磁响应纳米四氧化三铁壳聚糖复合微球的制备及特性
- 格式:pdf
- 大小:164.62 KB
- 文档页数:4
四氧化三铁基复合材料的制备及其吸波性能研究四氧化三铁基复合材料的制备及其吸波性能研究摘要:随着无线通信和雷达技术的迅猛发展,电磁波对于人类生活的影响也越来越大。
因此,研究高效的电磁波吸收材料对于实现电磁波隐身、减少电磁波辐射对人体的危害具有重要的意义。
本文以四氧化三铁作为主要材料,通过合成、表征和测试等方法,研究了其制备及吸波性能。
1. 引言电磁波吸收材料是一种能将电磁波能量转化为热能或其他形式能量的材料。
通过选择合适的吸波材料,可以实现对特定频率的电磁波的有效吸收,从而达到减少电磁辐射、提高无线通信质量和实现电磁波隐身等目的。
2. 材料与方法2.1 材料的制备本研究中所使用的四氧化三铁是通过溶胶-凝胶法制备的。
首先,将硝酸铁溶液和三乙醇胺混合,在搅拌的同时缓慢滴加硝酸铵溶液。
随着反应的进行,溶液逐渐变为凝胶状。
然后,将凝胶在恒温箱中烘干并煅烧得到四氧化三铁粉末。
2.2 材料的表征通过扫描电子显微镜(SEM)、能量散射光谱(EDS)和X射线衍射(XRD)等技术对制备的四氧化三铁样品进行表征。
SEM 可以观察样品表面形貌和粒径分布,EDS可以分析样品中各元素的含量和分布,XRD可以确定样品的晶体结构。
2.3 吸波性能测试吸波性能主要通过反射损耗(RL)指标来评价。
本研究使用矩形波导法测试了四氧化三铁样品在2-18 GHz频率范围内的吸波性能。
通过改变样品的厚度和质量,计算反射损耗指标,以评估样品的吸波性能。
3. 结果与讨论通过SEM观察,制备得到的四氧化三铁样品呈现出细小的颗粒状,并具有较为均匀的分布。
EDS分析显示,样品中含有铁和氧元素,符合四氧化三铁的组成。
XRD结果表明样品具有典型的四氧化三铁晶体结构,与文献中报道的结果一致。
吸波性能测试结果表明,在2-18 GHz频率范围内,制备得到的四氧化三铁样品表现出较好的吸波性能。
在特定厚度和质量条件下,样品的反射损耗可达到-20 dB以上,具有较低的反射特性。
研究与实验磁响应纳米四氧化三铁/壳聚糖复合微球的制备及特性李凤生,罗付生,杨 毅,刘宏英(南京理工大学 国家特种超细粉体工程技术研究中心,江苏南京 210094)摘 要:首先采用滴定水解法,以氢氧化氨溶液水解六水合三氯化铁与四水合二氯化铁的混合溶液制备出钠米四氧化三铁微粒;然后采用离子凝胶反应法,在分散有纳米四氧化三铁的壳聚糖溶液中,加入适量的三聚磷酸钠溶液制得包覆有纳米四氧化三铁的壳聚糖复合微球载体。
该复合微球具有磁响应功能并具有生物可降解特性。
因此该复合微球在功能材料、军事领域及医学领域具有十分重要的应用前景。
关键词:纳米四氧化三铁;离子凝胶反应;壳聚糖复合微球 中图分类号:O614.81+1 文献标识码:A 文章编号:1001-3830(2002)06-0001-04Preparation and Characteristics of the Fe 3O 4 NanoparticleChitosan Composite MicrospheresLI Feng-sheng, LUO Fu-sheng YANG Yi, LIU Hong-yingNational Engineering & Technology Center of Special Super Powder , Nanjing University of Science & Technology, Nanjing 210094, ChinaAbstract: The Fe 3O 4 nanoparticles are prepared by hydrolyzing FeCl 3・6H 2O and FeCl 2・4H 2O mixed solutionwith NH 4OH solution, or titration hydrolyzation method. Fe 3O 4/chitosan composite microspheres are prepared by adding a proper amount of TPP solution to chitosan solution dispered with Fe 3O 4 nanoparticles, or ionotropic gelation method. This composite microsphere is magnetically responsive and biodegradable, and thus can be used as functional material or carrier for the delivery of drugs.Key words: Fe 3O 4 nanoparticle ;ionotropic gelation reaction ;composite chitosan microsphere收稿日期:2002-08-28作者通信:Tel :025-*******1 引言近年来,由于磁性纳米粒子在实际应用中的广泛前景,有关磁性纳米粒子的制备方法及性质的研究受到很大的重视。
四氧化三铁纳米材料的制备与应用四氧化三铁纳米材料是指将三铁酸铁作为原料,通过化学合成或物理制备的方法获得的粒径小于100纳米的铁氧体粉末。
该材料具有高比表面积、独特的磁性、光学性能和化学活性等特点,在磁性材料、催化剂、传感器、生物医药等领域有着广泛的应用。
四氧化三铁纳米材料的制备方法主要包括化学合成法和物理制备法两种。
其中,化学合成法包括溶胶-凝胶法、共沉淀法、水热法、微乳法等,物理制备法包括高能球磨法、磁控溅射法、激光气相沉积法等。
溶胶-凝胶法是一种常见的制备方法,其基本原理是将金属盐或金属有机化合物与溶剂混合后,通过加热、干燥、煅烧等步骤制备出纳米粉末。
共沉淀法是利用化学反应使金属离子在溶液中共同沉淀,得到纳米粉末。
水热法是将金属盐或金属有机化合物与水混合,通过高温高压的条件下合成纳米粉末。
微乳法是将水和油通过表面活性剂的作用形成微乳液,通过添加金属离子与还原剂制备出纳米粉末。
高能球磨法是通过高速旋转的球磨器对粉末进行机械处理,使其粒径减小到纳米级别。
磁控溅射法是利用高能电子轰击靶材,使其表面物质蒸发并沉积在基底上,形成纳米粉末。
激光气相沉积法是将激光束聚焦在靶材表面,使其表面物质蒸发并沉积在基底上,形成纳米粉末。
四氧化三铁纳米材料在磁性材料领域有着广泛的应用。
其高比表面积和独特的磁性能使其成为磁性存储材料和磁性催化剂的理想选择。
在催化剂领域,四氧化三铁纳米材料的高催化活性和稳定性使其成为一种新型的催化剂,可用于有机合成、废水处理等领域。
在生物医药领域,四氧化三铁纳米材料的生物相容性和药物缓释性能使其成为一种新型的药物载体,可用于肿瘤治疗、诊断和影像学等方面。
四氧化三铁纳米材料作为一种新型的纳米材料,在磁性材料、催化剂、生物医药等领域具有广泛的应用前景。
随着制备技术的不断发展和完善,其应用范围和性能将得到更广泛的拓展和提升。
Fe3O4/SiO2复合纳米磁性微球制备及用于DNA分离纯化研究生物化学与分子生物学:王森指导教师:杨婉身教授近年来,随着纳米材料科学的发展,生化分离技术开辟了一个新的领域,即利用复合纳米磁性微球进行核酸、蛋白质等生物大分子的分离纯化,它具有很多传统技术不具备的优点,展现了广阔的发展前途。
本文制备一种新型的Fe3O4/SiO2复合纳米磁性微球,对其进行表征并应用于DNA分离纯化,结果如下:1.采用改进的化学共沉淀法制备Fe3O4纳米微球。
透射电子显微镜鉴定其粒径大小为6nm~12nm,粒径分布均匀且分散性较好;其饱和磁化强度为62.6emu/g,具有超顺磁性;X 射线衍射结果显示自制的Fe3O4属于立方尖晶石型结构;578cm-1和3421cm-1处强烈红外吸收光谱也和标准Fe3O4的特征吸收峰吻合。
2.采用溶胶凝胶工艺,在醇水溶液中以氨水为碱催化剂,以自制的Fe3O4纳米微球为核,以正硅酸乙酯(TEOS)为前驱体,分别制备出一次包被Fe3O4/SiO2复合纳米磁球(1号磁球)和两次包被Fe3O4/SiO2复合纳米磁球(2号磁球)。
1号磁球直径大小为20nm~30nm左右,2号磁球为30nm~50nm左右,分散效果比较理想;饱和磁化强度分别为1号55.2emu/g,2号51.8emu/g,具有超顺磁性;X射线衍射图谱与标准Fe3O4图谱相一致,没有明显SiO2衍射峰的存在,说明包覆SiO2以无定型的形态存在。
1097 cm-1和950 cm-1处红外吸收峰和标准SiO2图谱相吻合,说明SiO2成功与Fe3O4复合。
3.在最佳浓度配比的结合液(20%PEG和4mol/L NaCl混合液)中,1号和2号磁球对DNA结合能力存在差异。
分别使用100μg 1号和2号磁球,对500ng标准DNA样品进行回收,2号磁球的DNA回收率为78.2%,略高于1号的71.6%,因此后续实验全部采用2号磁球, 100μg 2号磁球对DNA的饱和吸附量为519ng/μg,吸附DNA后用TE溶液洗脱,其洗脱率高达95%-97%。
磁性壳聚糖微球的制备及其性能王红英;常凯;钱斯日古楞;孙井辉【摘要】The Fe3 O4 nanoparticles were prepared by co-precipitation and modified by oleic acid and the composite chitosan magnetic microspheres containing Fe3O4 nanoparticles were prepared using the emulsification cross-linking technique by adding proper amount of glutaraldehyde into chitosan solution. The results demonstrated that the chitosan concentration, NaOH amount and stirring speed of the suspension medium were the most effective parameters for the size, size distribution,morphology and magnetism of magnetic chitosan microspheres. The SEM, IR and DLS indicated that the diameter of the microspheres was about 348.5 nm and the microspheres were uniformly disperse.The magnetic test showed that the microspheres had good magnetic responsiveness and the functional groups on the surface.%用共沉淀法制备纳米级Fe3O4磁流体,并对其用油酸进行表面改性.采用化学交联法,在分散有磁流体的壳聚糖溶液中,加入适量的戊二醛交联剂,制得内核为磁性Fe304,外层包有壳聚糖的纳米级的磁性壳聚糖复合微球.考察了壳聚糖质量浓度、NaOH滴加量及搅拌速度等因素对磁性壳聚糖微球粒径、粒径分布以及形貌等对复合过程的影响,确定了制备磁性壳聚糖微球的最佳条件,并用电镜、红外光谱图、粒径分析仪等方法对磁性壳聚糖微球的形态和组成特性进行分析.最后得出平均粒径为348.5 nm,表面富含羟基、氨基和醇羟基等官能团,磁性明显、分散性良好的磁性壳聚糖微球.【期刊名称】《大连工业大学学报》【年(卷),期】2011(030)002【总页数】4页(P105-108)【关键词】壳聚糖;磁性微球;油酸【作者】王红英;常凯;钱斯日古楞;孙井辉【作者单位】大连工业大学,生物工程学院,辽宁,大连,116034;大连工业大学,生物工程学院,辽宁,大连,116034;大连工业大学,生物工程学院,辽宁,大连,116034;大连工业大学,生物工程学院,辽宁,大连,116034【正文语种】中文【中图分类】TQ464.90 引言天然高分子磁性微球的研究是现在较新颖的课题,由于微球表面天然高分子的分子结构具有可设计性,磁性微球又具有靶向性,引起了世界科学工作者的极大兴趣,已成为21世纪生命科学和材料学等领域的研究热点。
第27卷第2期2012年4月郑州轻工业学院学报(自然科学版)JOURNAL OF ZHENGZHOU UNIVERSITY OF LIGHT INDUSTRY (Natural Science )Vol.27No.2Apr.2012收稿日期:2012-02-22基金项目:河南省高校科技创新人才支持计划资助项目(2008HASTIT019);国家自然基金面上项目(20976168)作者简介:陈志军(1963—),男,河南省信阳市人,郑州轻工业学院教授,博士,主要研究方向为高分子及复合材料.文章编号:1004-1478(2012)02-0001-04Fe 3O 4-壳聚糖磁性微球的制备及对Cu 2+的吸附性能陈志军,朱海燕,郝营,尹甲兴,王雪兆,齐连怀,孙旭亮,魏永豪(郑州轻工业学院材料与化学工程学院,河南郑州450002)摘要:用壳聚糖包覆羧基化Fe 3O 4磁性纳米粒子制备了Fe 3O 4-壳聚糖磁性微球,分别用X -射线衍射、扫描电镜、热重分析等方法和手段对所制备的样品进行了结构表征.利用原子吸收光谱,探讨了时间、pH 值、Cu 2+浓度等对Fe 3O 4-壳聚糖磁性微球吸附溶液中Cu 2+量的影响.结果表明:Fe 3O 4-壳聚糖磁性微球粒径分布较均匀,平均粒径约为110nm ;Fe 3O 4-壳聚糖磁性微球能够吸附Cu 2+,最大吸附量可达21.3mg /g.随着吸附剂用量的增加、温度的升高,单位吸附量减小,室温下吸附较佳;Cu 2+初始浓度、pH 对吸附的影响很大,Cu 2+初始浓度在120mg /L ,5.0<pH <7.0时吸附较好;随着吸附时间的增加,单位吸附量也增加,8h 时基本达到吸附平衡.关键词:Fe 3O 4;壳聚糖磁性微球;Cu 2+吸附中图分类号:TQ589文献标志码:APreparation of Fe 3O 4-chitosan magnetic microspheres and their application in Cu 2+adsorption propertyCHEN Zhi-jun ,ZHU Hai-yan ,HAO Ying ,YIN Jia-xing ,WANG Xue-zhao ,QI Lian-huai ,SUN Xu-liang ,WEI Yong-hao(College of Material and Chem.Eng.,Zhengzhou Univ.of Light Ind.,Zhengzhou 450002,China )Abstract :Fe 3O 4-chitosan magnetic microspheres were prepared by modifying carboxyl Fe 3O 4nanoparticle with chitosan.The resulted samples were characterized by X-ray diffraction ,scanning electron microscope and thermogravimetry.The adsorption amounts of Cu 2+were detected with an atomic absorption spectrosco-py.In addition ,the effect of parameters such as contact time ,pH and Cu 2+initial concentration on the adsorption capacities was also discussed.The results have showed that Fe 3O 4-chitosan magnetic micro-spheres have a narrow size distribution with a mean diameter of 110nm.Fe 3O 4-chitosan magnetic micro-spheres are able to adsorb Cu 2+,and the maximum absorption quantity can reach 21.3mg /g.With the in-crease of adsorbent dosage and temperature ,the unit adsorption capacity decreased and the adsorption was better at room temperature.The adsorption of the magnetic microspheres is greatly influenced by the factors of initial concentration of Cu 2+and pH value ,and the adsorption capacity was higher at 120mg /L ,and 5.0<pH <7.0.The adsorption capacity increased with increasing contact time and the equilibrium was es-郑州轻工业学院学报(自然科学版)tablished within8h.Key words:Fe3O4;chitosan magnetic microsphere;Cu2+adsorption0引言目前,印刷、采矿、电解等行业的工业废水中含有大量Cu2+等重金属离子,严重污染土壤和水体,且Cu2+等重金属离子不可生物降解,易在有机体内积累,导致有机体各种疾病的发生[1].现行的可有效去除废水中Cu2+等重金属离子的方法主要有置换沉淀、溶剂萃取、活性炭吸附、离子交换、化学沉淀等[2-3].但这些方法容易对环境产生二次污染,不利于环境保护和可持续发展.磁分离技术作为一种较新的分离手段,兼有高效、经济、环保等特点,引起人们广泛关注[4].壳聚糖具有絮凝、吸附、无毒、对环境友好等性能,已成为水处理研究的热点[5-6].将Fe3O4和壳聚糖复合制备壳聚糖磁性微球,可使壳聚糖和磁分离技术在水处理方面的应用更有前景[7].本文拟用壳聚糖包覆羧基化Fe3O4磁性纳米粒子制备Fe3O4-壳聚糖磁性微球,并研究该类微球对Cu2+的吸附性能,以使其可有效应用于含Cu2+工业废水的处理.1实验1.1试剂及仪器试剂:FeCl3,乙二醇,无水乙酸钠,柠檬酸三钠,天津科密欧化学试剂开发中心产;N-羟基丁二酰亚胺(NHS),碳化二亚胺(EDC),美国阿尔法爱莎公司产.以上试剂均为分析纯.壳聚糖(生化试剂),国药集团化学试剂有限公司产.仪器:德国Bruker公司AXS D8X-射线衍射仪(XRD),日本JSM—7001F型热场发射扫描电子显微镜(FESEM),美国Diamond TG/DTA型热失重测试仪,美国Varian公司AA240FS型火焰原子吸收光度计.1.2Fe3O4-壳聚糖磁性微球的制备采用水热法制备得到磁性Fe3O4纳米粒子[8].将0.2g Fe3O4纳米粒子和0.1g柠檬酸三钠置于100mL三颈瓶中,加水溶解,80ħ下机械搅拌,得到羧基化Fe3O4磁性纳米粒子.称取1.0g羧基化Fe3O4磁性纳米粒子,100mL水超声溶解后加入250mL三颈瓶中,然后加入1.24g N-羟基丁二酰亚胺(NHS),0.42g碳化二亚胺(EDC)及2%乙酸-壳聚糖溶液25mL,机械搅拌,得到Fe3O4-壳聚糖磁性微球.1.3Fe3O4-壳聚糖磁性微球对Cu2+吸附性能的计算根据下面公式计算Fe3O4-壳聚糖磁性微球对Cu2+的单位吸附量M=1000(C-C)V/m其中,M为单位吸附量/(mg·g-1);C0,C分别为Cu2+的初始质量浓度和平衡质量浓度/(mg·L-1);V为Cu2+溶液体积/L;m为Fe3O4-壳聚糖磁性微球的质量/mg.2结果与讨论2.1Fe3O4-壳聚糖磁性微球性能表征2.1.1物相分析———X-射线衍射(XRD)图1中a是Fe3O4纳米粒子的XRD图,b是Fe3O4-壳聚糖磁性微球的XRD图.由图1中b可以看出,在2θ=18.36ʎ,30.14ʎ,35.54ʎ,43.14ʎ,53.58ʎ,57.1ʎ,62.7ʎ,74.24ʎ处均出现了不同强弱的衍射峰,分别对应立方相Fe3O4的(111),(220),(311),(400),(422),(511),(440),(533).对比可以发现,修饰壳聚糖前后,Fe3O4各衍射峰的峰位基本没有发生变化,说明壳聚糖包覆羧基化Fe3O4的过程中并没有改变Fe3O4纳米粒子的尖晶石结构.图1Fe3O4-壳聚糖磁性微球XRD图·2·2012年陈志军,等:Fe 3O 4-壳聚糖磁性微球的制备及对Cu 2+的吸附性能2.1.2扫描电镜(SEM )测试图2分别为羧基化Fe 3O 4磁性纳米粒子和Fe 3O 4-壳聚糖磁性微球的SEM 照片.从图2可以看出,羧基化Fe 3O 4纳米粒子尺寸分布均匀,平均粒径在90nm 左右;Fe 3O 4-壳聚糖磁性微球平均粒径在110nm 左右,说明壳聚糖已经包覆在羧基化Fe 3O 4磁性纳米粒子的表面,壳聚糖包覆厚度约为10nm (壳聚糖厚度ˑ2=粒径差).2.1.3热重(TG )分析图3为Fe 3O 4-壳聚糖磁性微球的TG 曲线.从图3可以看出,在整个温度范围内有3个质量减少台阶:20ħ 165ħ之间的质量减少是由于水和小分子溶剂的分解引起的;165ħ 400ħ的质量减少了约5.1%,主要是壳聚糖主链的热分解;700ħ为壳聚糖最终分解温度,此时壳聚糖已经完全分解,体系中仅含有稳定的Fe 3O 4颗粒,壳聚糖的总含量约为6.2%.2.2Cu 2+吸附性能研究2.2.1吸附剂用量的影响室温下,分别称取不同量的Fe 3O 4-壳聚糖磁性微球加入到含Cu 2+溶液的离心瓶中,吸附8h 后,取上清液测量Cu 2+的残留浓度,计算吸附量.图4是Fe 3O 4-壳聚糖磁性微球用量对Cu 2+吸附性能的影响曲线.由图4可知,单位吸附量随着Fe 3O 4-壳聚糖磁性微球用量的增加而减小.当Fe 3O 4-壳聚糖磁性微球为20mg 时,单位吸附量最大,约为4.2mg /g ;当Fe 3O 4-壳聚糖磁性微球用量达85mg 时,吸附量约为2.0mg /g.2.2.2pH 值的影响在其他条件相同的前提下,改变溶液的pH 值,Fe 3O 4-壳聚糖磁性微球对Cu 2+的吸附量变化很明显,如图5所示.由图5可知,随着溶液pH 值的升高,磁性微球对Cu 2+的吸附量也增大.当pH ≤7.0时,Cu 2+与溶液中的H +对磁性微球中壳聚糖上的—NH 2等功能基团的吸附为竞争关系;当溶液pH <5时,H +浓度较高,在竞争吸附中占优势,H +先与壳聚糖中的—NH 2形成—NH 3+,使Cu 2+丧失了与—NH 2络合的部分机会;当5.0<pH <7.0时,H +浓度降低,此时Cu 2+在吸附过程中占优势,优先被壳聚糖吸附,从而吸附量增加;当溶液pH >7.0时,Cu 2+主要以Cu (OH )2形式存在,吸附作用大大减弱.·3·第2期郑州轻工业学院学报(自然科学版)2.2.3温度的影响其他条件保持不变,考察温度对Cu2+吸附性能的影响,如图6所示.从图6可看出,Fe3O4-壳聚糖磁性微球对Cu2+的吸附性能随着温度的升高吸附量逐渐降低,温度较低时单位吸附量较大.由此可知Fe3O4-壳聚糖磁性微球对Cu2+的吸附属于放热反应,升高温度不利于吸附.考虑到低温节能的要求,最佳温度取25ħ(室温).2.2.4时间的影响在其他条件不变的情况下,考察不同吸附时间对吸附性能的影响,如图7所示.由图7可知,Fe3O4-壳聚糖磁性微球对Cu2+的单位吸在室温下,保持其他条件不变,改变Cu2+附量随吸附时间的增加而增加.当吸附时间为8h时吸附量达到最大,约为6.7mg/g;8h后单位吸附量有所下降,因此最佳吸附时间为8h.2.2.5Cu2+初始浓度的影响初始浓度,考察其对吸附的影响.图8为Cu2+初始浓度对Fe3O4-壳聚糖磁性微球单位吸附量的影响曲线.由图8可知,随着Cu2+初始浓度的增加,单位吸附量也逐渐增大.当Cu2+浓度达到140mg/L时,吸附量为21.3mg/g;继续增加Cu2+起始浓度,Fe3O4-壳聚糖磁性微球对Cu2+的吸附逐渐趋于平衡.3结论本文制备了Fe3O4-壳聚糖磁性微球,并对其进行了XRD,SEM等性能表征.结果表明,制备的Fe3O4-壳聚糖磁性微球中Fe3O4为尖晶石结构,磁性微球的平均粒径约为110nm,壳聚糖层厚度约为10nm,磁性微球壳聚糖含量约为6.2%.由Fe3O4-壳聚糖磁性微球对Cu2+粒子的吸附实验可知:Fe3O4-壳聚糖磁性微球对Cu2+粒子的最大吸附量可达21.3mg/g;随着吸附剂用量增加、温度升高,单位吸附量减小,室温下吸附较佳;Cu2+初始浓度、pH对吸附的影响较大,Cu2+初始浓度在120mg/L,5.0<pH<7.0时吸附较好;随着吸附时间的增加,单位吸附量也增加,8h后基本达到吸附平衡.(下转第21页)·4·2012年张飞,等:瑞克纤孔菌发酵条件优化及菌丝化学成分定性分析不含有生物碱、酚类化合物、鞣质、黄酮类化合物、强心甙和蒽醌类物质.3结论瑞克纤孔菌自然发生于多种林木的树枝和树干,营养要求苛刻.实验中对瑞克纤孔菌培养条件进行优化.结果显示,玉米淀粉、甘露醇和葡萄糖为适宜碳源,其中玉米淀粉为最适碳源;硝酸钠等无机氮源不适宜该真菌生长,适宜氮源为蛋白胨和酵母粉,以蛋白胨为最适;菌丝生长的适宜温度为25 30ħ;适宜pH=6.0 6.5.实验中,培养基添加蛋白胨、酵母粉等天然营养基质,可有效促进瑞克纤孔菌菌丝体生长,原因是蛋白胨和酵母粉除含有多种有机氮素营养以外,还含有多种微量元素和维生素等生长因子.微量元素和生长因子等对瑞克纤孔菌菌丝体生长的影响,有待于进一步研究.实验中对瑞克纤孔菌菌丝体成分进行定性分析.结果表明,瑞克纤孔菌菌丝体含有氨基酸、多肽、蛋白质、有机酸、还原糖、多糖和甙、皂甙、甾体和三萜类化合物、内酯、香豆素和挥发油,不含有生物碱、酚类化合物、鞣质、黄酮类化合物、强心甙和蒽醌类物质.参考文献:[1]Annesi T,D’Amico L,Bressanin D,et al.Characterization of Italian isolates of Inonotus rickii[J].Phytopathol Medi-terr,2010,49(3):301.[2]崔宝凯,余长军,李海蛟.中国纤孔菌属两新记录种[J].林业科学研究,2009,22(60):784.[3]郑俊娟,林琦,刘伟,等.瑞克纤孔菌在皂荚上的首次发现[J].菌物学报,2011,30(1):128.[4]陈艳秋,李玉.桦褐孔菌的研究进展[J].微生物学通报,2005,32(2):124.[5]崔宝凯,戴玉成,杨宏.药用真菌粗毛纤孔菌概述[J].中国食用菌,2009,28(4):6.[6]周国英,兰贵红,何小燕.食用菌多糖研究开发进展[J].实用预防医学,2004,11(1):203.[7]刘迎秋,包海鹰.桦褐孔菌Inonotus obliquus化学成分及药理作用[J].中国食用菌,2008,27(4):34.[8]Lorertzen K,Anke T.Basidiomycetes as a source for new bioactive natural products[J].Current Organic Chemis-try,1998,2(3):329.[9]刘高强,王晓玲.灵芝免疫调节和抗肿瘤作用的研究进展[J].菌物学报,2010,29(1):152.[10]孙迎节.蒙山九州虫草药用价值及其诱导肿瘤细胞凋亡的分子机理研究[D].济南:山东大学,2003:40-45.(上接第4页)参考文献:[1]Bailey S E,Olin T J,Bricka R M.A review of potentially low-cost sorbent for heavy metals[J].Water Res,1999,33(11):2469.[2]Chmielewski A G,Urbanski T S,Migdal W.Separation tech-nologies for metals recovery from industrial wastes[J].Hy-drometallurgy,1997,45(3):333.[3]Dabrowski A,Hubicki Z,Podkoscielny P.Selective remov-al of heavy metal ions from waters and industrialwastewaters by ion-exchange method[J].Chemosphere,2004,56(2):91.[4]陈志军,魏永豪,朱海燕.交联P(St-r-AA)包覆的Fe3O4粒子的制备及其对Cu2+吸附的研究[J].高分子材料科学与工程,2011,27(10):177.[5]苑宝玲,王洪杰.水处理新技术原理与应用[M].北京:化学工业出版社,2006.[6]Hong R Y,Pan T T,Li H Z.Microwave synthesis of mag-netic Fe3O4nanoparticles used as a precursor of nanocom-posites and ferrofluids[J].J of Magnetism and MagneticMaterials,2006,303:60.[7]李保强,贺全志,罗阳.磁性壳聚糖微球制备及在放射性水污染应用研究进展[J].水处理技术,2010,36(6):10.[8]Deng Y H,Qi D W,Deng C H,et al.Superparamagnetichigh-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2shell for removal of microcystins[J].J of the American ChemSociety,2008,130:28.·12·第2期。
药用壳聚糖磁性复合微球的制备及特性赵原璧;邱祖民;刘钟薇;黄佳英【期刊名称】《材料工程》【年(卷),期】2008(000)010【摘要】采用化学共沉淀法,以FeCl2·4H2O和FeCl3·6H2O为原料,氨水为沉淀剂制备出磁性Fe3O4纳米粒子;然后采用化学交联法,在分散有纳米Fe,04的壳聚糖乳液中,加入适量的戊二醛交联剂制得包覆有纳米Fe3O4的壳聚糖复合微球载体.该复合磁性微球成球性好,分散均匀,平均粒径达到10βμm左右,具有较好的磁响应性及生物可降解特性.该复合磁性微球可作为载体材料应用于磁性靶向药物的制备.【总页数】5页(P358-362)【作者】赵原璧;邱祖民;刘钟薇;黄佳英【作者单位】南昌大学,环境科学与工程学院,南昌,330031;南昌大学,环境科学与工程学院,南昌,330031;南昌大学,环境科学与工程学院,南昌,330031;南昌大学,环境科学与工程学院,南昌,330031【正文语种】中文【中图分类】R944.2+7;R979.1【相关文献】1.磁性壳聚糖复合微球的制备及其Cu2+吸附性能 [J], 李建军;鲍旭;吴先锋;Islam Nazrul;刘银;乔尚元;余臻伟;朱金波2.壳聚糖/氧化石墨烯磁性复合微球的制备及其性能 [J], 吕生华;李莹;贺亚亚3.磁性羧甲基壳聚糖复合微球的制备及其对锰离子去除研究 [J], 郑怀礼;童健豪;王莫茜;雷涵;姜瑞雪;孙强;黄文璇4.磁性Fe3O4/壳聚糖复合微球的制备及其对苹果汁有机酸的吸附 [J], 姜飞虹;雷欢庆;任婷婷;孟掉琴;岳田利5.磁性壳聚糖硅胶复合微球的制备及其吸附Cu^(2+)的性能研究 [J], 吕浩永;赵亚菲;胡静荣;张慧娟因版权原因,仅展示原文概要,查看原文内容请购买。
磁性纳米四氧化三铁制备研究进展磁性纳米四氧化三铁是一种具有特殊物理和化学性质的纳米材料,由于其具有良好的磁响应性和可调的磁学性质,因此在生物医学、环境治理、电子工业等领域具有广泛的应用前景。
本文将介绍磁性纳米四氧化三铁的制备方法及其研究进展。
一、磁性纳米四氧化三铁的制备方法目前,制备磁性纳米四氧化三铁的方法主要包括物理法、化学法以及生物法。
其中,化学法是最常用和最有效的方法。
化学法主要是通过控制反应条件,如温度、压力、pH值等,在液相中合成纳米材料。
以下是几种典型的化学法:1.共沉淀法共沉淀法是一种常用的制备磁性纳米四氧化三铁的方法。
该方法是将铁盐和盐溶液混合,加入沉淀剂如氨水或氢氧化钠,生成四氧化三铁沉淀。
通过控制反应条件,可以制备出粒径和磁性能可调的磁性纳米四氧化三铁。
2.热分解法热分解法是一种通过加热分解前驱体来制备磁性纳米四氧化三铁的方法。
该方法是将含铁有机物作为前驱体,在高温下进行热分解,生成磁性纳米四氧化三铁。
通过控制温度和气氛,可以制备出形貌和磁性能可调的磁性纳米四氧化三铁。
3.微乳液法微乳液法是一种通过微乳液体系制备磁性纳米四氧化三铁的方法。
该方法是将含铁盐的油相溶液与水相溶液混合,形成微乳液体系,然后在一定条件下进行水解和氧化,生成磁性纳米四氧化三铁。
通过控制微乳液的组成和反应条件,可以制备出粒径和磁性能可调的磁性纳米四氧化三铁。
二、磁性纳米四氧化三铁的研究进展近年来,磁性纳米四氧化三铁的研究取得了很大的进展。
以下是一些主要的研究进展:1.生物医学应用研究磁性纳米四氧化三铁由于其良好的生物相容性和磁响应性,在生物医学领域具有广泛的应用前景。
目前,已经有一些研究报道了利用磁性纳米四氧化三铁作为药物载体、肿瘤治疗、生物成像等应用。
例如,有研究报道了利用磁性纳米四氧化三铁作为药物载体,通过磁场导向,将药物准确地输送到病变部位,提高药物的治疗效果和降低副作用。
2.环境治理应用研究磁性纳米四氧化三铁作为一种高效的吸附剂,在环境治理领域也有广泛的应用前景。
四氧化三铁纳米材料的制备与应用一、本文概述随着纳米科技的快速发展,纳米材料因其独特的物理和化学性质,在众多领域展现出了广阔的应用前景。
四氧化三铁(Fe₃O₄)纳米材料作为其中的一种,因其优良的磁学、电学和催化性能,受到了科研工作者和工程师们的广泛关注。
本文旨在全面综述四氧化三铁纳米材料的制备方法,探讨其应用领域,以及展望未来的发展方向。
本文将详细介绍几种常用的四氧化三铁纳米材料制备方法,包括共沉淀法、水热法、溶胶-凝胶法、微乳液法以及物理法等。
这些方法各有优缺点,适用于不同的应用场景。
通过对比各种方法的制备原理、操作过程以及所得产物的性能,可以为实验者提供选择制备方法的参考依据。
本文将重点讨论四氧化三铁纳米材料在生物医学、磁流体、催化剂、磁性材料、电磁波吸收材料等领域的应用。
例如,在生物医学领域,四氧化三铁纳米材料可作为磁共振成像的造影剂、药物载体以及热疗剂等;在磁流体领域,其可作为密封材料、润滑剂和磁记录介质等。
通过深入剖析这些应用案例,可以展示四氧化三铁纳米材料的多功能性和广阔的应用前景。
本文将展望四氧化三铁纳米材料未来的发展方向。
随着纳米技术的不断进步和跨学科研究的深入,四氧化三铁纳米材料有望在更多领域展现出独特的优势。
例如,通过与其他纳米材料的复合,可以进一步提高其性能和应用范围;通过对其表面进行修饰,可以增强其与生物组织的相容性和靶向性等。
因此,四氧化三铁纳米材料的研究将持续成为纳米科技领域的重要课题。
二、四氧化三铁纳米材料的制备方法四氧化三铁(Fe3O4)纳米材料的制备方法多种多样,常见的包括共沉淀法、热分解法、微乳液法、溶胶-凝胶法以及水热法等。
这些方法各有特点,适用于不同规模和应用需求的四氧化三铁纳米材料制备。
共沉淀法:共沉淀法是一种通过控制溶液中的沉淀条件,使铁离子和亚铁离子在溶液中同时沉淀,进而形成四氧化三铁纳米材料的方法。
这种方法操作简单,易于控制,但制备出的纳米颗粒尺寸分布较宽。
四氧化三铁磁珠四氧化三铁磁珠是一种具有磁性的微米级颗粒,广泛应用于生物医学、环境监测、能源存储等领域。
本文将从四氧化三铁磁珠的制备方法、性质特点以及应用前景等方面进行介绍。
一、制备方法四氧化三铁磁珠的制备方法多种多样,其中常用的一种是溶胶-凝胶法。
具体步骤如下:首先,将适量的铁盐(如硝酸铁)加入溶剂中,搅拌均匀形成溶胶;然后,通过调节溶胶的pH值,加入适量的碱液,使得溶胶逐渐凝胶成胶体;接下来,将胶体进行洗涤、干燥处理,最后得到四氧化三铁磁珠。
二、性质特点四氧化三铁磁珠具有多种独特的性质特点,主要包括以下几个方面:1. 磁性:四氧化三铁磁珠具有良好的磁性,可通过外加磁场进行磁导引、分离等操作。
2. 稳定性:四氧化三铁磁珠具有较高的化学稳定性和热稳定性,可在不同环境条件下稳定存在。
3. 生物相容性:四氧化三铁磁珠在生物体内具有良好的相容性,可用于生物医学领域的纳米药物传输、磁热疗法等应用。
4. 表面修饰性:四氧化三铁磁珠的表面可进行修饰,如聚合物包覆、功能化修饰等,以实现特定应用需求。
三、应用前景由于四氧化三铁磁珠具有独特的性质特点,因此在多个领域具有广阔的应用前景。
1. 生物医学领域:四氧化三铁磁珠可用于纳米药物传输、肿瘤靶向治疗、磁共振成像等,具有很高的应用潜力。
2. 环境监测领域:四氧化三铁磁珠可作为吸附材料,用于污水处理、重金属离子吸附等环境监测应用。
3. 能源存储领域:四氧化三铁磁珠可用于锂离子电池、超级电容器等能源存储装置中,以提高储能性能。
4. 磁性材料领域:四氧化三铁磁珠可作为磁性纳米材料,用于磁性流体、磁性传感器等领域。
四氧化三铁磁珠是一种具有广泛应用前景的磁性微米颗粒。
通过不同制备方法和表面修饰手段,可以调控其性质特点,满足不同领域的应用需求。
未来,随着材料科学的不断发展,四氧化三铁磁珠在更多领域将展示出其优越性能,为人类社会带来更多福祉。
四氧化三铁纳米颗粒及其复合物的制备和研究的开题报告
一、研究背景:
四氧化三铁(Fe3O4)作为一种重要的磁性材料,具有良好的生物相容性、生物活性
和光热性能。
近年来,越来越多的研究表明,Fe3O4纳米颗粒及其复合物在生物医学
领域具有广泛的应用前景,如肿瘤治疗、医学成像、药物传递等方面。
因此,对
Fe3O4纳米颗粒及其复合物的制备和特性研究具有重要意义。
二、研究内容:
本课题计划采用化学方法制备Fe3O4纳米颗粒,并与其他材料进行复合制备。
具体研究内容如下:
1. 合成Fe3O4纳米颗粒:采用溶剂热法、共沉淀法等方法,探究不同合成方法对
Fe3O4纳米颗粒形貌和结构的影响。
2. 对Fe3O4纳米颗粒进行表征:采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)等手段对制备的Fe3O4纳米颗粒进行形貌、尺寸、晶
体结构等方面的表征。
3. 制备Fe3O4和其他材料复合体:将Fe3O4纳米颗粒与其他材料进行复合制备,如
多壁碳纳米管、硅壳等,研究不同复合物的结构和性能。
4. 对Fe3O4及其复合物在生物医学领域的应用进行研究:通过体外实验研究Fe3O4
及其复合物在肿瘤治疗、医学成像、药物传递等方面的应用潜力,为其在生物医学领
域的应用提供理论依据。
三、研究意义:
通过本课题对Fe3O4纳米颗粒及其复合物的制备和研究,可以深入探究Fe3O4纳米颗粒的结构、性能、应用等方面,为其在生物医学领域的应用提供理论和实践基础。
同时,本研究也为利用Fe3O4及其复合物实现对疾病治疗和诊断提供了新的思路和方法。
磁性纳米四氧化三铁颗粒的化学制备及应用进展由于纳米四氧化三铁特殊的理化学性质, 使其在实际应用中越来越广泛,其制备方法和性质的研究也得到了深入的进展。
磁性纳米微粒的制备方法主要有物理方法和化学方法。
物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。
但是用物理方法制备的样品一般产品纯度低、颗粒分布不均匀, 易被氧化, 且很难制备出10nm 以下的纳米微粒, 所以在工业生产和试验中很少被采纳。
化学方法主要有共沉淀法、溶胶- 凝胶法、微乳液法、水解法、水热法等。
采用化学方法获得的纳米微粒的粒子一般质量较好, 颗粒度较小, 操作方法也较为容易, 生产成本也较低, 是目前研究、生产中主要采用的方法。
一、磁性纳米四氧化三铁颗粒目前, 制备磁性纳米四氧化三铁纳米颗粒方法的机理已研究得很透彻。
归结起来一般分为两种。
一是采用二价和三价铁盐, 通过一定条件下的反应得到磁性纳米四氧化三铁纳米颗粒; 另一种则是用三价铁盐, 在一定条件下转变为三价的氢氧化物, 最后通过烘干、煅烧等手段得到磁性纳米四氧化三铁纳米颗粒。
1.共沉淀法共沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中, 加入适当的沉淀剂, 使金属离子均匀沉淀或结晶出来, 再将沉淀物脱水或热分解而制得纳米微粉。
共沉淀法有两种: 一种是水解法, 即将一定摩尔比的三价铁盐与二价铁盐混合液直接加入到强碱性水溶液中, 铁盐在强碱性水溶液中瞬间水解结晶形成磁性铁氧体纳米粒子。
另一种为滴定水解法, 是将稀碱溶液滴加到一定摩尔比的三价铁盐与二价铁盐混合溶液中, 使混合液的pH 值逐渐升高, 当达到6~7 时水解生成磁性纳米四氧化三铁纳米粒子。
共沉淀法是目前最普遍使用的方法, 其反应原理是:Fe2 + + Fe3 + + OH →Fe (OH) 2 / Fe (OH) 3 (形成共沉淀) (1) Fe (OH) 2 + Fe (OH) 3 →FeOOH + Fe304 (pH ≤715) (2)FeOOH + Fe2 + →Fe3O4 + H+ (pH ≥912) (3)该法的原理虽然简单,但实际制备中还有许多复杂的中间反应和副产物:Fe3O4 + 0125O2 + 415H2O →3Fe(OH)3 (4)2Fe3O4 + 015O2 →3Fe2O3 (5)此外, 溶液的浓度、nFe2 +PnFe3 + 的比值、反应和熟化温度、溶液的pH 值、洗涤方式等, 均对磁性微粒的粒径、形态、结构及性能有很大影响。
Fe3O4-壳聚糖磁性微球的制备及对Cu2+的吸附性能陈志军;朱海燕;郝营;尹甲兴;王雪兆;齐连怀;孙旭亮;魏永豪【期刊名称】《郑州轻工业学院学报(自然科学版)》【年(卷),期】2012(027)002【摘要】用壳聚糖包覆羧基化Fe3O4磁性纳米粒子制备了Fe3O4-壳聚糖磁性微球,分别用X-射线衍射、扫描电镜、热重分析等方法和手段对所制备的样品进行了结构表征.利用原子吸收光谱,探讨了时间、pH值、Cu2+浓度等对Fe3O4 -壳聚糖磁性微球吸附溶液中Cu2+量的影响.结果表明:Fe3O4 -壳聚糖磁性微球粒径分布较均匀,平均粒径约为110 nm;Fe3O4 -壳聚糖磁性微球能够吸附Cu2+,最大吸附量可达21.3 mg/g.随着吸附剂用量的增加、温度的升高,单位吸附量减小,室温下吸附较佳;Cu2+初始浓度、pH对吸附的影响很大,Cu2+初始浓度在120 mg/L,5.0<pH<7.0时吸附较好;随着吸附时间的增加,单位吸附量也增加,8h时基本达到吸附平衡.【总页数】5页(P1-4,21)【作者】陈志军;朱海燕;郝营;尹甲兴;王雪兆;齐连怀;孙旭亮;魏永豪【作者单位】郑州轻工业学院材料与化学工程学院,河南郑州450002;郑州轻工业学院材料与化学工程学院,河南郑州450002;郑州轻工业学院材料与化学工程学院,河南郑州450002;郑州轻工业学院材料与化学工程学院,河南郑州450002;郑州轻工业学院材料与化学工程学院,河南郑州450002;郑州轻工业学院材料与化学工程学院,河南郑州450002;郑州轻工业学院材料与化学工程学院,河南郑州450002;郑州轻工业学院材料与化学工程学院,河南郑州450002【正文语种】中文【中图分类】TQ589【相关文献】1.改性蒙脱土与壳聚糖复合吸附剂制备及对Cu2+吸附性能评价 [J], 黄庆;王科军;徐建平2.果胶壳聚糖复合磁性微球制备及吸附性能 [J], 黄辉;黄河;杨进进;刘岚3.改性果胶-Fe3O4磁性微球的制备及对Cu2+吸附性能研究 [J], 万峻菲;陈思;贲楚璇;马占玲;励建荣4.Fe3O4-果胶磁性微球的制备及对Cu2+的吸附性能 [J], 刘岚;刘义武;刘茵沁;王碧;黄辉5.交联壳聚糖磁性微球制备及吸附性能研究 [J], 马宁;蔡芳昌;廖伟平;周威;胡弦;陈佳丽;韩磊;蒋涛因版权原因,仅展示原文概要,查看原文内容请购买。
纳米四氧化三铁制备及其性质研究摘要:四氧化三铁是一种具有反尖晶石结构的铁氧体,由于其具有独特的物理、化学性质,已经引起众多专家学者的关注。
纳米四氧化三铁具有超顺磁性、小尺寸效应、量子隧道效应等使其能够区别于一般的四氧化三铁。
目前在国内外,磁性纳米四氧化三铁已经在催化剂、造影成像、靶向给药、药物载体、DNA检测等应用领域表现出良好的应用前景。
尤其随着纳米技术与高分子工程的快速发展,磁性纳米四氧化三铁在细胞分离、蛋白质分离、生物传感器、重金属吸附等领域越来越受到研究者的重视。
同时,合成粒径小、分布窄且具有优良磁性、表面性能稳定、具有生物相容性安全的磁性纳米四氧化三铁也是各专家、学者研究的热点之一。
关键词:纳米四氧化三铁;磁性;合成近年来,有关磁性纳米粒子的制备方法与性质备受关注。
然而,由于磁性纳米粒子之间的作用力,如范德华力以及磁力作用,纳米四氧化三铁粒子极易发生团聚,使得比表面积降低,同时减弱了反应活性。
通过添加高分子聚合物或表面活性剂对粒子表面进行改性,可以获得稳定分散的磁性纳米粒子,从而有效克服上述缺点。
1.实验部分1.1 实验原理化学共沉淀法是指在包含两种或两种以上金属阳离子的可溶性溶液中,加入适当沉淀剂,将金属离子均匀沉淀或结晶出来。
具体反应方程式:Fe2+ +2Fe3+ +8OH-==Fe3O4 +4H2O.通常是把FeⅡ和FeⅢ的硫酸盐或氯化物溶液一物质的量比2比3的比例混合后,用过量的氨水或氢氧化钠在一定温度和pH下,高速搅拌进行沉淀反应,然后将沉淀过滤、洗涤、烘干,制得纳米四氧化三铁。
1.2仪器与试剂三颈瓶,pH计,高速离心机,恒温水浴箱,真空干燥箱,紫外可见分光光度计,X射线衍射仪等四水合氯化亚铁,六水合氯化铁,乙醇,十二烷基苯磺酸钠,油酸,氢氧化钠,盐酸等。
1.3实验步骤室温下,将四水合氯化亚铁和六水合氯化铁按物质的量比为1比2的比例混合放入三颈瓶中,加入200mL去离子水,然后加入一定量表面活性剂和油酸。