模量[modulus]
- 格式:docx
- 大小:16.18 KB
- 文档页数:2
杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度、柔度、刚性、柔性、泊松比、剪切应变、体积应变“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
杨氏模量(Young's Modulus):杨氏模量是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。
1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。
根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。
杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
钢的杨氏模量大约为2×1011N·m-2,铜的是1.1×1011 N·m-2。
弹性模量和杨氏模量很相似,弹性模量有拉伸和剪切的两个方向,杨氏主要指的是拉伸的。
测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。
弹性模量(Elastic Modulus):弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。
当一条长度为L、截面积为S的金属丝在力F 作用下伸长ΔL时,F/S叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量。
应力与应变的比叫弹性模量。
ΔL是微小变化量。
杨氏模量(Young's modulus),又称拉伸模量(tensile modulus)是弹性模量(elastic modulus or modulus of elasticity)中最常见的一种。
杨氏模量衡量的是一个各向同性弹性体的刚度(stiffness),定义为在胡克定律适用的范围内,单轴应力和单轴形变之间的比。
与弹性模量是包含关系,除了杨氏模量以外,弹性模量还包括体积模量(bulk modulus)和剪切模量(shear modulus)等。
Young's modulus E, shear modulus G, bulk modulus K, 和Poisson's ratio ν 之间可以进行换算,公式为:E=2G(1+v)=3K(1-2v). 表达式E = σ / ε定义: 杨氏模量,它是沿纵向的弹性模量,也是材料力学中的名词。
1807年因英国医生兼物理学家托马斯·杨(ThomasYoung,1773-1829)所得到的结果而命名。
根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。
杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。
杨氏弹性模量是选定机械零件材料的依据之一,是工程技术设计中常用的参数。
杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。
测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。
材料的各种模量(转帖)lsy002010-03-10 16:14模量:模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
杨氏模量(Young's Modulus):杨氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
(有点类似虎克定律^_^)弹性模量(Elastic Modulus)E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
弹性模量E在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (杨氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。
柔量J:一个弹性常数,它等于应变(或应变分量)对应力(或应力分量)之比。
对一个完善的弹性材料来说,它是弹性模量的倒数,即材料每单位应力的变形率。
常见的实验测定的柔量有拉伸柔量、剪切柔量、蠕变柔量等。
常用工程材料属性弹性模量泊松比质量密度抗剪模张力强度屈服度度1. 弹性模量(Young's modulus):弹性模量反映了材料在外力作用下的变形程度。
它定义为材料在线性弹性阶段的应力与应变的比值。
单位为帕斯卡(Pa)或兆帕(MPa)。
弹性模量越大,材料的刚度越高,抗变形能力越强。
典型弹性模量值:金属约为100-400GPa,钢约为200-210GPa,铝约为70GPa。
2. 泊松比(Poisson's ratio):泊松比定义为材料纵向(拉伸方向)的应变与横向(垂直拉伸方向)应变之比。
它是衡量材料的压缩性和延展性的能力的参数。
泊松比一般介于0和0.5之间,无量纲。
对于大多数金属材料,泊松比约为0.33. 质量密度(Density):质量密度是指物质的质量与体积的比值,单位为千克每立方米(kg/m³)或克每立方厘米(g/cm³)。
质量密度是衡量材料重量的参数,越大则材料越重。
4. 抗剪模量(Shear modulus):抗剪模量是材料在纵向剪切应力作用下的刚度指标。
它描述了材料的剪切刚度。
单位为帕斯卡(Pa)或兆帕(MPa)。
典型抗剪模量值:金属约为1/3-1/4弹性模量。
5. 张力强度(Tensile strength):张力强度指材料在拉伸过程中所能承受的最大应力。
单位为帕斯卡(Pa)或兆帕(MPa)。
张力强度较高的材料具有抵抗拉伸破坏的能力。
典型张力强度值:钢的张力强度约为300-400MPa,铝的张力强度约为150-300MPa。
6. 屈服度(Yield strength):屈服度是指材料在拉伸过程中从线性弹性阶段到塑性变形阶段的变化点,也称为屈服点。
屈服度是标志材料开始塑性变形的临界应力。
单位为帕斯卡(Pa)或兆帕(MPa)。
通常屈服度值会低于张力强度,典型屈服度值:钢的屈服度约为200-400MPa,铝的屈服度约为50-250MPa。
总结:以上所介绍的常用工程材料属性包括弹性模量、泊松比、质量密度、抗剪模量、张力强度和屈服度等,它们对于材料的应用、设计和性能具有重要意义,不同材料的这些属性值也有很大的差异。
杨氏模量各个值的单位杨氏模量(Young's modulus),也称为弹性模量,是描述物质在受力作用下变形程度的物理量。
它是指在材料线弹性阶段,单位截面积受力后产生的单位应变。
杨氏模量可以用来衡量材料的刚度和弹性性质,是材料力学性质的重要指标。
本文将从不同单位的杨氏模量的角度,探讨其在不同领域的应用。
一、GPa(千兆帕)GPa是杨氏模量的常见单位,表示杨氏模量的量级较大。
GPa常用于描述金属、陶瓷、复合材料等工程材料的力学性质。
例如,钢铁在室温下的杨氏模量约为200 GPa,而铝的杨氏模量约为70 GPa。
这些数值可以帮助工程师选择合适的材料用于不同领域的应用,比如建筑结构、航空航天、汽车制造等。
二、MPa(兆帕)MPa是杨氏模量的另一常见单位,也表示杨氏模量的量级较大。
MPa常用于描述混凝土、岩石等材料的力学性质。
例如,混凝土的杨氏模量约为30-50 MPa,岩石的杨氏模量则在1-100 GPa不等。
这些数值对于建筑工程、地质勘探等领域的专业人士非常重要。
三、kPa(千帕)kPa是杨氏模量的较小单位,表示杨氏模量的量级较小。
kPa常用于描述软组织、纤维素材料等生物材料的力学性质。
例如,人体肌肉、皮肤的杨氏模量都在几kPa到几十kPa之间。
这些数值有助于医学研究人员了解生物材料的机械性能,指导医学器械的设计和使用。
四、Pa(帕斯卡)Pa是杨氏模量的最小单位,表示杨氏模量的量级较小。
Pa常用于描述弹性体、弹簧等微小尺度的力学性质。
例如,弹簧的杨氏模量约为10^6 Pa。
这些数值对于微机械、纳米技术等领域的研究人员具有重要意义。
五、其他单位除了以上常见单位外,杨氏模量还可以用其他单位表示,比如N/m^2。
这些单位常用于学术研究中,用于描述特殊材料的力学性质,如石墨烯等。
总结:杨氏模量是描述材料力学性质的重要参数,不同单位的杨氏模量适用于不同领域的应用。
GPa和MPa常用于工程材料和建筑结构的设计与选择,kPa常用于生物材料的研究与医学应用,而Pa常用于微小尺度和特殊材料的研究。
什么是模量?“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
什么是杨氏模量?杨氏模量(Young's Modulus)就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
钢的杨氏模量大约为2×1011N•m-2,铜的是1.1×1011 N•m-2。
弹性模量(Elastic Modulus)E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
弹性模量E在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (杨氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。
剪切模量G(Shear Modulus):剪切模量是指剪切应力与剪切应变之比。
剪切模数G=剪切弹性模量G=切变弹性模量G 切变弹性模量G,材料的基本物理特性参数之一,与杨氏(压缩、拉伸)弹性模量E、泊桑比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。
常用材料弹性模量和剪切模量常用材料的弹性模量和剪切模量指的是材料在受力时的弹性性质,即材料在受力后发生形变后能够恢复到原来形状的程度。
弹性模量和剪切模量是用来描述材料的弹性行为的参数,对于材料的力学性质和设计有着重要的意义。
弹性模量(Young's Modulus)通常以E表示,是描述材料拉伸或压缩时的弹性变形性能的参数。
它的定义是材料应力和应变之间的比值,即E = σ/ε,其中σ是材料的应力,ε是材料的应变。
弹性模量的单位是帕斯卡(Pascal),常用的单位还包括千帕斯卡(Kilopascal)和兆帕斯卡(Megapascal)等。
弹性模量越大,表示材料的抵抗变形的能力越强。
常见材料的弹性模量差别很大,以下是一些常用材料的弹性模量的范围:-铁:100-220GPa-钢:200-210GPa-铝:70-80GPa-铜:100-150GPa-橡胶:0.01-0.1GPa-塑料:1-5GPa-木材:10-20GPa剪切模量(Shear Modulus)通常以G表示,是描述材料在剪切应力作用下发生剪切变形时的弹性变形性能的参数。
剪切应力指的是一种在材料中形成剪切力的应力,剪切变形是指材料在受到剪切力时产生的形变。
剪切模量定义为剪切应力和剪切应变之间的比值,即G = τ/γ,其中τ是剪切应力,γ是剪切应变。
剪切模量的单位也是帕斯卡(Pascal)。
常见材料的剪切模量范围如下所示:-钢:70-85GPa-铝:25-30GPa-铜:40-50GPa-橡胶:0.001-0.1GPa-塑料:1-5GPa-木材:1-5GPa弹性模量和剪切模量之间存在一定的关系,通过杨氏模量和剪切模量可以计算出材料的泊松比(Poisson's Ratio)。
泊松比(Poisson's Ratio)通常以ν表示,是描述材料杨氏模量和剪切模量之间关系的参数。
泊松比定义为材料横向应变和纵向应变之间的比值,即ν = - ε_t/ε_l,其中ε_t是材料的横向(剪切)应变,ε_l是材料的纵向(拉伸或压缩)应变。
弹性模量、剪切模量、体积模量、强度、刚度弹性模量、剪切模量、体积模量、强度、刚度"模量"可以理解为是一种标准量或指标。
材料的"模量"一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标。
杨氏模量(Young'sModulus):杨氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(ThomasYoung1773~1829) 在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
钢的杨氏模量大约为2×1011N?m-2,铜的是1.1×1011N?m-2。
弹性模量(ElasticModulus)E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。
也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。
弹性模量E在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulusofelasticityfortension(杨氏模量)、剪切弹性模量shearmodulusofelasticity(刚性模量)、体积弹性模量、压缩弹性模量等。
剪切模量G(ShearModulus):剪切模量是指剪切应力与剪切应变之比。
剪切模数G=剪切弹性模量G=切变弹性模量G切变弹性模量G,材料的基本物理特性参数之一,与杨氏(压缩、拉伸)弹性模量E、泊桑比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。
弹性(杨氏)模量、剪切模量、体积模量、强度、刚度“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标,单位为Pa也就是帕斯卡。
但是通常在工程的使用中,因各材料杨氏模量的量值都十分的大,所以常以百万帕斯卡(MPa)或十亿帕斯卡(GPa)作为其单位。
1、杨氏模量(Young's Modulus) ——E:杨氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=E·ε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
钢的杨氏模量大约为2×1011N/m2,铜的是1.1×1011 N/m2。
2、弹性模量(Elastic Modulus)——E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数,也常指材料所受应力(如拉伸、压缩、弯曲、扭曲、剪切等)与材料产生的相应应变之比。
弹性模量E在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (杨氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。
2.1、剪切模量G(Shear Modulus):剪切模量是指剪切应力与剪切应变之比。
剪切模数G=剪切弹性模量G=切变弹性模量G 。
弹性(杨氏)模量、剪切模量、体积模量、强度、刚度“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标,单位为Pa也就是帕斯卡。
但是通常在工程的使用中,因各材料杨氏模量的量值都十分的大,所以常以百万帕斯卡(MPa)或十亿帕斯卡(GPa)作为其单位。
1、杨氏模量(Young's Modulus) ——E:杨氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=E·ε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
钢的杨氏模量大约为2×1011N/m2,铜的是×1011 N/m2。
2、弹性模量(Elastic Modulus)——E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数,也常指材料所受应力(如拉伸、压缩、弯曲、扭曲、剪切等)与材料产生的相应应变之比。
弹性模量E在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (杨氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。
、剪切模量G(Shear Modulus):剪切模量是指剪切应力与剪切应变之比。
剪切模数G=剪切弹性模量G=切变弹性模量G 。
简介
modulus
材料在受力状态下应力与应变之比。
相应于不同的受力状态,有不同的称谓。
例如,拉伸模量(E);剪切模量(G);体积模量(K);纵向压缩量(L)等。
该词由拉丁语“小量度”演化而来。
原来专指材料在弹性极限内的一个力学参数。
故
在不加任何定冠词时往往就认为指弹性模量,即应力与应变之比是一常数。
该值的
大小是表示此材料在外力作用下抵抗弹性变形的能力。
弹性模量
拼音:tanxingmoliang
英文名称:modulusofelasticity
定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
单位:达因每平方厘米。
意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使
材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,
发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
说明:又称杨氏模量。
弹性材料的一种最重要、最具特征的力学性质。
是物体弹性t变形难易程度的表征。
用E表示。
定义为理想材料有小形变时应力与相应的应
变之比。
E以单位面积上承受的力表示,单位为牛/米^2。
模量的性质依赖于形变的性质。
剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。
模量的倒数称为柔量,用J表示。
拉伸试验中得到的屈服极限бb和强度极限бS,反映了材料对力的作用的承受
能力,而延伸率δ或截面收缩率ψ,反映了材料缩性变形的能力,为了表示材料
在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通
常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范
围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。
一般按引起
单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:
式中A0为零件的横截面积。
由上式可见,要想提高零件的刚度EA0,亦即要减少零件的弹性变形,可选用
高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服
役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算
来说,弹性模量E是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵
向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。
弹性模量在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)
与材料产生的相应应变之比,用牛/米^2表示。
弹性模量:材料的抗弹性变形的一个量,材料刚度的一个指标。
它只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。
各种钢
的弹性模量差别很小,金属合金化对其弹性模量影响也很小。
动态模量
由于应力导前应变一个相位角,使得应变分成了两个部分,第一部分为弹性贡献,与应变成线性关系,第二部分为粘性贡献,与应变速率成线性关系。
即弹性响
应与粘性响应分别造成各自的应力,其线性加和就是材料的总应力。
公式:E(t)=|ζ(t)|/|ε(t)|=ζ/ε(1)
式中:E(t)为动态模量;ζ(t)、ε(t)为应力和应变时间函数;ζ、ε分别为应力和应变的振幅。
由于相位差的存在,动态模量是一个复数,G=G’+iG’’,G’是弹性响应的系数,称为储能模量;G’’/ω为黏性响应的系数,故称为损耗模量。
G’和G’’合称动态模量
正切模量
tangentmodulus
在静态应力-应变曲线上每点的斜率,称为正切模量。
通常塑性材料应力-应变
曲线是非线性的,一般来说某点的正切模量是由该点附近应力变化量与应变变化量
之比进行计算。
塑性材料不同于金属材性,它具有黏弹性,这就导致力与形变关系
不是线性关系。
工程上希望知道其相关模量,从而提出正切模量。
该模量只能看作
是非弹性极限范围内的宏观的模量的一种表述,为设计提供一种参考。