。
总之,通过水力计算,来确定管道的投资和金属耗量,及保证管网工作的可靠性。
第一节 水力计算的基本公式一、摩擦阻力 1.基本公式在通常情况下的一小段时间内,燃气管道中的燃气流动可视为稳定流。
将摩擦阻力公式、连续性方程和气体状态方程组成方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧===-RTZ P const wA w d dx dP ρρρλ22(4-1) 为了对摩擦阻力公式进行积分,由连续性方程得:00Q wA ρρ=由气体状态方程得:000Z PT TZP =ρρ 代入摩擦阻力公式,在管径不变的管段中24d A π=,整理得:dx Z T TZP dQ PdP 000052028ρλπ=- (4-2)假设燃气在管道中是等温流动,则λ和T 均为常数,考虑管道压力变化不太大,Z 也可视为常数。
通过积分,得高、中压燃气管道的单位长度摩擦阻力损失为:0000520222162.1Z T TZP dQ L P P ρλ=- 4-3) 式中 P 1——燃气管道始端的绝对压力(Pa );P 2——燃气管道末端的绝对压力(Pa ); P 0——标准大气压,P 0=101325Pa ; λ——燃气管道的摩擦阻力系数;Q 0——燃气管道的计算流量(Nm 3/s ) d ——管道内径(m );ρ0——标准状态下的燃气密度(kg/Nm 3);T 0——标准状态下的绝对温度(273.15K ); T ——燃气的绝对温度(K );Z 0——标准状态下的气体压缩因子; Z ——气体压缩因子;L ——燃气管道的计算长度(m )对低压燃气管道,()()m P P P P P P P P 221212221⋅∆=+-=-式中 ()221P P P m +=为管道1、2断面压力的算术平均值,对低压管道,0P P m ≈,代入式(4-3),得低压燃气管道的单位长度摩擦阻力损失为:00052081.0Z T TZdQ L P ρλ=∆ (4-4) 若采用工程中常用单位,则高、中压燃气管道的单位长度摩擦阻力损失为:005201022211027.1T TZ dQ L P P ρλ⨯=- (4-5) 式中 Z ——气体压缩因子,当燃气压力小于1.2MPa (表压)时,Z 取1。
低压燃气管道水力计算
公式
-CAL-FENGHAI.-(YICAI)-Company One1
燃气管道输送水力计算
一、适用公式
燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。
但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。
整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。
二、低压燃气管道水力计算公式:
1、层流状态 R e≤2100
λ=64/R e R e=dv/γ
ΔP/L=×1010(Q0/d4)γρ0(T/T0)
2、临界状态 R e=2100~3500
λ=+(R e-2100)/(65 R e-1×105)
ΔP/L=×106[1+( Q0-7×104dγ)/(-1×105dγ)]
(Q02/d5)ρ0(T/T0)
3、紊流状态 R e≥3500
1)钢管λ=[(Δ/d)+(68/ R e)]
ΔP/L=×106[(Δ/d)+(dγ/ Q0)](Q02/d5)ρ0(T/T0)
2)铸铁管λ=[(1/d)+4960(dγ/ Q0)]
ΔP/L=×106[(1/d)+4960(dγ/ Q0)](Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q0——燃气流量(Nm3/h)
d——管道内径(mm)ρ0——燃气密度(kg/Nm3)γ——0℃和时的燃气运动粘度(m2/s)
Δ——管壁内表面的绝对当量粗糙度(mm) R e——雷诺数
T——燃气绝对温度(K) T0——273K
v——管内燃气流动的平均速度(m/s)
(摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)
二、燃气的输配工况条件
起点压力——10KPa 最大流速——10m/s
燃气密度——Nm3(20℃和浓度20%时)
纯轻烃燃气运动粘度——×10-6m2/s(0℃和时)
燃气运动粘度——×10-6m2/s(0℃和时)
三、钢管阻力降的计算与查表结果
注:1、——*因计算数据与实际数据误差过大,已无计算、列表的必要。
2、查表数据根据袁国汀主编的《建筑燃气设计手册》——中国建筑工业出版社1999年版P194 表5-2经修正后得出。
四、单管输送的实测情况
安徽省界首燃气站的工况条件是:通径100mm的钢管200m、流量
110m3/h、气温10℃。
用2m的U型计实测压力降为320Pa。
按层流状态计算公式,计算压降为m,全程压降为。
按查表数据,低压天然气管道的压力降查表为m,全程压降为1344Pa。
在安徽界首现场的实测数据与层流状态的计算数据和查表所得数据都不相符。
据临界状态数据差距更大。
由此可见,管道里流动的气体不是单一的层流状态,而是在层流与过渡之间的某一状态。
由手册查得,甲烷的运动粘度为×10-6m2/s,燃气的运动粘度为×10-
6m2/s,在压力降计算公式里运动粘度与压力降成正比,因此燃气的压力降比低压天然气低25%。
这是燃气压力降较小的原因之一。
如将燃气与人工煤气作比较,人工煤气中的氢气占40%左右,纯氢气的运动粘度为93×10-6m2/s,人工煤气的运动粘度为×10-6m2/s,由此可见,人工煤气管道输送的压力降是燃气的4倍多。
五、城市燃气管网的压力分配——1级压力级制的设计方案
1、城市燃气站的出口压力:10KPa;
2、城市燃气站至城市主管网连接点最大流量时的压力降(压力损失)设定为;
3、城市主管网最远点、最大流量时的压力降(压力损失)设定为4KPa;
4、城市主管网至庭院管连接点最大流量时的压力降(压力损失)为1KPa;
5、庭院管、户外管、楼栋管的压力降(压力损失)为1KPa.
——要求进户时的最低压力为。
以上为一级压力级制的设计方案,即采取进户调压、将燃气计量表与调压阀联为一体的设计方案。
用户燃具的额定压力为2KPa,当进户压力为10KPa 时,调压阀出口压力为;当进户压力为时,调压阀出口压力为。
调压阀与燃气
计量表的最小流量设计为3Nm3/h。
这样的进户流量及压力设计方案能满足居民家用燃灶、家用燃气热水器的燃用。
六、20000户规模城市燃气管网的案例模拟设计
某城市面积3×3平方公里,人口8万人,按2万户供气规模进行模拟设计。
(管道输送压力降按查表所得数据的25%进行计算,这与界首的实测数据相近)
1、城市燃气站出口压力为10KPa;
2、城市燃气站至城市燃气管网连接点的铺管长度为800m,铺管通径为
400mm,最大流量时的压力降为;
3、城市主管网最远点的单管铺管长度为4km,铺管通径为300mm,按环流管网双管供气计算,最大流量时的压力降为;
4、城市主管网至小区的铺管长度为400m,铺管通径为200mm,最大流量时的压力降为;
5、庭院管、户外管、楼栋管的压力降总计为1KPa:
——进户时的最低压力为。
可满足1级压力级制设计方案最低压力的要求。
——以上为全程全流量计算的压降结果,城市管网实际输配过程流量在沿途各节点已逐步分流。
由于计算公式里压降是与流量成正比的,因此实际输配过程的压降远小于这个计算结果。