结构计算简图的几个要点
- 格式:docx
- 大小:21.09 KB
- 文档页数:1
结构的计算简图及受力分析3.1 荷载的分类实际的建筑结构由于其作用和工作条件不同,作用在它们上面的力也显示出多种形式。
如图3.1所示的工业厂房结构,屋架所受到的力有:屋面板的自重传给屋架的力,屋架本身的自重,风压力和雪压力以及两端柱或砖墙的支承力等。
图3.1在建筑力学中,我们把作用在物体上的力一般分为两类:一类是主动力,例如重力、风压力等;另一类是约束力,如柱或墙对梁的支承力。
通常把作用在结构上的主动力称为荷载。
荷载多种多样,分类方法各不相同,主要有以下几种分类方法:(1)荷载按其作用在结构上的空间范围可分为集中荷载和分布荷载作用于结构上一点处的荷载称为集中荷载。
满布在体积、面积和线段上的荷载分别称为体荷载、面荷载和线荷载,统称为分布荷载。
例如梁的自重,用单位长度的重力来表示,单位是N/m或kN/m,作用在梁的轴线上,是线荷载。
对于等截面匀质材料梁,单位长度自重不变,可将其称为线均布荷载,常用字母q表示(图3.2)。
当荷载不均匀分布时,称为非均布荷载,如水对水池侧壁的压力是随深度线性增加的,呈三角形分布。
图3.2(2)荷载按其作用在结构上的时间分为恒载和活载恒荷载是指永久作用在结构上的荷载,其大小和位置都不再发生变化,如结构的自重。
活荷载是指作用于结构上的可变荷载。
这种荷载有时存在、有时不存在,作用位置可能是固定的也可能是移动的,如风荷载、雪荷载、吊车荷载等。
各种常用的活荷载可参见《建筑结构荷载规范》。
(3)荷载按其作用在结构上的性质分为静力荷载和动力荷载静力荷载是指荷载从零缓慢增加到一定值,不会使结构产生明显冲击和振动,因而可以忽略惯性力影响的荷载,如结构自重及人群等活荷载。
动力荷载是指大小和方向随时间明显变化的荷载,它使结构的内力和变形随时间变化,如地震力等。
3.2 约束与约束反力1)约束和约束反力的概念所谓约束,是指能够限制某构件位移(包括线位移和角位移)的其他物体(如支承屋架的柱子,见图 3.1)。
第三篇结构力学第十一章结构的计算简图学习目标:1.了解结构的概念、构件的基本类型及荷载的分类;2.掌握结构计算简图的概念及结点、支座、荷载的计算简图;3.了解平面杆系结构的分类。
第一节结构及其类型一、结构建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称为结构。
房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等,都是工程结构的典型例子。
狭义的结构往往指的就是杆系结构,而通常所说的建筑力学就是指杆系结构力学。
二、结构的类型建筑力学研究的直接对象并不是实际的结构物,而是代表实际结构的计算简图。
因此,所谓结构的类型,也就是实际结构物计算简图的类型。
根据不同的观点,结构可分为各种不同的类型,这里只介绍两种最常用的分类方法。
(一)按照空间观点,结构可分为平面结构和空间结构。
组成结构的所有杆件的轴线和作用在结构上的荷载都在同一平面内,则此结构称为平面结构;反之,如果组成结构的所有杆件的轴线或荷载不在同一平面内的结构称为空间结构。
实际工程中的结构都是空间结构,但大多数结构在设计中是被分解为平面结构来计算的。
不过在有些情况下,必须考虑结构的空间作用。
(二)按照儿何观点,结构可分为杆系结构、板壳结构、实体结构1.杆系结构长度方向的尺寸远大于横截面尺寸的构件称为杆件。
由若干杆件通过适当方式连接起来组成的结构体系称为杆系结构。
如图11-1所示为一单层工业厂房中的一个横向承重排架,即为杆系结构。
梁、拱、框架、刚架都是杆系结构的典型形式。
如果组成结构的所有各杆件的轴线都位于某一平面内,并且荷载也作用于此同一平面,则这种结构称为平面杆系结构,否则便是空间杆系结构。
2.板壳结构厚度方向的尺寸远小于长度和宽度方向尺寸的结构。
其中:表面为平面的称为板(如图11-2(a)所示),表面为曲面的称为壳(如图11-2(b)所示)。
例如一般的钢筋混凝土楼面均为平板结构,一些特殊形体的建筑如悉尼歌剧院的屋面就为壳体结构。
结构计算简图确定计算简图就是实际结构简化以后供力学计算用的图形,即所谓的力学计算模型。
计算简图选取原则,一方面反映实际受力性能,但是如果面面俱到,哪个地方都要反映到的话,那可能这个计算起来太复杂。
要考虑到便于计算,所以一句话抓大放小,抓住主要矛盾,这就是选取原则。
简化的内容:从影响力学性能的各个方面,从受力分布的内力分布,包括变形是受哪些因素影响分析,材料性质的简化:一般假设结构材料为连续均匀各向同性,完全弹性体。
杆件的简化,用杆轴线来代替还原来杆件结构,用杆轴线构成的几何轮廓代替原结构形状和尺寸。
梁可以用一轴线来代表。
比如涵洞,双管的一个涵洞疏水结构,涵洞分成2个管,涵洞管有一个厚度,在拐角地方还有一些贴脚,计算的时候,不能拿这样的一个结构出来,计算化起来也不方便,还考虑在变截面那太麻烦,计算的时候,就是把点划线轴线把提取出来,以这样的一个杆轴线来代替我们的原来结构轮廓几何尺寸,把中到中的距离作为杆长,这是杆件的简化,杆件和杆件之间,其实相连的是靠结点,自然而然地就把直接两个横线竖线相交。
这样的一个表示方法表示了刚结点。
荷载的简化:重物看作是集中荷载,梁的自重看作是均布荷载等;结点简化结点就是杆与杆连接处。
刚结点:汇交于结点处各杆不能移动和转动,节点不做任何符号,是一体,变形也相同同步。
如果相互变形不同,就不是刚结点。
铰接点:汇交于结点处各杆端不能相对移动但可以自由的相对转动,不需要承受弯矩或承受很小的能忽略的弯矩。
铰接点随可以转动,实际是不能转动,只是不承受弯矩就行了。
承受较大弯矩的就不是铰接点。
木屋架端头结点加榫头、加固钉,防止受突发荷载产生小的弯矩(次应力)而加固牢靠,在计算时考虑为铰接点,不受任何弯矩。
支座和结点的简化:固定铰支座、活动铰支座、滑动支座和固定支座。
实际结构情况较为复杂,往往不能考虑所有因素去做严格计算,要抓住主要矛盾,而需去掉次要因素,以简化图式来代。
这种用以计算的简化图式,叫做结构计算简图或计算模型。
结构计算简图的几个要点
空间杆件结构的平面简化杆件构件的简化:以杆件的交叉点代替
杆件;杆件之间连接的简化:理想节点代替杆件与杆件理想之间的连接。
1)铰结点:汇交于一点的杆端是用一个完全无磨擦光滑铰串接。
铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任
意改变。
2)刚结点:汇交于一点的杆端是用一个完全不变形的刚性结点,形成一个整体。
刚结点所连各杆端相互之间的夹角不能改变。
3)组合结点(半铰):刚结点与铰结点的组合体。
结构中与支承物连接的简化:以理想支座代替结构与其支承物(一般是大地)之间的连结。
1)活动铰支座:允许沿支座链杆垂直方向的微小移动。
沿支座
催生链杆方向产生约束力。
2)固定铰支座:允许彭固定铰铰心的微小转动。
过铰心产生任
意方向的正当性约束力(分解成水平和竖直还原成方向的两个力)。
3)固定支座:不允许有任何方向的移动和转动,产生水平、竖
直及限制静止的约束力。