双向板计算
- 格式:doc
- 大小:672.00 KB
- 文档页数:36
(一)双向板按弹性理论的计算方法1.单跨双向板的弯矩计算为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。
在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。
板的弯矩可按下列公式计算:M = 弯矩系数×(g+p)l x2式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);g、p为板上恒载及活载设计值(kN/m2);l x为板的跨度(m)。
显示更多隐藏2.多跨连续双向板的弯矩计算(1)跨中弯矩双向板跨中弯矩的最不利活载位置图多跨连续双向板也需要考虑活载的最不利位置。
当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。
图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。
为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。
在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。
因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。
在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。
因此,每个区格均可按四边简支的单跨双向板计算。
将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。
(2)支座弯矩支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。
这样,所有中间支座均可视为固定支座,边支座则按实际情况考虑,因此可直接由单跨双向板的弯矩系数表查得弯矩系数,计算支座弯距。
%双向板荷载导算及计算永久荷载标准值:由板传来(1-2α^2+α^3)×(qGk×lcy/2)=长边梁自重bx×hx×25/1000000=长边梁梁侧抹灰自重2×20×hx×20/1000000=可变荷载标准值:由板传来基本组合:由可变荷载效应控制由永久荷载效应控制标准组合:准永久组合:作6.21(kN/m)由板传来2.16(kN/m)短边梁自重0.24(kN/m)短边梁梁侧抹灰自重qxGk =8.37(kN/m)qxQk =(1-2α^2+α^3)×(qQk ×lcy/2)=0.52(kN/m).qgx1= 1.2qxGk+1.4qxQk =10.76(kN/m)qgx2=1.35qxGk+1.4*0.7qxQk =11.80(kN/m)(kN/m)qgxK =qxGk+qxQk =8.88(kN/m)qgxQ =qxGk+0.5qxQk =8.62(kN/m)永久荷载标准值:(5/8)×(qGk×lcy/2)=4.69(kN/m)by×hy×25/1000000=2.59(kN/m)2×20×hy×20/1000000=0.32(kN/m)qyGk =7.28(kN/m)可变荷载标准值:由板传来qyQk =(5/8)×(qQk ×lcy/2)=0.39(kN/m)基本组合:.由可变荷载效应控制qgy1=1.2qyGk+1.4qyQk =9.28(kN/m)由永久荷载效应控制qgy2=1.35qyGk+1.4*0.7qyQk =10.21(kN/m)qgy =max(qgy1,qgy2)=10.21(kN/m)标准组合:qgyK =qyGk+qyQk =7.67(kN/m)准永久组合:qgyQ =qyGk+0.5qyQk =7.47(kN/m)作用在短边梁上的荷载。
(一)双向板按弹性理论的计算方法1.单跨双向板的弯矩计算为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。
在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。
板的弯矩可按下列公式计算:M = 弯矩系数×(g+p)l x2式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);g、p为板上恒载及活载设计值(kN/m2);l x为板的跨度(m)。
显示更多隐藏2.多跨连续双向板的弯矩计算(1)跨中弯矩双向板跨中弯矩的最不利活载位置图多跨连续双向板也需要考虑活载的最不利位置。
当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。
图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。
为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。
在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。
因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。
在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。
因此,每个区格均可按四边简支的单跨双向板计算。
将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。
(2)支座弯矩支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。
这样,所有中间支座均可视为固定支座,边支座则按实际情况考虑,因此可直接由单跨双向板的弯矩系数表查得弯矩系数,计算支座弯距。
双向板的弹性计算法双向板的弹性计算法双向板的受力特点前已述及。
双向板常用于工业建筑楼盖、公共建筑门厅部分以及横隔墙较多的民用房屋。
当民用房屋横隔墙间距较小时(如住宅),可将板直接支承于四周的砖墙上,以减少楼盖的结构高度。
1.双向板的计算双向板的内力计算有弹性计算法和塑性计算法两种,本书仅介绍双向板内力的弹性计算法。
弹性计算法是以弹性薄板理论为依据而进行计算的一种方法,由于这种方法内力分析比较复杂,为简化计算,通常是直接应用根据弹性薄板理论编制的弯矩系数表(附表)进行计算。
(1)单跨双向板的计算单跨双向板按其四边支承情况的不同,在楼盖中常会遇到如下六种情况:四边简支(图1a);一边固定三边简支(图1b);两对边固定、两对边简支(图1c);两邻边固定、两邻边简支(图1d);三边固定、一边简支(图7.1.38e);四边固定(图7.1.38f)。
(a)(b)(c)(d)(e)(f)图1 双向板的六种四边支承情况根据不同支承情况,可从附表中查出弯矩系数,即可求得弯矩:M=表中系数×ql2(1)式中M ——跨中或支座单位板宽内的弯矩;q ——均布荷载(kN /m2)l ——板的较小跨度(m)。
附表中给出了图1所示六种边界条件的单跨板在均布荷载作用下的挠度系数、支座弯矩系数以及泊松比μ =0时的跨中弯矩系数。
钢筋混凝土结构的泊松比μ=1/6,故对跨中弯矩应按下式计算:M x(μ )=M X +μM y(2)M y (μ)=M y+μM X (3)式中M X、M y——按附表查得的板跨中弯矩系数计算得到的跨中弯矩值。
【例1】某砖混结构卫生间的现浇板l1×l2=3600mm×6000mm,四周与圈梁整体现浇,现浇板厚h=90mm,墙体厚240 mm,板承受恒载设计值g=3.6KN/m,活载设计值q=2.8KN/m,采用C20砼,受力钢筋HPB235。
试确定该现浇板受力钢筋用量。
【解】长边与短边之比l2/l1=6000/3600=1.67<2,按双向板计算。
双向板 - 计算步骤双向板计算LB-1矩形板计算一、构件编号: LB-1 二、示意图三、依据规范《建筑结构荷载规范》 GB50009-2001 《混凝土结构设计规范》 GB50010-2021 四、计算信息 1.几何参数计算跨度: Lx = 3000 mm; Ly = 4600 mm 板厚: h = 120 mm 2.材料信息混凝土等级: C25 fc=11.9N/mm2 ft=1.27N/mm2 ftk=1.78N/mm2 钢筋种类: HRB400 fy = 360 N/mm2 Es = 2.0×105 N/mm2最小配筋率: ρ= 0.200%纵向受拉钢筋合力点至近边距离: as = 40mm 保护层厚度: c = 20mm 3.荷载信息(均布荷载)永久荷载分项系数: γG = 1.200 可变荷载分项系数: γQ = 1.400 准永久值系数: ψq = 1.000永久荷载标准值: qgk = 4.100kN/m2可变荷载标准值: qqk = 2.000kN/m24.计算方法:弹性板5.边界条件(上端/下端/左端/右端):固定/简支/简支/简支6.设计参数结构重要性系数: γo = 1.00 泊松比:μ = 0.200 五、计算参数:1.计算板的跨度: Lo = 3000 mmEc=2.80×104N/mm2第1页,共6页双向板计算2.计算板的有效高度: ho = h-as=120-40=80 mm六、配筋计算(lx/ly=3000/4600=0.652<2.000 所以按双向板计算): 1.X向底板钢筋1) 确定X向板底弯矩Mx = 表中系数(γG*qgk+γQ*qqk)*Lo2= (0.0634+0.0307*0.200)*(1.200*4.100+1.400*2.000)*32= 4.829 kN*m 2) 确定计算系数αs = γo*Mx/(α1*fc*b*ho*ho)= 1.00*4.829×106/(1.00*11.9*1000*80*80) = 0.0633) 计算相对受压区高度ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.063) = 0.066 4) 计算受拉钢筋面积As = α1*fc*b*ho*ξ/fy = 1.000*11.9*1000*80*0.066/360= 173mm25) 验算最小配筋率ρ = As/(b*h) = 173/(1000*120) = 0.144% ρ所以取面积为As = ρmin*b*h = 0.200%*1000*120 = 240 mm2采取方案?8@200, 实配面积251 mm2 2.Y向底板钢筋1) 确定Y向板底弯矩My = 表中系数(γG*qgk+γQ*qqk)*Lo2= (0.0307+0.0634*0.200)*(1.200*4.100+1.400*2.000)*32= 3.012 kN*m 2) 确定计算系数αs = γo*My/(α1*fc*b*ho*ho)= 1.00*3.012×106/(1.00*11.9*1000*80*80) = 0.0403) 计算相对受压区高度ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.040) = 0.040 4) 计算受拉钢筋面积As = α1*fc*b*ho*ξ/fy = 1.000*11.9*1000*80*0.040/360= 107mm25) 验算最小配筋率ρ = As/(b*h) = 107/(1000*120) = 0.089% ρ所以取面积为As = ρmin*b*h = 0.200%*1000*120 = 240 mm2采取方案?8@200, 实配面积251 mm2 3.Y向上边支座钢筋 1) 确定上边支座弯矩Moy = 表中系数(γG*qgk+γQ*qqk)*Lo2= 0.1131*(1.200*4.100+1.400*2.000)*32第2页,共6页双向板计算= 7.861 kN*m 2) 确定计算系数αs = γo*Moy/(α1*fc*b*ho*ho)= 1.00*7.861×106/(1.00*11.9*1000*80*80) = 0.1033) 计算相对受压区高度ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.103) = 0.109 4) 计算受拉钢筋面积As = α1*fc*b*ho*ξ/fy = 1.000*11.9*1000*80*0.109/360= 289mm25) 验算最小配筋率ρ = As/(b*h) = 289/(1000*120) = 0.241% ρ≥ρmin = 0.200% 满足最小配筋要求采取方案?8@160, 实配面积314 mm2 七、跨中挠度计算:Mk -------- 按荷载效应的标准组合计算的弯矩值 Mq -------- 按荷载效应的准永久组合计算的弯矩值 1.计算荷载效应 Mk = Mgk + Mqk= (0.0634+0.0307*0.200)*(4.100+2.000)*32= 3.816 kN*m Mq = Mgk+ψq*Mqk= (0.0634+0.0307*0.200)*(4.100+1.0*2.000)*32= 3.816 kN*m 2.计算受弯构件的短期刚度 Bs1) 计算按荷载荷载效应的两种组合作用下,构件纵向受拉钢筋应力σsk = Mk/(0.87*ho*As) 混规(7.1.4-3)= 3.816×106/(0.87*80*251) = 218.438 N/mm σsq = Mq/(0.87*ho*As) 混规(7.1.4-3)= 3.816×106/(0.87*80*251) = 218.438 N/mm2) 计算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率矩形截面积: Ate = 0.5*b*h = 0.5*1000*120= 60000mm2ρte = As/Ate 混规(7.1.2-4) = 251/60000 = 0.418%3) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψk = 1.1-0.65*ftk/(ρte*σsk) 混规(7.1.2-2) = 1.1-0.65*1.78/(0.418%*218.438) = -0.166 因为ψ不能小于最小值0.2,所以取ψk = 0.2ψq = 1.1-0.65*ftk/(ρte*σsq) 混规(7.1.2-2) = 1.1-0.65*1.78/(0.418%*218.438) = -0.166 因为ψ不能小于最小值0.2,所以取ψq = 0.2 4) 计算钢筋弹性模量与混凝土模量的比值αEαE = Es/Ec = 2.0×105/2.80×104= 7.143 5) 计算受压翼缘面积与腹板有效面积的比值γf 矩形截面,γf=06) 计算纵向受拉钢筋配筋率ρ第3页,共6页双向板计算ρ = As/(b*ho)= 251/(1000*80) = 0.314% 7) 计算受弯构件的短期刚度 Bs2Bsk = Es*As*ho/[1.15ψk+0.2+6*αE*ρ/(1+ 3.5γf')](混规(7.2.3-1))52= 2.0×10*251*80/[1.15*-0.166+0.2+6*7.143*0.314%/(1+3.5*0.0)]22= 5.692×10 kN*m2Bsq = Es*As*ho/[1.15ψq+0.2+6*αE*ρ/(1+ 3.5γf')](混规(7.2.3-1))52= 2.0×10*251*80/[1.15*-0.166+0.2+6*7.143*0.314%/(1+3.5*0.0)]= 5.692×102 kN*m23.计算受弯构件的长期刚度B1) 确定考虑荷载长期效应组合对挠度影响增大影响系数θ当ρ'=0时,θ=2.0 混规(7.2.5) 2) 计算受弯构件的长期刚度 BBk = Mk/(Mq*(θ-1)+Mk)*Bs (混规(7.2.2-1))= 3.816/(3.816*(2.0-1)+3.816)*5.692×102= 2.846×102 kN*m2Bq = Bsq/θ (混规(7.2.2-2))= 5.692×102/2.0= 2.846×102 kN*m2B = min(Bk,Bq)= min(284.588,284.588) = 284.588 4.计算受弯构件挠度f = f*(q4maxgk+qqk)*Lo/B= 0.00677*(4.100+2.000)*34/2.846×102= 11.749mm 5.验算挠度挠度限值fo=Lo/200=3000/200=15.000mmfmax=11.749mm≤fo=15.000mm,满足规范要求! 八、裂缝宽度验算: 1.跨中X方向裂缝 1) 计算荷载效应Mx = 表中系数(qgk+ψqqk)*Lo2= (0.0634+0.0307*0.200)*(4.100+1.00*2.000)*32= 3.816 kN*m2) 光面钢筋,所以取值vi=0.7 3) 因为C > 65,所以取C = 654) 计算按荷载效应的准永久组合作用下,构件纵向受拉钢筋应力σsq=Mq/(0.87*ho*As) 混规(7.1.4-3)=3.816×106/(0.87*80*251) =218.438N/mm5) 计算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率矩形截面积,Ate=0.5*b*h=0.5*1000*120=60000 mm2ρte=As/Ate 混规(7.1.2-4) =251/60000 = 0.0042第4页,共6页双向板计算因为ρte=0.0042 < 0.01,所以让ρte=0.01 6) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψ=1.1-0.65*ftk/(ρte*σsq) 混规(7.1.2-2) =1.1-0.65*1.780/(0.0100*218.438) =0.5707) 计算单位面积钢筋根数n n=1000/dist = 1000/200 =58) 计算受拉区纵向钢筋的等效直径deqd2eq= (∑ni*di)/(∑ni*vi*di) =5*8*8/(5*0.7*8)=11 9) 计算最大裂缝宽度ωmax=αcr*ψ*σsq/Es*(1.9*C+0.08*Deq/ρte) (混规(7.1.2-1)=1.9*0.570*218.438/2.0×105*(1.9*20+0.08*11/0.0100) =0.1532mm ≤ 0.30, 满足规范要求2.跨中Y方向裂缝 1) 计算荷载效应My = 表中系数(qgk+ψqqk)*Lo2= (0.0307+0.0634*0.200)*(4.100+1.00*2.000)*32= 2.380 kN*m2) 光面钢筋,所以取值vi=0.7 3) 因为C > 65,所以取C = 654) 计算按荷载效应的准永久组合作用下,构件纵向受拉钢筋应力σsq=Mq/(0.87*ho*As) 混规(7.1.4-3)=2.380×106/(0.87*80*251) =136.228N/mm5) 计算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率矩形截面积,Ate=0.5*b*h=0.5*1000*120=60000 mm2ρte=As/Ate 混规(7.1.2-4) =251/60000 = 0.0042因为ρte=0.0042 < 0.01,所以让ρte=0.01 6) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψ=1.1-0.65*ft k/(ρte*σsq) 混规(7.1.2-2) =1.1-0.65*1.780/(0.0100*136.228) =0.2517) 计算单位面积钢筋根数n n=1000/dist = 1000/200 =58) 计算受拉区纵向钢筋的等效直径deqd= (∑n2eqi*di)/(∑ni*vi*di) =5*8*8/(5*0.7*8)=11 9) 计算最大裂缝宽度ωmax=αcr*ψ*σsq/Es*(1.9*C+0.08*Deq/ρte) (混规(7.1.2-1)=1.9*0.251*136.228/2.0×105*(1.9*20+0.08*11/0.0100)第5页,共6页双向板计算=0.0420mm ≤ 0.30, 满足规范要求 3.支座上方向裂缝 1) 计算荷载效应Moy = 表中系数((qgk+ψqqk)*Lo2)= 0.1131*(4.100+1.00*2.000)*32= 6.211 kN*m2) 光面钢筋,所以取值vi=0.7 3) 因为C > 65,所以取C = 654) 计算按荷载效应的准永久组合作用下,构件纵向受拉钢筋应力σsq=Mq/(0.87*ho*As) 混规(7.1.4-3)=6.211×106/(0.87*80*314) =284.215N/mm5) 计算按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率矩形截面积,Ate=0.5*b*h=0.5*1000*120=60000 mm2ρte=As/Ate 混规(7.1.2-4) =314/60000 = 0.0052因为ρte=0.0052 < 0.01,所以让ρte=0.01 6) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψ=1.1-0.65*ftk/(ρte*σsq) 混规(7.1.2-2) =1.1-0.65*1.780/(0.0100*284.215) =0.6937) 计算单位面积钢筋根数n n=1000/dist = 1000/160 =68) 计算受拉区纵向钢筋的等效直径deqd*d2eq= (∑nii)/(∑ni*vi*di) =6*8*8/(6*0.7*8)=11 9) 计算最大裂缝宽度ωmax=αcr*ψ*σsq/Es*(1.9*C+0.08*Deq/ρte) (混规(7.1.2-1)=1.9*0.693*284.215/2.0×105*(1.9*20+0.08*11/0.0100) =0.2421mm ≤ 0.30, 满足规范要求第6页,共6页感谢您的阅读,祝您生活愉快。
双向板的计算方法
△板厚:一般取板块短跨尺寸的1/40
△板的尺寸:四边简支情况下可以做到11m×11m;四边固定的情况下可以做到12m×12m,在正常的民用荷载作用下,不会出现问题
△板的配筋:采用塑性计算方法,查表计算,注意混凝土的泊松比ν=0.2
△异形双向板等效为规则双向板的算法:
①对于L形的双向板,可以补齐缺失的板块,然后按一个完整的大双向板计算;构造上要在这个L形板的阴角处另外增加5根45°斜向支座的上铁。
②对于很不规则的其他异形双向板,条件允许时设一个明
次梁,将异形板分割成两个小的规则板块计算,梁高取跨度的1/15;条件不允许时,可设置暗梁,梁高同大板厚,同时必须大于160mm,梁宽一般大于等于1000mm.暗梁主筋直径不宜大于16mm.。
(一)双向板按弹性理论的计算方法1.单跨双向板的弯矩计算为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。
在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。
板的弯矩可按下列公式计算:M = 弯矩系数×(g+p)l x2式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);g、p为板上恒载及活载设计值(kN/m2);l x为板的跨度(m)。
2.多跨连续双向板的弯矩计算(1)跨中弯矩双向板跨中弯矩的最不利活载位置图多跨连续双向板也需要考虑活载的最不利位置。
当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。
图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。
为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。
在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。
因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。
在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。
因此,每个区格均可按四边简支的单跨双向板计算。
将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。
(2)支座弯矩支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。
这样,所有中间支座均可视为固定支座,边支座则按实际情况考虑,因此可直接由单跨双向板的弯矩系数表查得弯矩系数,计算支座弯距。
(一)双向板按弹性理论的计算方法1.单跨双向板的弯矩计算为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。
在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。
板的弯矩可按下列公式计算:M = 弯矩系数×(g+p)l x2式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);g、p为板上恒载及活载设计值(kN/m2);l x为板的跨度(m)。
显示更多隐藏2.多跨连续双向板的弯矩计算(1)跨中弯矩双向板跨中弯矩的最不利活载位置图多跨连续双向板也需要考虑活载的最不利位置。
当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。
图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。
为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。
在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。
因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。
在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。
因此,每个区格均可按四边简支的单跨双向板计算。
将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。
(2)支座弯矩支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。
这样,所有中间支座均可视为固定支座,边支座则按实际情况考虑,因此可直接由单跨双向板的弯矩系数表查得弯矩系数,计算支座弯距。
(一)双向板按弹性理论的计算方法1.单跨双向板的弯矩计算为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。
在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。
板的弯矩可按下列公式计算:M = 弯矩系数×(g+p)l x2式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);g、p为板上恒载及活载设计值(kN/m2);l x为板的跨度(m)。
错误!未找到引用源。
错误!未找到引用源。
2.多跨连续双向板的弯矩计算(1)跨中弯矩双向板跨中弯矩的最不利活载位置图多跨连续双向板也需要考虑活载的最不利位置。
当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。
图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。
为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。
在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。
因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。
在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。
因此,每个区格均可按四边简支的单跨双向板计算。
将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。
错误!未找到引用源。
错误!未找到引用源。
(2)支座弯矩支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。
这样,所有中间支座均可视为固定支座,边支座则按实际情况考虑,因此可直接由单跨双向板的弯矩系数表查得弯矩系数,计算支座弯距。
永久荷载标准值:由板传来(1-2α^2+α^3)×(qGk×lcy)=15.64(kN/m)由板传来长边梁自重bx×(hx -h)×25/1000000= 2.63(kN/m)短边梁自重长边梁梁侧抹灰自重2×20×(hx -h)×20/1000000=0.28(kN/m)短边梁梁侧抹灰自重qxGk =18.26(kN/m )可变荷载标准值:由板传来qxQk =(1-2α^2+α^3)×(qQk ×lcy)= 5.71(kN/m)基本组合:.由可变荷载效应控制qgx1=1.2qxGk+1.4qxQk =29.91(kN/m)由永久荷载效应控制qgx2=1.35qxGk+1.4*0.7qxQk =30.25(kN/m)qgx =max(qgx1,qgx2)=30.25(kN/m)标准组合:qgxK =qxGk+qxQk =23.97(kN/m)准永久组合:qgxQ =qxGk+0.5qxQk =21.12(kN/m)作用在长边梁上的荷载永久荷载标准值:(5/8)×(qGk×lcy)=12.84(kN/m)by×(hy -h)×25/1000000= 5.63(kN/m)2×20×(hy -h)×20/1000000=0.60(kN/m)qyGk =18.47(kN/m)可变荷载标准值:由板传来qyQk =(5/8)×(qQk ×lcy)= 4.69(kN/m)基本组合:.由可变荷载效应控制qgy1=1.2qyGk+1.4qyQk =28.73(kN/m)由永久荷载效应控制qgy2=1.35qyGk+1.4*0.7qyQk =29.53(kN/m)qgy =max(qgy1,qgy2)=29.53(kN/m)标准组合:qgyK =qyGk+qyQk =23.16(kN/m)准永久组合:qgyQ =qyGk+0.5qyQk =20.81(kN/m)作用在短边梁上的荷载。
双向板-计算步骤⼀、构件编号: LB-1⼆、⽰意图三、依据规范《建筑结构荷载规范》 GB50009-2001《混凝⼟结构设计规范》 GB50010-2010四、计算信息1.⼏何参数计算跨度: Lx = 3000 mm; Ly = 4600 mm板厚: h = 120 mm2.材料信息混凝⼟等级: C25 fc=mm2 ft=mm2 ftk=mm2Ec=×104N/mm2钢筋种类: HRB400 fy = 360 N/mm2Es = ×105 N/mm2最⼩配筋率: ρ= %纵向受拉钢筋合⼒点⾄近边距离: as = 40mm保护层厚度: c = 20mm3.荷载信息(均布荷载)永久荷载分项系数: γG =可变荷载分项系数: γQ =准永久值系数: ψq =永久荷载标准值: qgk = m2可变荷载标准值: qqk = m24.计算⽅法:弹性板5.边界条件(上端/下端/左端/右端):固定/简⽀/简⽀/简⽀6.设计参数结构重要性系数: γo =泊松⽐:µ =五、计算参数:1.计算板的跨度: Lo = 3000 mm2.计算板的有效⾼度: ho = h-as=120-40=80 mm六、配筋计算(lx/ly=3000/4600=< 所以按双向板计算):向底板钢筋1) 确定X向板底弯矩Mx = 表中系数(γG*qgk+γQ*qqk)*Lo2= +***+**32= kN*m2) 确定计算系数αs = γo*Mx/(α1*fc*b*ho*ho)= *×106/**1000*80*80)=3) 计算相对受压区⾼度ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2* =4) 计算受拉钢筋⾯积As = α1*fc*b*ho*ξ/fy = **1000*80*360= 173mm25) 验算最⼩配筋率ρ = As/(b*h) = 173/(1000*120) = %ρ<ρmin = % 不满⾜最⼩配筋要求所以取⾯积为As = ρmin*b*h = %*1000*120 = 240 mm2采取⽅案?8@200, 实配⾯积251 mm2向底板钢筋1) 确定Y向板底弯矩My = 表中系数(γG*qgk+γQ*qqk)*Lo2= +***+**32= kN*m2) 确定计算系数αs = γo*My/(α1*fc*b*ho*ho)= *×106/**1000*80*80)=3) 计算相对受压区⾼度ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2* =4) 计算受拉钢筋⾯积As = α1*fc*b*ho*ξ/fy = **1000*80*360= 107mm25) 验算最⼩配筋率ρ = As/(b*h) = 107/(1000*120) = %ρ<ρmin = % 不满⾜最⼩配筋要求所以取⾯积为As = ρmin*b*h = %*1000*120 = 240 mm2采取⽅案?8@200, 实配⾯积251 mm2向上边⽀座钢筋1) 确定上边⽀座弯矩M o y = 表中系数(γG*qgk+γQ*qqk)*Lo2= **+**32= kN*m2) 确定计算系数αs = γo*M o y/(α1*fc*b*ho*ho)= *×106/**1000*80*80)=3) 计算相对受压区⾼度ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2* =4) 计算受拉钢筋⾯积As = α1*fc*b*ho*ξ/fy = **1000*80*360= 289mm25) 验算最⼩配筋率ρ = A s/(b*h) = 289/(1000*120) = %ρ≥ρmin = % 满⾜最⼩配筋要求采取⽅案?8@160, 实配⾯积314 mm2七、跨中挠度计算:Mk -------- 按荷载效应的标准组合计算的弯矩值Mq -------- 按荷载效应的准永久组合计算的弯矩值1.计算荷载效应Mk = Mgk + Mqk= +**+*32 = kN*mMq = Mgk+ψq*Mqk= +**+**32 = kN*m2.计算受弯构件的短期刚度 Bs1) 计算按荷载荷载效应的两种组合作⽤下,构件纵向受拉钢筋应⼒σsk = Mk/*ho*As) 混规= ×106/*80*251) = N/mmσsq = Mq/*ho*As) 混规= ×106/*80*251) = N/mm 2) 计算按有效受拉混凝⼟截⾯⾯积计算的纵向受拉钢筋配筋率矩形截⾯积: Ate = *b*h = *1000*120= 60000mm2ρte = As/Ate 混规 = 251/60000 = %3) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψk = 混规 = =因为ψ不能⼩于最⼩值,所以取ψk =ψq = 混规 = =因为ψ不能⼩于最⼩值,所以取ψq =4) 计算钢筋弹性模量与混凝⼟模量的⽐值αEαE = Es/Ec = ×105/×104 =5) 计算受压翼缘⾯积与腹板有效⾯积的⽐值γf矩形截⾯,γf=06) 计算纵向受拉钢筋配筋率ρρ = As/(b*ho)= 251/(1000*80) = %7) 计算受弯构件的短期刚度 BsBsk = Es*As*ho2/[ψk++6*αE*ρ/(1+ γf')](混规 = ×105*251*802/[*++6**%/(1+*] = ×102 kN*m2Bsq = Es*As*ho2/[ψq++6*αE*ρ/(1+ γf')](混规 = ×105*251*802/[*++6**%/(1+*] = ×102 kN*m23.计算受弯构件的长期刚度B1) 确定考虑荷载长期效应组合对挠度影响增⼤影响系数θ当ρ'=0时,θ= 混规 2) 计算受弯构件的长期刚度 BBk = Mk/(Mq*(θ-1)+Mk)*Bs (混规= *+*×102= ×102 kN*m2Bq = Bsq/θ (混规= ×102/= ×102 kN*m2B = min(Bk,Bq)= min,=4.计算受弯构件挠度f max = f*(q gk+q qk)*Lo4/B= *+*34/×102=5.验算挠度挠度限值fo=Lo/200=3000/200=fmax=≤fo=,满⾜规范要求!⼋、裂缝宽度验算:1.跨中X⽅向裂缝1) 计算荷载效应Mx = 表中系数(qgk+ψqqk)*Lo2= +**+**32= kN*m2) 光⾯钢筋,所以取值v i=3) 因为C > 65,所以取C = 654) 计算按荷载效应的准永久组合作⽤下,构件纵向受拉钢筋应⼒σsq=Mq/*ho*As) 混规=×106/*80*251)=mm5) 计算按有效受拉混凝⼟截⾯⾯积计算的纵向受拉钢筋配筋率矩形截⾯积,Ate=*b*h=*1000*120=60000 mm2ρte=As/Ate 混规 =251/60000 =因为ρte= < ,所以让ρte=6) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψ= 混规 = =7) 计算单位⾯积钢筋根数nn=1000/dist = 1000/200=58) 计算受拉区纵向钢筋的等效直径d eqd eq= (∑n i*d i2)/(∑n i*v i*d i)=5*8*8/(5**8)=119) 计算最⼤裂缝宽度ωmax=αcr*ψ*σsq/Es**C+*Deq/ρte) (混规=**×105**20+*11/ = ≤ , 满⾜规范要求2.跨中Y⽅向裂缝1) 计算荷载效应My = 表中系数(qgk+ψqqk)*Lo2= +**+**32= kN*m2) 光⾯钢筋,所以取值v i=3) 因为C > 65,所以取C = 654) 计算按荷载效应的准永久组合作⽤下,构件纵向受拉钢筋应⼒σsq=Mq/*ho*As) 混规=×106/*80*251)=mm5) 计算按有效受拉混凝⼟截⾯⾯积计算的纵向受拉钢筋配筋率矩形截⾯积,Ate=*b*h=*1000*120=60000 mm2ρte=As/Ate 混规 =251/60000 =因为ρte= < ,所以让ρte=6) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψ= 混规 = =7) 计算单位⾯积钢筋根数nn=1000/dist = 1000/200=58) 计算受拉区纵向钢筋的等效直径d eqd eq= (∑n i*d i2)/(∑n i*v i*d i)=5*8*8/(5**8)=119) 计算最⼤裂缝宽度ωmax=αcr*ψ*σsq/Es**C+*Deq/ρte) (混规=**×105**20+*11/ = ≤ , 满⾜规范要求3.⽀座上⽅向裂缝1) 计算荷载效应M o y = 表中系数((qgk+ψqqk)*Lo2)= *+**32= kN*m2) 光⾯钢筋,所以取值v i=3) 因为C > 65,所以取C = 654) 计算按荷载效应的准永久组合作⽤下,构件纵向受拉钢筋应⼒σsq=Mq/*ho*As) 混规=×106/*80*314)=mm5) 计算按有效受拉混凝⼟截⾯⾯积计算的纵向受拉钢筋配筋率矩形截⾯积,Ate=*b*h=*1000*120=60000 mm2ρte=As/Ate 混规 =314/60000 =因为ρte= < ,所以让ρte=6) 计算裂缝间纵向受拉钢筋应变不均匀系数ψψ= 混规 = =7) 计算单位⾯积钢筋根数nn=1000/dist = 1000/160=68) 计算受拉区纵向钢筋的等效直径d eqd eq= (∑n i*d i2)/(∑n i*v i*d i)=6*8*8/(6**8)=119) 计算最⼤裂缝宽度ωmax=αcr*ψ*σsq/Es**C+*Deq/ρte) (混规=**×105**20+*11/ = ≤ , 满⾜规范要求。
(整理)双向板按弹性理论的计算⽅法.(⼀)双向板按弹性理论的计算⽅法1.单跨双向板的弯矩计算为便于应⽤,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查⽤。
在教材的附表中,列出了均布荷载作⽤下,六种不同⽀承情况的双向板弯矩系数表。
板的弯矩可按下列公式计算:M = 弯矩系数×(g+p)l x2{M=αmp(g+p)l x2 αmp为单向连续板(αmb为连续梁)考虑塑性内⼒重分布的弯矩系数。
}式中M 为跨中或⽀座单位板宽内的弯矩(kN·m/m);g、p为板上恒载及活载设计值(kN/m2);l x为板的计算跨度(m)。
2.多跨连续双向板的弯矩计算(1)跨中弯矩双向板跨中弯矩的最不利活载位置图多跨连续双向板也需要考虑活载的最不利位置。
当求某跨跨中最⼤弯矩时,应在该跨布置活载,并在其前后左右每隔⼀区格布置活载,形成如上图(a)所⽰棋盘格式布置。
图(b)为A-A剖⾯中第2、第4区格板跨中弯矩的最不利活载位置。
为了能利⽤单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。
在对称荷载作⽤下,板在中间⽀座处的转⾓很⼩,可近似地认为转⾓为零,中间⽀座均可视为固定⽀座。
因此,所有中间区格均可按四边固定的单跨双向板计算;如边⽀座为简⽀,则边区格按三边固定、⼀边简⽀的单跨双向板计算;⾓区格按两邻边固定、两邻边简⽀的单跨双向板计算。
在反对称荷载作⽤下,板在中间⽀座处转⾓⽅向⼀致,⼤⼩相等接近于简⽀板的转⾓,所有中间⽀座均可视为简⽀⽀座。
因此,每个区格均可按四边简⽀的单跨双向板计算。
将上述两种荷载作⽤下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最⼤弯矩。
(2)⽀座弯矩⽀座弯矩的活载不利位置,应在该⽀座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很⼩,可假定板上所有区格均满布荷载(g+p)时得出的⽀座弯矩,即为⽀座的最⼤弯矩。