多元统计分析方法概述
- 格式:doc
- 大小:462.00 KB
- 文档页数:23
多元统计分析概述多元统计分析是一种统计学方法,用于研究多个变量之间的关系和模式。
它可以帮助我们理解和解释数据中的复杂关系,从而提供有关变量之间相互作用的深入洞察。
在本文中,我们将概述多元统计分析的基本概念、常用方法和应用领域。
一、基本概念1. 变量:在多元统计分析中,我们研究的对象是多个变量。
变量可以是数值型(如年龄、收入)或分类型(如性别、教育程度)。
2. 样本和总体:多元统计分析通常基于样本数据进行推断。
样本是从总体中抽取的一部分观察值。
通过对样本数据进行分析,我们可以推断总体的特征和关系。
3. 相关性和相关系数:多元统计分析可以帮助我们研究变量之间的相关性。
相关性是指两个变量之间的关系程度。
相关系数是衡量相关性强度和方向的统计指标,常用的有皮尔逊相关系数和斯皮尔曼相关系数。
4. 因果关系和回归分析:多元统计分析也可以用于研究变量之间的因果关系。
回归分析是一种常用的方法,用于建立变量之间的数学模型,从而预测一个变量对另一个变量的影响。
二、常用方法1. 主成分分析(PCA):主成分分析是一种降维技术,用于将多个相关变量转化为少数几个无关的主成分。
它可以帮助我们发现数据中的主要模式和结构。
2. 因子分析:因子分析是一种用于探索变量之间潜在关系的方法。
它可以帮助我们理解变量背后的共同因素,并将多个变量归纳为几个潜在因子。
3. 聚类分析:聚类分析是一种将样本分组为相似类别的方法。
它可以帮助我们发现数据中的群组结构,并识别相似的观察值。
4. 判别分析:判别分析是一种用于区分不同组别的方法。
它可以帮助我们确定哪些变量对于区分不同组别最为重要。
5. 多元方差分析(MANOVA):多元方差分析是一种用于比较多个组别之间差异的方法。
它可以同时考虑多个因变量和多个自变量之间的关系。
三、应用领域多元统计分析在各个领域都有广泛的应用,包括社会科学、生物医学、市场研究等。
以下是一些常见的应用领域:1. 社会科学:多元统计分析可以帮助研究人类行为和社会现象。
研究生数学教案:多元统计分析方法介绍
1. 引言
1.1 概述
研究生数学教育一直以来都是培养学生的数学思维、分析能力和解决问题的能力的重要环节之一。
多元统计分析方法作为一种强大的数学工具,被广泛应用于各个领域的研究与实践中,可以帮助研究者在面对复杂数据时提取有用信息、进行统计推断和预测模型建立等方面发挥重要作用。
1.2 文章结构
本文将从以下几个方面介绍多元统计分析方法:
(1)概述多元统计分析方法的基本概念和应用领域;
(2)介绍主成分分析法及其在数据降维和特征提取中的应用;
(3)详细讲解聚类分析方法,并探讨其在数据分类和模式识别中的应用;(4)阐述判别分析方法,并说明其在区分不同样本群体中起到的重要作用;(5)探索因子分析法并讨论其在求解变量之间关系以及数据降维方面所起到的作用。
1.3 目的
本文旨在向研究生们全面介绍多元统计分析方法的概念、原理和应用,帮助读者
了解多元统计分析方法在实际问题中的具体作用,并能够灵活运用这些方法进行数据分析与处理。
通过本文的阅读和学习,读者将能够更深入地理解多元统计分析的思想,为今后的研究工作提供有力支持。
同时,本文还将为教师们提供一份可供参考的研究生数学教案,以促进教学效果的提升。
以上就是本文引言部分的内容。
通过对多元统计分析方法展开讲解,我们将逐步深入了解其各个方面的知识和应用案例。
在剩下的部分中,我们将详细介绍主成分分析法、聚类分析法、判别分析法和因子分析法等内容。
请继续阅读后续章节以获取更多相关知识。
多元统计分析在统计学中,多元统计分析是一种研究多个变量之间关系的方法。
它是利用多个变量的观测值来对问题进行全面、综合的分析,从而揭示出变量之间的相互影响和作用机制。
多元统计分析能够准确地描述和解释变量之间的关系,为决策者提供有力的科学依据。
多元统计分析广泛应用于社会科学、经济学、医学、心理学等各个领域。
通过对多个变量进行统计分析,我们可以找到变量之间的关联,发现潜在的模式和规律。
这有助于我们更好地理解研究对象的特征和行为,为决策制定提供准确的预测和建议。
在多元统计分析中,常用的方法包括相关分析、回归分析、因子分析、聚类分析等。
相关分析是研究变量之间的关联性,通过计算相关系数来衡量变量之间的线性关系强度和方向。
回归分析则是研究因变量与自变量之间的关系,通过建立数学模型来进行预测和解释。
因子分析可以将一组相关变量简化为几个相互独立的维度,帮助我们观察变量之间的隐藏结构。
聚类分析则可以将观测样本根据相似性进行分类,发现样本之间的群体关系和特征。
多元统计分析的过程一般包括数据收集、数据预处理、变量选择、模型建立和结果解释等几个阶段。
数据收集是获取原始数据的过程,可以通过问卷调查、实验观测等方式进行。
数据预处理是对原始数据进行清洗、整编和转换,以便于分析和解释。
变量选择是根据研究目标和方法选择合适的变量进行分析。
模型建立是根据预设的理论框架和统计方法建立数学模型,进而进行统计分析。
结果解释是对统计结果进行解读和推断,将统计结论转化为实际问题的解决方案。
多元统计分析的优势在于它能够综合考虑多个变量之间的复杂关系。
相比于单变量分析,它能够提供更全面、准确的信息和结论。
例如,在市场研究中,我们可以利用多元统计分析来探索消费者的购买行为和喜好,从而制定有针对性的营销策略。
在医学研究中,多元统计分析可以帮助研究人员分析影响疾病风险的多个因素,为疾病预防和治疗提供科学依据。
然而,多元统计分析也存在一些局限性和挑战。
首先,多元统计分析要求样本数据的质量高,数据之间需要存在一定的相关性才能进行分析。
综合评价的多元统计分析方法一、本文概述本文旨在深入探讨综合评价的多元统计分析方法,阐述其在各个领域的广泛应用及其实践价值。
随着大数据时代的到来,多元统计分析在综合评价中的地位日益凸显,其不仅能够帮助研究者从多个维度和角度全面、系统地分析数据,还能为决策提供更为科学、合理的依据。
本文将从多元统计分析的基本概念出发,详细介绍其在综合评价中的应用原理、常用方法以及实际案例,以期为读者提供一套完整、实用的多元统计分析方法体系,为相关领域的实践工作提供有益的参考。
二、多元统计分析方法概述在现代数据分析中,多元统计分析方法占据了至关重要的地位。
这些方法允许研究者同时分析多个变量,从而更全面地理解数据背后的复杂关系。
多元统计分析方法不仅扩展了传统单变量统计分析的视野,而且通过揭示变量之间的内在联系,为决策制定和预测提供了更为精确和全面的信息。
多元统计分析方法主要包括多元线性回归、主成分分析、因子分析、聚类分析和判别分析等。
每种方法都有其特定的应用场景和优势。
例如,多元线性回归用于探究多个自变量与因变量之间的线性关系;主成分分析则通过降维技术,提取数据中的主要信息;因子分析则用于揭示变量背后的潜在结构;聚类分析根据数据的相似性将数据分为不同的群体;而判别分析则用于确定样本所属的类型或群体。
这些方法在综合评价中都有着广泛的应用。
通过综合评价,我们可以对一个对象或系统的多个方面进行量化评估,进而得出一个综合的、全面的评价结果。
在这个过程中,多元统计分析方法提供了强大的工具支持,帮助我们更准确地理解和分析评价对象的各个方面,为决策提供科学依据。
随着数据分析技术的不断发展,多元统计分析方法也在不断更新和完善。
这些方法的应用范围也在不断扩大,从社会科学、经济管理到生物医学等领域,都可以看到多元统计分析方法的身影。
未来,随着大数据和技术的进一步发展,多元统计分析方法将在综合评价中发挥更加重要的作用。
三、主成分分析在综合评价中的应用主成分分析(Principal Component Analysis, PCA)是一种广泛应用于多元统计分析的降维技术,其核心思想是通过正交变换将原始变量转换为新的线性无关的综合变量,即主成分。
第1章多元统计分析概述多元统计分析是指在一个研究中同时考虑多个变量之间的关系,并利用数理统计方法进行分析和推断的统计学方法。
它是一种能够从多个角度研究问题,揭示变量之间的相互关系的有效工具。
多元统计分析可以用于各个领域的研究,包括社会科学、医学、经济学等。
多元统计分析在研究过程中有多个优势。
首先,它能够有效地探究多个变量之间的复杂关系。
在研究中,变量之间的关系往往是相互影响的,单个变量的变化可能同时影响其他变量。
通过多元统计分析,可以帮助研究者了解变量之间的交互作用,并提供更全面的观点。
其次,多元统计分析可以提供更准确的结果和推断。
通过考虑多个变量的信息,可以减少对于单个变量的误差引起的不确定性。
这样一来,得到的分析结果更具有可信度和可靠性,并可以更有效地进行推断和预测。
第三,多元统计分析可以帮助研究者发现隐含的结构和模式。
在大量数据中,可能存在一些复杂的关联和模式,普通的单变量方法难以完全发掘。
而多元统计分析通过综合多个变量的信息,能够更有效地揭示数据中的结构和模式,帮助研究者更好地理解数据背后的本质。
多元统计分析有多种方法和技术,包括主成分分析、因子分析、聚类分析、判别分析、回归分析等。
这些方法和技术各有特点,适合不同的研究目的和数据类型。
主成分分析是一种通过线性变换将原始变量映射到新的维度上的方法。
它可以帮助研究者发现数据中的主要成分,并直观地解释变量之间的关系。
主成分分析可以用于数据降维、特征提取等多个方面。
因子分析是一种用于揭示多个观测变量背后的潜在变量结构的方法。
通过因子分析,研究者可以将多个观测变量归纳到一些潜在的因子上,从而更好地理解和解释数据。
聚类分析是一种无监督学习方法,用于将样本或观测单位划分成不同的群组。
聚类分析可以帮助研究者发现数据中相似的样本或观测单位,并识别出不同的群组。
判别分析是一种有监督学习方法,用于将样本或观测单位划分到不同的预先定义的群组中。
通过判别分析,研究者可以建立一个分类模型,将新的样本或观测单位划分到合适的群组中。
应用多元统计分析多元分析概述多元统计分析是指将多个变量和多个观测对象综合起来进行分析和解释的一种统计方法。
它是统计学的一个重要分支,广泛应用于社会科学、经济学、管理学、生物学和医学等领域。
多元分析的目的是通过降低复杂度和提取主要信息来揭示变量之间的关系和结构,帮助研究者从大量数据中提取有用信息。
多元统计分析包括了多个方法和技术,其中比较常见和常用的方法有主成分分析、因子分析、聚类分析和判别分析等。
主成分分析是最常见的多元分析方法之一,它通过将原始数据转换为一组新变量,使得这些新变量之间无相关性,并且能够解释原始数据中大部分的方差。
主成分分析可以用于降维、提取主要信息和识别主要因素等。
因子分析是另一种常用的多元分析方法,它可以用于分析和解释一组观测变量背后的潜在因素。
通过因子分析,研究者可以发现变量之间的关联性,并且将这些变量归为几个潜在的因素。
因子分析常用于心理测量学中,用于评估潜在的人格特质和态度等。
聚类分析是一种无监督学习的多元分析方法,它将相似的观测对象聚类在一起,形成不同的群组。
聚类分析可用于发现数据集中的模式和结构,并帮助研究者理解观测对象之间的相似性和差异性。
聚类分析在市场细分、消费者行为和图像处理等领域有着广泛的应用。
判别分析是一种有监督学习的多元分析方法,它通过建立鉴别函数来预测或分类观测对象的归类。
判别分析常用于预测和分类问题,例如预测客户购买行为、预测股票价格波动等。
判别分析可以帮助研究者从大量的变量中筛选出最重要和最相关的变量。
在进行多元统计分析之前,研究者需要明确研究目的和选择合适的方法。
然后,研究者需要进行数据准备、数据清洗和变量选择等工作。
接下来,研究者可以使用统计软件进行具体的分析。
在分析完毕后,研究者需要对分析结果进行解释和验证,并且可以对结果进行进一步的推断和预测。
多元统计分析具有许多优点,包括综合性、全面性和可解释性等。
它可以帮助研究者揭示变量之间复杂的关系和结构,提取主要信息,并支持决策和预测等。
统计师如何进行多元统计分析与建模统计学是一门关于数据收集、分析和解释的学科,它在各个领域中都有着重要的应用。
在当今复杂的数据环境中,多元统计分析与建模成为了统计师必备的技能之一。
本文将介绍统计师在进行多元统计分析与建模时应注意的要点以及常用的方法。
一、多元统计分析的概述多元统计分析是指对多个变量之间的关系进行分析的统计方法。
它可以帮助我们理解变量之间的相互作用关系,挖掘隐藏在数据背后的规律和趋势。
多元统计分析包括主成分分析、因子分析、聚类分析、判别分析、回归分析等方法。
二、多元统计分析的步骤进行多元统计分析时,统计师需要按照以下步骤进行:1. 数据准备:收集所需的数据,确保数据的准确性和完整性。
2. 变量选择:根据研究目的,选择与分析问题相关的变量,排除与研究无关的变量。
3. 数据清洗:对数据进行清洗和处理,包括缺失值处理、异常值检测与处理等。
4. 变量标准化:对变量进行标准化处理,使得不同尺度和单位的变量具有可比性。
5. 多元统计分析方法选择:根据研究问题的性质和数据的特点,选择适当的多元统计方法进行分析。
6. 模型建立:根据选定的多元统计方法,建立合适的模型,进行分析和解释。
7. 模型评估:对建立的模型进行评估,检验模型的拟合度和稳定性。
8. 结果解释:根据模型的结果,给出合理的解释和建议。
三、多元统计分析方法1. 主成分分析:主成分分析是一种降维方法,可以将多个相关变量转换为少数几个无关的主成分。
通过主成分分析,可以挖掘出数据中的主要信息,减少数据的维度,方便后续的分析和解释。
2. 因子分析:因子分析也是一种降维方法,它通过分析变量之间的共同方差,将原始变量转化为一些互相无关的因子。
因子分析可以帮助我们发现潜在的变量结构,解释数据的内在含义。
3. 聚类分析:聚类分析是一种通过样本间的相似度或距离来划分样本的方法。
它将相似的样本分为同一类,不相似的样本分为不同类,从而使数据具有更好的可解释性和预测性。
多元统计分析⽅法多元统计分析概述⽬录⼀、引⾔ (3)⼆、多元统计分析⽅法的研究对象和主要内容 (3)1.多元统计分析⽅法的研究对象 (3)2.多元统计分析⽅法的主要内容 (3)三、各种多元统计分析⽅法 (3)1.回归分析 (3)2.判别分析 (6)3.聚类分析 (8)4.主成分分析 (10)5.因⼦分析 (10)6. 对应分析⽅法 (11)7. 典型相关分析 (11)四、多元统计分析⽅法的⼀般步骤 (12)五、多元统计分析⽅法在各个⾃然领域中的应⽤ (12)六、总结 (13)参考⽂献 (14)谢辞 (15)⼀、引⾔统计分布是⽤来刻画随机变量特征及规律的重要⼿段,是进⾏统计分布的基础和提⾼。
多元统计分析⽅法则是建⽴在多元统计分布基础上的⼀类处理多元统计数据⽅法的总称,是统计学中的具有丰富理论成果和众多应⽤⽅法的重要分⽀。
在本⽂中,我们将对多元统计分析⽅法做⼀个⼤体的描述,并通过⼀部分实例来进⼀步了解多元统计分析⽅法的具体实现过程。
⼆、多元统计分析⽅法的研究对象和主要内容(⼀)多元统计分析⽅法的研究对象由于⼤量实际问题都涉及到多个变量,这些变量⼜是随机变量,所以要讨论多个随机变量的统计规律性。
多元统计分析就是讨论多个随机变量理论和统计⽅法的总称。
其内容包括⼀元统计学中某些⽅法的直接推⼴,也包括多个随即便量特有的⼀些问题,多元统计分析是⼀类范围很⼴的理论和⽅法。
现实⽣活中,受多个随机变量共同作⽤和影响的现象⼤量存在。
统计分析中,有两种⽅法可同时对多个随机变量的观测数据进⾏有效的分析和研究。
⼀种⽅法是把多个随机变量分开分析,⼀次处理⼀个随机变量,分别进⾏研究。
但是,这样处理忽略了变量之间可能存在的相关性,因此,⼀般丢失的信息太多,分析的结果不能客观全⾯的反映整个问题,⽽且往往也不容易取得好的研究结论。
另⼀种⽅法是同时对多个随机变量进⾏研究分析,此即多元统计⽅法。
通过对多个随即便量观测数据的分析,来研究随机变量总的特征、规律以及随机变量之间的相互关系。
多元统计分析方法概述目录引言………………………………………………………………第四页多元线性回归方法原理简介……………………………………第四页多元线性回归案例叙述分析……………………………………第四页多元线性回归分析方法在社会的应用…………………………第八页聚类分析方法原理简介…………………………………………第八页聚类分析案例叙述分析…………………………………………第八页聚类分析方法在社会的应用……………………………………第十页主成份分析方法原理简介………………………………………第十页主成份分析案例叙述分析……………………………………第十一页主成份分析方法在社会的应用………………………………第十四页因子分析方法原理简述………………………………………第十四页因子分析案例叙述分析………………………………………第十四页因子分析方法在社会的应用…………………………………第十七页偏最小二乘回归分析方法原理简介…………………………第十八页偏最小二乘回归分析案例叙述分析…………………………第十九页偏最小二乘回归分析方法在社会的应用…………………第二十一页总结…………………………………………………………第二十一页参考文献……………………………………………………第二十二页谢辞…………………………………………………………第二十三页摘要本文主要概述了多元统计分析的各个方法,然后在后面介绍了多元统计分析方法在社会生活等方面的实际案例以及分析。
并由案例分析找出各个统计分析方法的对应使用领域。
关键词多元统计分方法回归分析聚类分析因子分析主成份分析偏最小二乘回归分析因素股市模型财务SummaryThe Chemometrics includes chemical experimental design and optimization (such as orthogonal design, simplex method and variance analysis), chemical pattern recognition (such as clusters, PCA, k-nearest neighbour analysis, SIMCA and ANN), multi-variance calibration (such as MLR, CLS, PCR and PLS) and spectrum analysis (Such as ITTFA, EFA and FSWEFA), signal processing (such as filtering, smoothing, derivation and convolution).keywordmultivariate statistical analysis method regression analysis cluster analysis factor analysis principal component analysis linear least squares estimate complication equity market model finance一、引言多元统计分析的基本方法。
多元统计分析是数理统计学30 多年来迅速发展起来的一个分支随着计算机的普及,各种统计软件不断推出,多元统计分析方法已广泛应用到教育管理的各个领域。
多元统计分析是运用数理统计的方法来研究多变量问题的理论和方法,它是一元统计学的推广在许多教育问题中,教育现象涉及到的变量不是一个,而是多个变量,且这些变量间又存在一定的联系,需要处理多个变量的观测数据,如果用一元统计方法就要对多方面分别进行分析,而一次分析一个方面,同时忽视了各方面之间存在的相关性,这样会丢失很多信息,分析的结果不能客观全面地反映情况。
多元统计分析方法主要包括线性回归分析方法、判别分析方法、聚类分析方法、主成份分析方法、因子分析方法、对应分析方法、典型相关分析方法以及偏最小二乘回归分析方法等。
在这里我们主要针对了最常用的回归分析方法、聚类分析方法、主成份分析方法、因子分析方法以及偏最小二乘回归分析方法结合实际案例进行分析总结。
最终总结出各个方法所使用的领域。
二、多元线性回归分析方法(一)多元线性回归分析方法原理简介根据相关性的大小把变量分组,使得同组内的变量之间的相关性较高,但不同组的变量相关性较低各个因子间互不相关,所有变量都可以表示成公因子的线性组合。
因子分析的目的就是减少变量的数目,用少数因子代替所有变量去分析整个问题。
(二)多元线性回归案例叙述分析公路客货运输量多元线性回归预测方法探讨1.背景公路客、货运输量的定量预测,近几年来在我国公路运输领域大面积广泛地开展起来,并有效的促进了公路运输经营决策的科学化和现代化。
关于公路客、货运输量的定量预测方法很多,本文主要介绍多元线性回归方法在公路客货运输量预测中的具体操作。
根据笔者先后参加的部、省、市的科研课题的实践,证明了多元线性回归方法是对公路客、货运输量预测的一种置信度较高的有效方法。
2.多元线性回归预测线性回归分析法是以相关性原理为基础的.相关性原理是预测学中的基本原理之一。
由于公路客、货运输量受社会经济有关因素的综合影响。
所以,多元线性回归预测首先是建立公路客、货运输量与其有关影响因素之间线性关系的数学模型。
然后通过对各影响因素未来值的预测推算出公路客货运输量的预测值。
3.公路客、货运输量多元线性回归预测方法的实施步骤:影响因素的确定影响公路客货运输量的因素很多,主要包括以下一些因素:(1)客运量影响因素人口增长量、客车保有量、国民生产总值、国民收入工农业总产值、基本建设投资额、城乡居民储蓄额铁路和水路客运量等。
(2)货运量影响因素人口货车保有量(包括拖拉机),国民生产总值,国民收入、工农业总产值,基本建设投资额,主要工农业产品产量,社会商品购买力,社会商品零售总额.铁路和水运货运量等。
上述影响因素仅是对一般而言,在针对具体研究对象时会有所增减。
因此,在建立模型时只须列入重要的影响因素,对于非重要因素可不列入模型中。
若疏漏了某些重要的影响因素,则会造成预测结果的失真。
另外,影响因素太少会造成模型的敏感性太强.反之,若将非重要影响因素列入模型,则会增加计算工作量,使模型的建立复杂化并增大随机误差。
影响因素的选择是建立预测模型首要的关键环节,可采取定性和定量相结合的方法进行.影响因素的确定可以通过专家调查法,其目的是为了充分发挥专家的聪明才智和经验。
具体做法就是通过对长期从事该地区公路运输企业和运输管理部门的领导干部、专家、工作人员和行家进行调查。
可通过组织召开座谈会.也可以通过采访,填写调查表等方法进行,从中选出主要影响因素。
为了避免影响因素确定的随意性,提高回归模型的精度和减少预测工作量,可通过查阅有关统计资料后,再对各影响因素进行相关度(或关联度)和共线性分析,从而再次筛选出最主要的影响因素.所谓相关度分析就是将各影响因素的时间序列与公路客货运量的时间序列做相关分析,事先确定—个相关系数,对相关系数小于的影响因素进行淘汰.关联度是灰色系统理论中反映事物发展变化过程中各因素之间的关联程度,可通过建空公路客、货运量与各影响影响因素之间关联系数矩阵,按一定的标准系数舍去关联度小的影响因素.所谓共线性是指某些影响因素之问存在着线性关系或接近于线性关系。
由于公路运输经济自身的特点,影响公路客,货运输量的诸多因素之问总是存在着一定的相关性,持别是与国民经济有关的一些价值型指标。
4.建立经验线性回归方程利用最小二乘法原理寻求使误差平方和达到最小的经验线性回归方程:y——预测的客、货运量g——各主要影响因数5.数据整理对收集的历年客、货运输量和各主要影响因素的统计资料进行审核和加工整理是为了保证预测工作的质量。
资料整理主要包括下列内容:(1)资料的补缺和推算。
(2)对不可靠资料加以核实调整.对查明原因的异常值加以修正。
(3)对时间序列中不可比的资料加以调整和规范化;对按当年价格计算的价值指标应折算成按统……。
6.多元线性回归模型的参数估计在经验线性回归模型中,是要估计的参数,可通过数理统计理论建立模型来确定。
在实际预测中,可利用多元线性回归复相关分析的计算机程序来实现对模型参数的估计值进行检验。
此项工作的目的在于判定估计值是否满意、可靠。
一般检验工作须从以下几方面来进行。
(1)经济意义检验(2)统计检验(3)拟合度检验(4)回归方程的显著性检验(5)参数估计值的标准差检验应当强调指出.统计检验相对于经济意义检验来说是第二位的。
如果经济意义检验不合理,那么即使统计检验可以达到很高的置信度,也应当抛弃这种估计结果,因为用这样的结果来进行经济预测是没有意义的。
7.最优回归方程的确定经过上述的经济意义和统计检验后,挑选出的线性回归方程往往是好几个、为了从中优选出用于进行实际预测的方程,我们可以采用定性和定量相结合的办法。
从数理统计的原理来讲,应挑选方程的剩余均方和S·E较小为好.但作为经济预测还必须尽量考虑到方程中的影响因素更切合实际和其未来值更易把握的原则来综合考虑。
当然、有时也可以从中挑选出好几个较优的回归方程.通过预测后,分别作为不同的高、中、低方案以供决策人员选择。
8.模型的实际预测检验在获得模型参数估计值后,又经过了上述一系列检验而选出的最优(或较优)回归方程,还必须对模型的预测能力加以检验。
不难理解、最优回归方程对于样本期间来说是正确的,但是对用于实际预测是否合适呢?为此,还必须研究参数估计值的稳定性及相对于样本容量变化时的灵敏度,也必须研究确定估计出来的模型是否可以用于样本观察值以外的范围,其具体做法是:(1)采用把增大样本容量以后模型估计的结果与原来的估计结果进行比较,并检验其差异的显著性。
(2)把估计出来的模型用于样本以外某一时间的实际预测,并将这个预测值与实际的观察值作一比较,然后检验其差异的显著性。
9.模型的应用公路客、货运输量多元线性回归预测模型的研究目的主要有以下几个方面。
(1)进行结构分析,研究影响该地区的公路客、货运输量的主耍因素和各影响因素影响程度的大小,进一步探讨该地区公路运输经济理论。
(2)预测该地区今后年份的公路客、货运输量的变化,以便为公路运输市场、公路运输政策及公路运辅建设项目投资作出正确决策提供理论依据。
另外,还可以通过公路客、货运输量与公路交通量作相关分析来对公路的饱和度发展趋势进行预测。
从而为公路的新建、扩建项目的投资提供决策分析。
(3)模拟各种经济政策下的经济效果,以便对有关政策进行评价。
四、经调查分析,影响某地区旅客运输量的因素为。
x——国民收入1x——工农业总产值2x——社会总产值3x——人口4x——客车保有量5x——城乡居民储蓄存款6经计算得下列相关系数表:x 1x2x3x4x5x6Y 0.9439 0.92 87 O.90 43 0.9914 0.9670 0.7021Z 0.97 3 6 0.96l 4 O.932 6 O.8645 O.9321 0.6678Y——客运量Z——旅客周转量若令α = 0.85,则可以舍去x6这个影响因索,也就是认为“城乡居民储蓄存款”不能作为响旅客运输量的主要因素。