2021年高考理科数学全国1卷(word版,含答案)
- 格式:docx
- 大小:1.41 MB
- 文档页数:20
2021年普通高等学招生全国统一考试〔全国一卷〕理科数学参考答案与解析一、选择题:此题有12小题,每题5分,共60分。
1、设z=,那么|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、集合A={x|x 2-x-2>0},那么A = A 、{x|-1<x<2} B 、{x|-1x 2} C 、{x|x<-1}∪{x|x>2} D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番,为更好地理解该地区农村的经济收入变化情况,统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:那么下面结论中不正确的选项是: A 、新农村建立后,种植收入减少。
B 、新农村建立后,其他收入增加了一倍以上。
C 、新农村建立后,养殖收入增加了一倍。
D 、新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建立后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,假设3S3=S2+S4,a1=2,那么a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f〔x〕=x3+(a-1)x2+ax,假设f〔x〕为奇函数,那么曲线y=f〔x〕在点〔0,0〕处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f〔x〕为奇函数,有f〔x〕+f〔-x〕=0整理得:f〔x〕+f〔-x〕=2*(a-1)x2=0 ∴a=1f〔x〕=x3+x求导f‘〔x〕=3x2+1f‘〔0〕=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,那么=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱外表上的点M 在正视图上的对应点为11A ,圆柱外表上的点N 在左视图上的对应点为B ,那么在此圆柱侧面上,从M 到N 的途径中,最短途径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
绝密★启用前2021年普通高等学校招生全国统一考试全国乙卷/理科数学注意事项:1. 答卷前,考生务必将自己的姓名,准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应答案的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设2(z+z̅)+3(z-z̅)=4+6i,则z=( ).A.1-2iB.1+2iC.1+iD.1-i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( )A.∅B.SC.TD.Z3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A.p∧qB.¬p∧qC.p∧¬qD.¬(pVq)4.设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+15.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π66.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种7.把函数y=f(x)图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x-π4)的图像,则f(x)=()A.sin(x2−7π12)B. sin(x2+π12)C. sin(2x−7π12)D. sin(2x+π12)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.74B.2332C.932D.299.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海盗的高。
2021年高考理科数学全国新课标卷1(附答案)2021年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2021课标全国Ⅰ,理1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B2.(2021课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).A.-4 B.?A.500π3866π3cm B.cm 3344 C.4 D. 557.(2021课标全国Ⅰ,理7)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( ).A.3 B.4 C.5 D.68.(2021课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).3.(2021课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样x2y254.(2021课标全国Ⅰ,理4)已知双曲线C:2?2=1(a>0,b>0)的离心率为,则C的渐近线方程为( ).ab211A.y=?x B.y=?x341C.y=?x D.y=±x25.(2021课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.16+8π B.8+8π C.16+16π D.8+16π+9.(2021课标全国Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m1展开式的二项式系数的最大值为b.若13a=7b,则m=( ).A.5 B.6 C.7 D.8x2y210.(2021课标全国Ⅰ,理10)已知椭圆E:2?2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两ab点.若AB的中点坐标为(1,-1),则E的方程为( ).x2y2x2y2?=1 B.?=1 A.45363627x2y2x2y2?=1 D.?=1 C.2718189A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]6.(2021课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).??x2?2x,x?0,11.(2021课标全国Ⅰ,理11)已知函数f(x)=?若|f(x)|≥ax,则a的取值范围是( ).?ln(x?1),x?0.A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]12.(2021课标全国Ⅰ,理12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,….若b1>c1,b1+c1=2a1,an+1=an,bn+1=A.{Sn}为递减数列cn?anb?an,cn+1=n,则( ). 22 第 1 页共 1 页B.{Sn}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2021课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b・c=0,则t=__________. 14.(2021课标全国Ⅰ,理14)若数列{an}的前n项和Sn?21an?,则{an}的通项公式是an=__________. 3315.(2021课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2021课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2021课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°.19.(2021课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质品相互独2(1)若PB=1,求PA; 2(2)若∠APB=150°,求tan∠PBA.18.(2021课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2021课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.第 2 页共 2 页21.(2021课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(2021课标全国Ⅰ,理22)(本小题满分10分)选修4―1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈???a1?,?时,f(x)≤g(x),求a的取值范围. ?22?(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.23.(2021课标全国Ⅰ,理23)(本小题满分10分)选修4―4:坐标系与参数方程?x?4?5cost,已知曲线C1的参数方程为?(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,y?5?5sint?曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2021课标全国Ⅰ,理24)(本小题满分10分)选修4―5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.第 3 页共 3 页感谢您的阅读,祝您生活愉快。
2021年普通高等学校招生全国统一考试数学试卷(新高考1卷)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡.上对应题目洗面的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设集合A={x|−2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}2.已知z=2−i,则z(z+i)=()A.6−2iB.4−2iC.6+2iD.4+2i3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2√2C.4D.4√24.下列区间中,函数f(x)=7sin(x−π6)单调递增的区间是()A.(0,π2) B.(π2,π) C.(π,3π2) D.(3π2,2π)5.已知F1,F2是椭圆C:x 29+y24=1的两个焦点,点M在C上,则|MF1|⋅|MF2|的最大值为( )A.13B.12C.9D.66.若tanθ=−2,则sinθ(1+sin2θ)sinθ+cosθ=( )A.−65B. A.−25C.25D.657.若过点(a,b)可以作曲线y=e x的两条切线,则( )A.e b<aB.e a<bC.0<a<e bD.0<b<e a8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
2021年高考理科数学全国1卷1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图所示,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图所示,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图所示:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图所示,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图所示,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图所示,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图所示,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。
2021年高考理数真题试卷(全国乙卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共12题;共60分)1.设2(z+ )+3(z- )=4+6i,则z=().A. 1-2iB. 1+2iC. 1+iD. 1-i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A. B. S C. T D. Z3.已知命题p:x∈R,sinx<1;命题q:x∈R,e|x|≥1,则下列命题中为真命题的是()A. p qB. p qC. p qD. (pVq)4.设函数f(x)= ,则下列函数中为奇函数的是()A. f(x-1)-1B. f(x-1)+1C. f(x+1)-1D. f(x+1)+15.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. B. C. D.6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A. 60种B. 120种C. 240种D. 480种7.把函数y=f(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin(x- )的图像,则f(x)=()A. sin( )B. sin( )C. sin( )D. sin( )8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于的概率为()A. B. C. D.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海盗的高。
如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”。
则海岛的高AB=().A.B.C.D.10.设a≠0,若x=a为函数的极大值点,则()A. a<bB. a>bC. ab<a2D. ab>a211.设B是椭圆C:(a>b>0)的上顶点,若C上的任意一点P都满足,则C的离心率的取值范围是()A. B. C. D.12.设,,,则()A. a<b<cB. b<c<aC. b<a<cD. c<a<b二、填空题:本题共4小题,每小题5分,共20分。
2021年全国统一高考数学试卷(新高考Ⅰ卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑。
如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
(共8题;共40分)1. ( 5分) 设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=()A. {2}B. {2,3}C. {3,4,}D. {2,3,4}2. ( 5分) 已知z=2-i,则( =()A. 6-2iB. 4-2iC. 6+2iD. 4+2i3. ( 5分) 已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2C. 4D. 44. ( 5分) 下列区间中,函数f(x)=7sin( )单调递增的区间是()A. (0, )B. ( , )C. ( , )D. ( , )5. ( 5分) 已知F1,F2是椭圆C:的两个焦点,点M在C 上,则|MF1|·|MF2|的最大值为()A. 13B. 12C. 9D. 66. ( 5分) 若tan =-2,则 =()A. B. C. D.7. ( 5分) 若过点(a,b)可以作曲线y=e x的两条切线,则()A. e b<aB. e a<bC. 0<a<e bD. 0<b<e a8. ( 5分) 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立二、选择题:本题共4小题。
绝密★启封并使用完毕前试题类型:A(全国新课标1卷) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设复数z 满足1+z1z-=i ,则|z|=( )(A )1 (B )2 (C )3 (D )2【答案】A考点:1.复数的运算;2.复数的模.(2)sin20°cos10°-con160°sin10°=( )(A )3 (B 3 (C )12- (D )12【答案】D 【解析】试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D.考点:诱导公式;两角和与差的正余弦公式(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为( ) (A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n【答案】C【解析】试题分析:p ⌝:2,2n n N n ∀∈≤,故选C.考点:特称命题的否定(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A【解析】试题分析:根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A. 考点:独立重复试验;互斥事件和概率公式(5)已知M (x 0,y 0)是双曲线C :2212x y -=上的一点,F 1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是( )(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233)【答案】A考点:向量数量积;双曲线的标准方程(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
2021年普通高等学校招生全国统一考试〔全国卷Ⅰ〕理科数学一. 选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合{}2430A x x x =-+<,{}230x x ->,那么A B =〔A 〕33,2⎛⎫--⎪⎝⎭ 〔B 〕33,2⎛⎫- ⎪⎝⎭ 〔C 〕31,2⎛⎫ ⎪⎝⎭〔D 〕3,32⎛⎫⎪⎝⎭2.设yi x i +=+1)1(,其中y x ,是实数,那么=+yi x 〔A 〕1〔B 〕2〔C 〕3〔D 〕23.等差数列{}n a 前9项的和为27,108a =,那么100a = 〔A 〕100 〔B 〕99 〔C 〕98 〔D 〕974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是 〔A 〕13 〔B 〕12 〔C 〕23 〔D 〕345.方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的间隔 为4,那么n 的取值范围是 〔A 〕()1,3- 〔B〕(- 〔C 〕()0,3 〔D〕( 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.假设该几何体的体积是283π,那么它的外表积是 〔A 〕17π 〔B 〕18π 〔C 〕20π 〔D 〕28π7.函数22xy x e =-在[]2,2-的图像大致为〔A 〕B 〕(C )D 〕8.假设101a b c >><<,,那么〔A 〕c c a b < 〔B 〕c c ab ba < 〔C 〕log log b a a c b c < 〔D 〕log log a b c c < 9.执行右面的程序框图,假如输入的011x y n ===,,,那么输出x ,y 的值满足 〔A 〕2y x = 〔B 〕3y x = 〔C 〕4y x = 〔D 〕5y x = 10.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.|AB|=,|DE|=那么C 的焦点到准线的间隔 为(A)2 (B)4 (C)6 (D)811.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面AB B 1A 1=n ,那么m 、n 所成角的正弦值为(B)2(D)1312.函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,那么ω的最大值为 〔A 〕11 〔B 〕9 〔C 〕7 〔D 〕5 二、填空题:本大题共3小题,每题5分13.设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,那么m = .14.5(2x 的展开式中,x 3的系数是 .〔用数字填写答案〕15.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,那么a 1a 2 …a n 的最大值为 . 16.某高科技企业消费产品A 和产品B 需要甲、乙两种新型材料.消费一件产品A 需要甲材料,乙材料1kg ,用5个工时;消费一件产品B 需要甲材料,乙材料,用3个工时.消费一件产品A 的利润为2100元,消费一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,那么在不超过600个工时的条件下,消费产品A 、产品B 的利润之和的最大值为 元. 三.解答题:解容许写出文字说明,证明过程或演算步骤. 17.〔本小题总分值为12分〕结束ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,2cos (cos cos ).C a B+b A c =〔I 〕求C ; 〔II〕假设=c ∆ABC∆ABC 的周长.18.〔本小题总分值为12分〕如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. 〔I 〕证明:平面ABEF ⊥平面EFDC ; 〔II 〕求二面角E -BC -A 的余弦值.19.〔本小题总分值12分〕某公司方案购置2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购置这种零件作为备件,每个200元.在机器使用期间,假如备件缺乏再购置,那么每个500元.现需决策在购置机器时应同时购置几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购置2台机器的同时购置的易损零件数. 〔I 〕求X 的分布列;〔II 〕假设要求()0.5P X n ≤≥,确定n 的最小值; 〔III 〕以购置易损零件所需费用的期望值为决策根据,在19n =与20n =之中选其一,应选用哪个?20.〔本小题总分值12分〕设圆222150x y x ++-=的圆心为A ,直线l 过点B 〔1,0〕且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . 〔I 〕证明EA EB +为定值,并写出点E 的轨迹方程;〔II 〕设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,QCABDEF两点,求四边形MPNQ 面积的取值范围.21.〔本小题总分值12分〕函数()()()221xf x x e a x =-+-有两个零点.(I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 请考生在22、23、24题中任选一题作答,假如多做,那么按所做的第一题计分. 22.〔本小题总分值10分〕选修4-1:几何证明选讲 如图,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,12OA 为半径作圆.(I)证明:直线AB 与⊙O 相切;(II)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .23.〔本小题总分值10分〕选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩〔t 为参数,a >0〕.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. 〔I 〕说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;〔II 〕直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,假设曲线C 1与C 2的公共点都在C 3上,求a .24.〔本小题总分值10分〕选修4—5:不等式选讲 函数()123f x x x =+--. 〔I 〕画出()y f x =的图像; 〔II 〕求不等式()1f x >的解集.ODCBA32A B x ⎧=⎨⎩应选D .2.由()11i x yi +=+可知:1x xi yi +=+,故1x x y =⎧⎨=⎩,解得:11x y =⎧⎨=⎩.所以,x yi +应选B .3.由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =,而108a =,因此公差1051105a a d -==-∴100109098a a d =+=.应选C .4.如下图,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟根据几何概型,所求概率10101402P +==. 应选B . 5.222213x y m n m n -=+-表示双曲线,那么()()2230m n m n +-> ∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距 ∴焦距2224c m =⋅=,解得1m = ∴13n -<< 应选A . 6.原立体图如下图:是一个球被切掉左上角的18后的三视图外表积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯ 应选A .7.()22288 2.80f e =->->,排除A()22288 2.71f e =-<-<,排除B0x >时,()22x f x x e =-()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-=因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C应选D .8.对A :由于01c <<,∴函数c y x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误对B :由于110c -<-<,∴函数1c y x -=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误对C :要比拟log b a c 和log a b c ,只需比拟ln ln a c b 和ln ln b c a ,只需比拟ln ln c b b 和ln ln ca a,只需ln b b和ln a a 构造函数()()ln 1f x x x x =>,那么()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b>>⇔>>⇔<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确对D : 要比拟log a c 和log b c ,只需比拟ln ln c a 和ln ln cb而函数ln y x =在()1,+∞上单调递增,故111ln ln 0ln ln a b a b a b>>⇔>>⇔<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cc c a b>⇔>,D 错误应选C . 9.如下表:输出32x =,6y =,满足4y x = 应选C .10. 以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=, 题目条件翻译如图:设(0A x,2p D ⎛- ⎝,点(0A x 在抛物线22y px =上,∴082px =……①点2p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝……②点(0A x 在圆222x y r +=上,∴2208x r +=……③ 联立①②③解得:4p =,焦点到准线的间隔 为4p =. 应选B . 11. 如下图:∵11CB D α∥平面,∴假设设平面11CB D 平面1ABCD m =,那么1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D = ∴111B D m ∥,故11B D m ∥ 同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小.而1111B C B D CD ==〔均为面对交线〕,因此113CD Bπ∠=,即11sin CD B ∠=.应选A .12. 由题意知: 12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩ 那么21k ω=+,其中k ∈Z ()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤接下来用排除法假设π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调111假设π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减应选B .13.-2 14.10 15.64 16. 216000 13. 由得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-. 14. 设展开式的第1k +项为1k T +,{}0,1,2,3,4,5k ∈∴()5552155C 2C 2k k kk k kk T x x ---+==. 当532k -=时,4k =,即454543255C 210T x x --==故答案为10.15.由于{}n a 是等比数列,设11n n a a q -=,其中1a 是首项,q 是公比.∴2131132411101055a a a a q a a a q a q ⎧+=+=⎧⎪⇔⎨⎨+=+=⎪⎩⎩,解得:1812a q =⎧⎪⎨=⎪⎩. 故412n n a -⎛⎫= ⎪⎝⎭,∴()()()()21174932...47222412111...222n n n n n a a a ⎡⎤⎛⎫-+-++----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫⋅⋅⋅=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 当3n =或4时,21749224n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦取到最小值6-,此时2174922412n ⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦⎛⎫ ⎪⎝⎭取到最大值62.所以12...n a a a ⋅⋅⋅的最大值为64. 16. 设消费A 产品x 件,B 产品y 件,根据所消耗的材料要求、工时要求等其他限制条件,构造线性规那么约束为目的函数2100900z x y =+作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0) 在(60,100)处获得最大值,210060900100216000z =⨯+⨯= 17.解: ⑴ ()2cos cos cos C a B b A c +=由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C ⋅+=∵πA B C ++=,()0πA B C ∈、、, ∴()sin sin 0A B C +=>∴2cos 1C =,1cos 2C =∵()0πC ∈, ∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅221722a b ab =+-⋅()237a b ab +-=1sin 2S ab C =⋅∴6ab =∴()2187a b +-=5a b +=∴ABC △周长为5a b c ++= 18.解:(1) ∵ABEF 为正方形 ∴AF EF ⊥∵90AFD ∠=︒ ∴AF DF ⊥ ∵=DFEF F∴AF ⊥面EFDCAF ⊥面ABEF∴平面ABEF ⊥平面EFDC ⑵ 由⑴知60DFE CEF ∠=∠=︒∵AB EF ∥AB ⊄平面EFDC EF ⊂平面EFDC∴AB ∥平面ABCDAB ⊂平面ABCD∵面ABCD 面EFDC CD = ∴AB CD ∥ ∴CD EF ∥∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =()()000020E B a ,,,,()02202a C A a a ⎛⎫⎪ ⎪⎝⎭,,, ()020EB a =,,,22a BC a ⎛⎫=- ⎪ ⎪⎝⎭,,()200AB a =-,,设面BEC 法向量为()m x y z =,,.00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩,即111120202a y a x ay z ⋅=⎧⎪⎨⋅-+⋅=⎪⎩11101x y z ===-,()301m =-,,设面ABC 法向量为()22n x z ==00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩.即222220220a x ay ax ⎧-+=⎪⎨⎪=⎩ 22204x y z ===,()034n =, 设二面角E BC A --的大小为θ.cos 3m n m n θ⋅===+⋅ ∴二面角E - 19解: ⑴ 每台机器更换的易损零件数为8,9,10,11记事件i A 为第一台机器3年内换掉7i +个零件()1,2,3,4i = 记事件i B 为第二台机器3年内换掉7i +个零件()1,2,3,4i =由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B == 设2台机器共需更换的易损零件数的随机变量为X ,那么X 的可能的取值为16,17,18,19,20,21,22()()()11160.20.20.04P X P A P B ===⨯=()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()()()()()14233241190.20.20.20.20.40.2P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯0.20.40.24+⨯=()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()3443210.20.20.20.20.08P x P A P B P A P B ==+=⨯+⨯= ()22P x ==⑵ 要令()0.5P x n ≤≥,0.040.160.240.5++<,0.040.160.240.240.5+++≥ 那么n 的最小值为19⑶ 购置零件所需费用含两局部,一局部为购置机器时购置零件的费用,另一局部为备件缺乏时额外购置的费用当19n =时,费用的期望为192005000.210000.0815000.044040⨯+⨯+⨯+⨯= 当20n =时,费用的期望为202005000.0810000.044080⨯+⨯+⨯=所以应选用19n =20. (1)圆A 整理为()221x y ++=BE AC ∥,那么C =∠EBD D ∴=∠∠,那么EB =AE EB AE ED ∴+=+=所以E ⑵ 221:143x y C +=;设:l x =因为PQ l ⊥,设:PQ y =221143x my x y =+⎧⎪⎨+=⎪⎩得()234m y +那|||M N MN y y =-=;圆心A 到PQ 间隔 |11|m d ---==所以||PQ = 1|||2MPNQ S MN ⎡∴=⋅=⎣ 21. 〔Ⅰ〕'()f x =〔i 〕设0a =,那么()(2)x f x x e =-,()f x 只有一个零点.〔ii 〕设0a >,那么当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2a b <,那么 223()(2)(1)()022a f b b a b a b b >-+-=->, 故()f x 存在两个零点. 〔iii 〕设0a <,由'()0f x =得1x =或ln(2)x a =-.假设2e a ≥-,那么ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.假设2e a <-,那么ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.II ()不妨设12x x <,由〔Ⅰ〕知1(,1)x ∈-∞,2(1,)x ∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以 222222(2)(2)x x f x x e x e --=---.设2()(2)x x g x xe x e -=---,那么2()(1)()x x g x x e e -'=--.所以当1x >时,()0g x '<,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.22.⑴ 设圆的半径为r ,作OK AB ⊥于K∵120OA OB AOB =∠=︒, ∴30sin302OA OK AB A OK OA r ⊥∠=︒=⋅︒==,, ∴AB 与O ⊙相切⑵ 方法一:假设CD 与AB 不平行 CD 与AB 交于F2FK FC FD =⋅①∵A B C D 、、、四点共圆∴()()FC FD FA FB FK AK FK BK ⋅=⋅=-+∵AK BK =∴()()22FC FD FK AK FK AK FK AK ⋅=-+=-②由①②可知矛盾 ∴AB CD ∥方法二:因为,,,A B C D 四点共圆,不妨设圆心为T ,因为,OA OB TA TB ==,所以,O T 为AB 的中垂线上,同理,OC OD TC TD ==,所以OT CD 为的中垂线,所以AB CD ∥. 23.⑴ cos 1sin x a t y a t =⎧⎨=+⎩ 〔t 均为参数〕 ∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=∵222sin x y y ρρθ+==, ∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程 ⑵ 24cos C ρθ=:两边同乘ρ得22224cos cos x y x ρρθρρθ==+=, 224x y x ∴+= 即()2224x y -+= ②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C∴210a -= ∴1a = 24.⑴ 如下图: ⑵ ()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥ ()1f x > 当1x -≤,41x ->,解得5x >或3x <1x -∴≤ 当312x -<<,321x ->,解得1x >或13x < 113x -<<∴或312x << 当32x ≥,41x ->,解得5x >或3x < 332x <∴≤或5x > 综上,13x <或13x <<或5x > ()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,。
2021年全国统一高考数学试卷(新高考Ⅰ卷)(含详细解析)2021年全国统一高考数学试卷(新高考Ⅰ卷)注意事项:在答卷前,考生务必在答题卡上填写自己的姓名和准考证号。
回答选择题时,选出每小题的答案后,用铅笔在答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
1.(5分) 设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A。
{2} B。
{2,3} C。
{3,4} D。
{2,3,4}2.(5分) 已知z=2-i,则|z-3i|=()A。
6-2i B。
4-2i C。
6+2i D。
4+2i3.(5分) 已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2 B。
4 C。
4√2 D。
2√24.(5分) 下列区间中,函数f(x)=7sin(x)单调递增的区间是()A。
(0,π/2) B。
(π/2,π) C。
(π,3π/2) D。
(3π/2,2π)5.(5分) 已知F1,F2是椭圆C的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为()A。
13 B。
12 C。
9 D。
66.(5分) 若tanθ=-2,则cos2θ=()A。
-3/5 B。
-4/5 C。
-24/25 D。
-7/257.(5分) 若过点(a,b)可以作曲线y=ex的两条切线,则()XXX<a B。
ea<b C。
0<a<eb D。
0<b<ea8.(5分) 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,甲表示事件“两次取到的数字和为偶数”,乙表示事件“两次取到的数字都是奇数”,则P(甲∪乙)=()A。
2/3 B。
5/9 C。
7/9 D。
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析2021年普通高等学校招生全国统一考试数学试卷,共22小题,满分150分,考试用时120分钟。
请考生注意以下事项:1.在答题卡上填写姓名、考生号、考场号和座位号,并用2B铅笔填涂试卷类型(A)。
2.选择题答案用2B铅笔在答题卡上涂黑,如需改动,用橡皮擦干净后再涂其他答案。
非选择题必须用黑色字迹的钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液。
3.考试结束后,请将试卷和答题卡一并交回。
一、选择题:共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合$A=x-2<x<4$,$B=\{2,3,4,5\}$,则$A$为()A。
$\{2\}$。
B。
$\{2,3\}$。
C。
$\varnothing$。
D。
$\{3,4\}$2.已知$z=2-i$,则$z(z+i)$为()A。
$6-2i$。
B。
$4-2i$。
C。
$6+2i$。
D。
$4+2i$3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2.B。
2$\sqrt{2}$。
C。
4.D。
4$\sqrt{2}$4.下列区间中,函数$f(x)=7\sin\left(x-\dfrac{\pi}{6}\right)$单调递增的区间是()A。
$\left(0,\dfrac{\pi}{2}\right)$。
B。
$\left(\dfrac{\pi}{2},\pi\right)$。
C。
$\left(\dfrac{3\pi}{2},2\pi\right)$。
D。
$\left(\dfrac{\pi}{2},\dfrac{3\pi}{2}\right)$5.已知$F_1,F_2$是椭圆$C:x^2+y^2=1$的两个焦点,点$M$在$C$上,则$MF_1\cdot MF_2$的最大值为()A。
2021年普通高等学校招生全国统一考试(新高考全国I 卷)数 学本试题共4页,22小题,满分150分。
考试用时120分钟。
注意事项:1. 答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应的位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须卸载答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准适用铅笔和涂改液。
不按以上要求作答无效。
4. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B =A. {2}B. {2,3}C. {3,4}D. {2,3,4} 2. 已知z =2-i ,则z (z +i)=A. 6-2iB. 4-2iC. 6+2iD. 4+2i 3、已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为 A. 2 B. 2√2 C. 4 D. 4√2 4. 下列区间中,函数f (x )=7sin(x-π6)单调递增的区间是A. (0,π2) B. (π2,π) C. (π,3π2) D. (3π2,2π)5. 已知F 1,F 2是椭圆C :x 29+y 24 =1的两个焦点,点M 在C 上,则|MF 1|⋅|MF 2|的最大值为A. 13B. 12C. 9D. 6 6. 若tan θ= -2,则sin θ(1+sin2θ)sin θ+cos θ=A. -65B. - 25C. 25D.657. 若过点(a ,b )可以作曲线y =e x 的两条切线,则A. e b < aB. e a < bC. 0<a <e bD. 0 <b <e a8. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球。
2021 年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2(z +z) + 3(z -z) = 4 + 6i ,则z =( )A.1 - 2iB.1 + 2iC.1 +iD.1 -i答案:C解析:设z =a +bi ,则 z =a -bi ,2(z +z) + 3(z -z) = 4a + 6bi = 4 + 6i ,所以 a = 1 ,b = 1,所以 z = 1 +i .2.已知集合S = {s | s = 2n +1, n ∈Z} ,T = {t | t = 4n +1,n ∈Z},则S T =()A. ∅B. SC. TD. Z答案:C解析:s = 2n +1,n ∈Z ;当n = 2k ,k ∈Z 时,S = {s | s = 4k +1, k ∈Z} ;当n = 2k +1,k ∈Z 时,T =TS = {s | s = 4k + 3, k ∈Z}.所以T Ü S ,S.故选 C.3.已知命题p : ∃x ∈R ﹐sin x < 1 ;命题q : ∀x ∈R,e|x| ≥1 ,则下列命题中为真命题的是()A.p ∧qB.⌝p ∧qC.p ∧⌝qD.⌝( p ∨q)答案:A解析:根据正弦函数的值域sin x ∈[-1,1] ,故∃x ∈R ,sin x < 1 ,p 为真命题,而函数 y =y =e|x|为偶函数,且x ≥ 0 时,y =e|x| ≥1,故∀x ∈R ,y =e|x| ≥1恒成立.,则q 也为真命题,所以p ∧q 为真,选 A.4.设函数f ( x) =1-x,则下列函数中为奇函数的是()1+xA.f ( x -1) -1B.f ( x -1) +1C.f ( x +1) -1D.f ( x +1) +1答案:B解析:1-x 2 2f (x) ==-1+1+x1+x ,f (x) 向右平移一个单位,向上平移一个单位得到g(x) =为奇x函数.5.在正方体ABCD -A1B1C1D1中,P为B1D1 的中点,则直线PB 与AD1所成的角为()A. π2 B. π3 C. π4 D. π65 4答案:D解析:如图, ∠PBC 1 为直线 PB 与 AD 1 所成角的平面角.易知∆A 1BC 1 为正三角形,又 P 为 A 1C 1 中点,所以∠PBC=π.166. 将5 名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4 个项目进行培训,每名志愿者只分配到1 个项目,每个项目至少分配1 名志愿者,则不同的分配方案共有( ) A. 60 种B. 120 种C. 240 种D. 480 种 答案:C解析:所求分配方案数为C2A 4 = 240 .7. 把函数 y = f ( x ) 图像上所有点的横坐标缩短到原来的1倍,纵坐标不变,再把所得曲 2线向右平移 π 个单位长度,得到函数 y = sin( x - π) 的图像,则 f ( x ) = ()3 4 A. sin( x - 7π )2 12 B. sin( x + π )2 12C. sin(2x - 7π)12 D. sin(2x +π) 12答案:B解析:逆向:y= sin(x -π左移ππ) −−−3→y=sin(x +) −横−坐−标变−为原−来的−2倍−→y = sin(1x +π) .4 12 2 12故选 B.8.在区间(0,1) 与(1, 2) 中各随机取1 个数,则两数之和大于7的概率为()4A.79B.2332 C.932 D.29答案:B解析:由题意记x ∈ (0,1),y ∈ (1, 2) ,题目即求x +y >7的概率,绘图如下所示. 4S 1⨯1-1AM ⋅AN 1-1⨯3⨯3故P =阴= 2 = 2 4 4 =23.S正ABCD1⨯1 1 329.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点E, H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”. GC 与EH 的差称为“表目距的差”,则海岛的高AB =()A.表高⨯表距+表高表目距的差B.表高⨯表距-表高表目距的差C.表高⨯表距+表距表目距的差D.表高⨯表距-表距表目距的差答案:A解析:连接 DF 交 AB 于M ,则 AB =AM +BM .记∠BDM =α,∠BFM =β,则MBtan βMBtanα=MF -MD =DF .而tan β=FG,tanα=ED.所以GC EHMB-MB=MB(1-1) =MB ⋅(GC-EH) =MB ⋅GC -EH. tan β tanα tan β tanα FG ED ED故MB = ED ⋅DF =表高⨯表距,所以高AB =表高⨯表距+表高.GC -EH 表目距的差表目距的差-10.设a≠0 ,若x =a 为函数f(x)=a(x -a)2 (x -b)的极大值点,则A.a <bB.a >bC.ab <a2D.ab >a2答案:D解析:若a > 0 ,其图像如图(1),此时,0 <a <b ;若a < 0 ,时图像如图(2),此时,b <a < 0 . 综上, ab <a2.x2 +y2=>>11.设B 是椭圆C :a2 b2 1(a b 0) 的上顶点,若C 上的任意一点P 都满足,PB ≤ 2b ,则C 的离心率的取值范围是()A.[2,1) 21[ ,1)2 B.2 1.04 C.(0, 2] 21 (0, ]2答案:C解析:x 2y2y 2由题意,点 B (0, b ) ,设 P (x , y ) ,则 0 + 0 = 1⇒ x 2 = a 2 (1- 0 ) ,故 0a 2b 22y 2b 2c 2 PB = x 2 + ( y - b )2 = a 2(1- 0) + y 2 - 2by + b 2 = - y 2 - 2by + a 2 + b 2 ,0 0y 0 ∈[-b ,b ] .b 2 0 0 b 3b 2 0c由题意,当 y = -b 时,PB 2最大,则- ≤ -b ,b 2 ≥ c 2 ,a 2 - c 2 ≥ c 2 ,c = ≤ ,c ∈(0, 0c 2a 22].212. 设a = 2 ln1.01,b = ln1.02 ,c = 1,则()A. a < b < cB. b < c < aC. b < a < cD. c < a < b答案:B解析:设 f (x ) = ln(1+ x ) -+1,则b - c = f (0.02) ,易得f '(x ) =1 -1+ x当 x ≥ 0 时,1+ x =≥ ,故 f '(x ) ≤ 0 .所以 f (x ) 在[0, +∞) 上单调递减,所以 f (0.02) < f (0) = 0 ,故b < c .1+ 2x 2 1+ 2x = 1+ 2x - (1+ x ) (1+ x ) 1+ 2x(1+ x )2 1+ 2x D.1+ 4x 42 1+ 4x 1+ 4x - (1- x ) (1+ x ) 1+ 4x3y 再设 g (x ) = 2 l n(1+ x ) -+1,则a - c = g (0.01) ,易得g '(x ) =2 1+ x - = 2 ⋅.当0 ≤ x < 2 时, ≥ = 1+ x ,所以 g '(x ) 在[0.2) 上≥ 0 . 故 g (x ) 在[0.2) 上单调递增,所以 g (0.01) > g (0) = 0 ,故 a > c . 综上, a > c > b .二、填空题13. 已知双曲线 C :x 2 - 2m= 1(m > 0) 的一条渐近线为 3x + my = 0 , 则 C 的焦距为.答案:4解析:易知双曲线渐近线方程为 y = ± bx ,由题意得 a 2 = m , b 2 = 1 ,且一条渐近线方程为 ay =- mx ,则有m = 0 (舍去), m = 3 ,故焦距为 2c = 4 .14. 已知向量a = (1,3) , b = (3, 4) ,若(a - λb ) ⊥ b ,则λ =.答案:3 5解析:由题意得(a - λb ) ⋅ b = 0 ,即15 - 25λ = 0 ,解得λ = 3.515. 记 ∆ABC 的内角 A , B , C 的对边分别为 a , b , c,面积为a 2 + c 2 = 3ac ,则b =., B = 60︒ ,答案:2解析:1+ 4x 1+ 2x + x 2 3 23 2 5 S= 1 ac sin B = 3ac = ,所以 ac = 4 ,∆ABC2 4由余弦定理, b 2 = a 2 + c 2 - ac = 3ac - ac = 2ac = 8 ,所以b = 2 .16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面 PAC ⊥ 平面 ABC ,PA = PC =2 ,BA = BC =,AC = 2 ,俯视图为⑤.俯视图为③,如图(2), PA ⊥ 平面 ABC , PA = 1, AC = AB =5 , BC = 2 ,俯视图为④.1三、解答题17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10 件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和 y , 样本方差分别己为 s 2 和 S 2. 1 2(1)求x , y , s 2, s 2:12( 2 ) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 ( 如果y - x ≥ 2 , 否则不认为有显著提高 ) 。
绝密★启用前2021年普通高等学校招生全国统一考试数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B =A .{2}B .{2,3}C .{3,4}D .{2,3,4}2.已知2i z =-,则(i)z z += A .62i -B .42i -C .62i +D .42i +3A .2B .C .4D .4.下列区间中,函数π()7sin()6f x x =-单调递增的区间是A .π(0,)2B .π(,π)2C .3π(π,)2D .3π(,2π)25.已知1F ,2F 是椭圆22194x y C +=:的两个焦点,点M 在C 上,则12||||MF MF ⋅的最大值为 A .13B .12C .9D .66.若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+A .65-B .25-C .25D .657.若过点(,)a b 可以作曲线e x y =的两条切线,则 A .e b a <B .e a b <C .0e b a <<D .0e a b <<8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则 A .甲与丙相互独立 B .甲与丁相互独立 C .乙与丙相互独立 D .丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
2021年高考理科数学全国1卷1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图所示,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图所示,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图所示:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图所示,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图所示,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图所示,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图所示,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。