溶胶的制备与电泳+石油工程2011-11班+22+11021522+卢志鹏
- 格式:doc
- 大小:399.88 KB
- 文档页数:5
《物理化学基础实验》溶胶的制备及电泳实验一、实验目的1.学会制备和纯化Fe(OH)3溶胶。
2.掌握电泳法测定Fe(OH)3溶胶电动电势的原理和方法。
二、实验原理1.制备和纯化Fe(OH)3溶胶原理:FeCl3+3H2O =Fe(OH)3(胶体)+3HCl 盐的水解氯化铁的水解反应本身是一个吸热反应,加热可以促使平衡向右移动,但是作为胶体的氢氧化铁是有一定的浓度限制的,若浓度过大就会形成氢氧化铁沉淀,而且温度比较高的话胶体粒子之间碰撞的机会会增多,也不利于胶体的稳定性,所以煮沸的时间不能过长。
制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。
常用的纯化方法是半透膜渗析法。
2.电泳在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。
同时在胶粒附近的介质中必然分布有与胶粒表面电性相反而电荷数量相同的反离子,形成一个扩散双电层。
当胶体相对静止时,整个溶液呈电中性。
但在外电场的作用下,胶体中的胶粒和分散介质反向相对移动时,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。
荷电的胶粒与分散介质间的电势差称为电动电势,用符号ξ表示。
ζ电势是表征胶粒特性的重要物理量之一,在研究胶体性质及实际应用中有着重要的作用。
它与胶体的稳定性有关, ζ绝对值越大,表明胶粒电荷越多,胶粒间斥力越大,胶体越稳定。
界面移动法:测量溶胶的 电位是通过测定在两铂电极间外加一定直流电场,胶体溶液与辅助溶液间可见界面在单位时间内的移动距离来测定电动电势。
在电泳仪的两极间加上电位差E (V )后,在t (s )时间内溶胶界面移动的距离为D (m ),即胶粒的电泳速度U (m •s -1)为: D U t = (1)相距为l (m )的两极间的电位梯度平均值H (V •m -1)为: E H l = (2)从实验求得胶粒电泳速度后,可按照下式求出ζ(V )电位: K U H πηζε=⋅ (3)式中K 为与胶粒形状有关的常数,对于本实验中的氢氧化铁溶胶,胶粒为棒形,有1022113.610K V s kg m --=⨯⋅⋅;而ε为介质的介电常数(无单位),η为介质的粘度(Pa •s )。
溶胶与电泳实验报告引言溶胶与电泳是常用的生物分离技术,通过利用不同溶胶和电场作用下,分离带电离子从而实现对生物分子的分离与纯化。
本实验旨在探究溶胶和电泳参数对分离效果的影响,为后续的生物分离实验提供参考。
实验步骤1. 实验前准备:将所需试剂准备好,包括琼脂糖、TAE缓冲液和DNA样品。
2. 制备溶胶:按照配方将琼脂糖与适量的TAE缓冲液加热溶解,待溶解后静置冷却。
3. 制备DNA样品:从所需材料中提取DNA样品,可以采用常规提取方法。
4. 准备电泳槽:将电泳槽放置于水平桌面上,将制备好的溶胶缓冲液倒入槽中。
5. 样品处理:将提取的DNA样品与适量的样品缓冲液混合,进行必要的处理如加热退变。
6. 加样和电泳:将处理好的样品缓冲液混合液利用吸管或微量移液器加入电泳槽中,确保样品被均匀加载。
7. 设置电泳参数:调整电泳仪的参数,如电压、时间和大小等,启动电泳。
8. 分析与记录:观察电泳过程中带电离子的迁移情况,记录结果。
9. 结束与分析:电泳结束后,关闭电源,取出电泳槽,进行染色或可视化处理,分析结果。
实验结果在本次实验中,我们使用不同浓度的琼脂糖制备了不同浓度的溶胶,并加入了DNA样品进行电泳实验。
根据实验结果,我们得出以下结论:1. 溶胶浓度对电泳效果有重要影响。
溶胶浓度过高会导致DNA分子移动速度变慢,分离效果差;而溶胶浓度过低则会导致DNA分子迁移过快,难以分离。
2. 电场强度对电泳效果有显著影响。
在一定范围内,提高电场强度可以加快DNA分子的迁移速度,提高分离效率。
但如果电场强度过高,则可能导致DNA 分子的断裂或畸变,影响实验结果。
3. DNA片段大小对迁移速度有直接影响,较长的DNA片段迁移速度较慢,较短的DNA片段迁移速度较快。
因此,在分析DNA样品时,我们可以根据迁移速度,初步判断DNA片段的大小。
结论通过溶胶与电泳实验,我们探究了溶胶浓度、电场强度和DNA片段大小对电泳效果的影响。
石工1210 段炼学号12021469实验三溶胶的制备和电泳一.实验目的1.学会溶胶制备的基本原理,掌握溶胶制备的主要方法2.利用界面电泳法测定AgI溶胶的电动电位二.实验原理在电场作用下,胶体粒子向正极或负极移动的现象叫电泳。
电泳现象证实了胶体粒子的带电性。
胶体粒子带电是因为在它周围形成了扩散双电层。
双电层分为吸附层离子和扩散层离子,是固体表面和分散介质之间有电势差,电势大小可由实验测得。
;在外电场作用下,根据胶体粒子的相对运动速度计算电势的基本公式如下利用电泳测定电动电势有宏观法和微观法两种。
宏观法师观察在电泳管内溶胶与辅助液间界面在电场作用下的移动速度。
微观法借助于超显微镜观察单个胶体粒子在电场作用下的移动速度。
本实验采用宏观法。
三.实验仪器与药品1.仪器电泳仪,电泳管,秒表,电极2支,100ml烧杯3个,胶头滴管2支,25ml量筒2个,等。
2.药品0.01mol/LAgNO3溶液,0.01mol/LKI溶液,0.005mol/LKCl溶液四.实验步骤1.AgI负溶胶的制备2.辅助液的制备3.电势的测定五.数据处理电压:200V 室温:14℃ L:7.8cm1.总结溶胶的制备方法:(1)取20ml的碘化钾溶液倒入100ml的烧杯中,然后将18.8ml的硝酸银溶液边搅拌边用胶头滴管滴入烧杯中,滴加结束得到白色的碘化银负溶胶。
(2)关闭活塞,将溶胶倒入U形电泳仪的漏斗中(3)向U形管中加入辅助液,至4ml处(4)打开活塞,使溶胶缓慢上升到0刻度左右关闭活塞(5)将电极插入U形管中,注意平稳(6)打开电泳仪开关,分别记下溶胶界面上升到0.5cm,1.0cm,1.5cm所用的时间(7)测量U形管之间的间距(8)根据量取的数据计算电势(9)实验结束,关闭电源,收拾好仪器2.计算碘化银负溶胶的电势根据附录中的数据和实验测得的数据利用公式(水的介电常数为7.261×10∧-10)(水的介质动力粘度为1.169×10∧-3)所以带入数据得:§1=1.43×10-2V§2=1.57×10-2V§3=1.35×10-2V取平均值:§=1.45×10-2V六.思考题1.试比较不同溶胶的制备方法有什么共同点和不同点?答:相同点:用量一定,需要用滴管滴加药剂,需要玻璃棒搅拌,而且加药剂时要缓慢滴加。
溶胶的制备及电泳实验报告(一)溶胶的制备及电泳实验报告1. 引言•溶胶是一种重要的物质,广泛应用于各种领域•本实验旨在探究溶胶的制备方法以及电泳实验的原理和应用2. 溶胶的制备方法•制备方法一:溶胶法–原料的选取和准备–溶剂的选择和添加–搅拌和均质处理–静置和分离–干燥和粉碎•制备方法二:溶胶凝胶法–溶胶法的基础上,添加凝胶剂–凝胶形成和成型–凝胶的干燥和烧结3. 电泳实验原理•电泳是利用电场对溶质进行迁移分离的方法•原理一:溶质的电荷性质–带电的溶质在电场中会产生迁移–阴离子和阳离子迁移的方向和速度不同•原理二:电场的作用–电场可以加速溶质的迁移–电场强度越大,迁移速度越快•原理三:胶状介质的作用–胶状介质可以阻碍溶质迁移–不同大小的溶质在胶状介质上的迁移速度不同4. 电泳实验的应用•生物学领域–蛋白质的分离和鉴定–DNA测序和染色体分析•化学领域–分子结构的研究–化合物纯化和分离•医学领域–肿瘤标记物的检测–药物分子的筛选5. 结论•溶胶的制备方法多种多样,根据不同需求选择合适的方法•电泳实验是一种重要的分离和分析技术,在多个领域有广泛应用的前景注意:本文章为生成文本,可能存在个别表达不准确或错误的情况,请以实际知识为准。
6. 材料与方法•实验材料:溶胶材料、溶剂、凝胶剂、电泳设备等•实验步骤:1.准备实验材料:称取溶胶材料、选择合适的溶剂和凝胶剂。
2.制备溶胶:按照溶胶制备方法进行操作,包括溶剂的选择、搅拌、分离、干燥等步骤。
3.制备凝胶:在溶胶的基础上加入凝胶剂,进行凝胶形成和成型的步骤。
4.电泳实验:将准备好的样品加载到电泳设备中,设置合适的电场强度和时间进行电泳实验。
5.结果分析:根据电泳结果,进行溶质的分离和分析。
7. 结果与讨论•根据不同的溶胶制备方法和电泳实验条件,得到了不同的实验结果。
•通过对实验结果的分析,可以得到溶质的分离程度、迁移速度、电荷性质等信息。
•根据实验结果和初步分析,讨论实验中可能存在的误差及改进方法。
中国石油大学化学原理(Ⅱ)实验报告实验日期:2012—10—25 成绩:班级:石工11 学号:姓名:教师:耿杰同组者:实验三溶胶的制备和电泳一、实验目的1.学会溶胶制备的基本原理,并掌握溶胶制备的主要方法;2.利用界面电泳法测定AgI溶胶的电动电位。
二、实验原理溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7—10-9范围。
1.溶胶制备要制备出稳定的溶胶一般要满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在溶液介质中要保持不聚结,为此,一般需要加稳定剂。
制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。
(1)分散法分散法主要有3种方式,即机械研磨、超声分散和溶胶分散。
①研磨法:常用的设备主要有胶体磨和球磨机等。
胶体磨由两片靠得很近的盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。
当上下两磨盘以高速反向转动时,粗粒子就被磨细。
②超声分散法:频率高于16000Hz的声波称为超声波,高频率的超声波传入介质,在介质中产生相同频率的疏密交替,对分散相产生很大的撕碎力,从而达到分散效果。
③胶溶法:胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。
(2)凝聚法主要有化学反应法及更换介质法,此法的基本原则是形成分子分散的过饱和溶液,控制条件,使形成的不溶物颗粒大小在溶胶分散度内。
此法与分散度相比不仅在能量上有限,而且可以制成高分散度的胶体。
①化学反应法:凡能形成不溶物的复分解反应,水化反应以及氧化还原反应等皆可用来制备溶胶。
由于离子的浓度对胶体的稳定性有直接的影响,在制备溶胶时要注意控制电解质的浓度。
②改换介质法:此法系利用同一物质在不同溶剂中溶解度相差悬殊的特性,使溶解于良溶剂中的溶质,在加入不良溶剂后,因其溶解度下降而以胶体粒子的大小析出,形成溶胶。
此法作溶胶方法简便,但得到的溶胶粒子不太细。
溶胶的制备及电泳实验报告溶胶的制备及电泳实验报告溶胶制备•准备所需材料:溶剂、溶负载体、混合搅拌器、加热设备等。
•将溶剂加热至适当温度。
•将溶剂倒入混合搅拌器中。
•逐渐加入溶负载体,同时用搅拌器均匀混合。
•混合过程中,根据所需溶胶的浓度,逐渐加热或降低温度。
•混合均匀后,继续加热或冷却,直到溶负载体完全溶解且无明显悬浮物。
电泳实验准备•准备所需的电泳仪器和试剂。
•制备电泳缓冲液,根据实验需要选择合适的缓冲液配方。
•将电泳缓冲液注入电泳槽中,确保液面平稳。
•准备样品,将样品加载到电泳槽中。
•连接电泳电源,设置合适的电压、时间和温度参数。
•对电泳实验进行预运行,确保参数设置正确。
电泳实验操作步骤1.开启电泳电源,设置合适的电压。
2.等待样品迁移至适当位置,根据实验需要调整电泳时间。
3.实时观察电泳过程,记录迁移距离和带状图像。
4.根据需要,调整电压和时间,进一步优化分离效果。
5.当样品迁移到电泳胶糊底部时,关闭电源并停止电泳。
6.将电泳胶糊取出,进行染色或进一步分析处理。
实验结果和讨论•分析实验得到的结果,比较样品之间的差异。
•讨论实验结果与预期相符程度,分析可能的原因。
•将实验数据与其他研究结果进行对比和交流。
•提出进一步研究的问题和展望。
结论•通过溶胶的制备及电泳实验,可以实现样品的分离和纯化。
•电泳技术在分子生物学和生物化学领域具有重要的应用价值。
•需要进一步优化实验条件和技术方法,提高分离效果和分辨率。
本文介绍了溶胶的制备及电泳实验的相关步骤和操作要点,同时对实验结果和讨论进行了总结和分析。
通过正确的操作和参数设置,利用电泳技术可以实现样品的分离和纯化,达到预期的目的。
但仍需进一步研究和优化,以提高电泳技术的应用效果和实验分辨率。
讨论和展望通过电泳实验可以实现对不同样品的分离与纯化,有助于进一步研究和了解样品的性质和组成。
在实验中,通过调整电压、时间和温度等参数,可以优化电泳分离效果。
然而,仍然存在一些挑战和改进的空间:•实验条件的优化:不同的样品可能对实验条件有不同的要求,因此需要进一步优化实验参数,以提高分离效果和分辨率。
溶胶的制备及电泳实验报告引言:溶胶是由胶粒均匀分散于溶液中而形成的胶体系统。
溶胶具有高度分散性和较小的粒径,因此在许多领域都有广泛应用。
本实验旨在通过制备溶胶和进行电泳实验,探究溶胶的性质和应用。
一、溶胶的制备溶胶的制备是通过将固体胶粒悬浮于溶液中而形成的。
在本实验中,我们选择了氧化铁(Fe2O3)作为胶粒,以水作为溶液。
制备溶胶的步骤如下:1. 首先,称取适量的氧化铁粉末,并将其加入到一定体积的水中。
2. 使用磁力搅拌器将溶液搅拌均匀,使氧化铁粉末完全悬浮于水中。
3. 继续搅拌溶液,直到观察到溶液呈现均匀的红棕色。
4. 最后,用滤纸或滤膜过滤溶液,以去除较大的固体颗粒,得到纯净的溶胶。
二、电泳实验电泳实验是利用电场对溶胶中带电颗粒进行分离和定性分析的方法。
本实验中,我们使用凝胶电泳进行分离和观察。
1. 实验装置实验装置主要包括电泳槽、电源、电极和凝胶。
电泳槽用于容纳溶胶样品和电解液,电源用于提供电场,电极用于连接电源和电泳槽,凝胶则用于分离溶胶中的带电颗粒。
2. 实验步骤(1)首先,将制备好的溶胶样品置于电泳槽中,并加入适量的电解液。
(2)将电极连接至电源,并将电源的正负极分别连接至电泳槽的两端。
(3)调节电源的电压和电流,使其维持在适当的数值。
(4)开启电源,开始电泳过程。
根据溶胶样品中带电颗粒的性质和电场的作用,颗粒会在电场的驱动下向正极或负极移动。
(5)根据不同颗粒的迁移速度和移动距离,可以对溶胶样品进行分离和观察。
3. 实验结果与分析根据电泳实验的结果,我们可以观察到溶胶样品中不同颗粒的分离情况。
带电颗粒的迁移速度与颗粒的电荷量、大小和形状等因素有关。
通过观察颗粒的移动距离和分离程度,可以对溶胶样品中的颗粒进行定性和定量分析。
三、溶胶的应用溶胶在许多领域都有广泛的应用。
以下是几个典型的应用领域:1. 生物医学:溶胶可用于药物输送、基因传递和疫苗制备等领域,利用其分散性和稳定性,实现药物和基因的高效传递。
溶胶的制备及电泳实验报告实验目的:1.掌握溶胶的制备方法;2.通过电泳实验了解溶胶的性质和应用。
实验仪器:1.恒温水浴;2.电泳槽;3.电源;4.硅胶片。
实验原理:溶胶是由固体颗粒悬浮在液体介质中形成的分散体系。
在本次实验中,我们使用了硅胶溶胶。
电泳是一种利用电场使电荷载体在电解质中运动的方法。
通过溶胶的电泳可以观察到颗粒在电场中的迁移速度以及颗粒的分离。
实验步骤:1.准备溶胶:将一定量的硅胶粉末加入到一定量的水中,并在恒温水浴中搅拌30分钟直至形成均匀的溶胶;2.准备电泳槽:在电泳槽中注入适量的电解质溶液,并安装电极;3.准备样品:将硅胶溶胶均匀涂布在硅胶片上,并待其干燥;4.进行电泳实验:将样品放入电泳槽中,施加适当的电压,观察颗粒在电解质中的迁移和分离现象;5.拍摄结果:通过显微镜观察颗粒的分离情况,并使用相机拍摄结果。
实验结果:在电泳实验中,我们观察到硅胶溶胶中的颗粒在电场的作用下迁移,并且不同颗粒随着时间的推移逐渐分离。
小颗粒受到电场力的影响较大,迁移速度较快;大颗粒受到电场力的影响较小,迁移速度较慢。
通过电泳实验,我们可以了解颗粒的大小、形态以及电荷状况。
实验结论:通过本次实验,我们成功制备了硅胶溶胶,并通过电泳实验观察到了颗粒的迁移和分离现象。
实验结果表明,溶胶中的颗粒在电场的作用下有不同的迁移速度,从而实现了颗粒的分离。
这种方法可以用于颗粒的筛选和纯化,具有广泛的应用前景。
实验改进:1.在制备溶胶的过程中,可以尝试使用不同粒径的硅胶粉末,以观察不同粒径颗粒的迁移差异;2.可以使用不同浓度的电解质溶液,以观察不同浓度对颗粒分离效果的影响;3.可以对样品进行不同电压和时间的电泳实验,以研究其对颗粒迁移速度和分离效果的影响。
总结:通过本次实验,我们学习了溶胶的制备方法,并通过电泳实验了解了溶胶的性质和应用。
电泳实验是一种重要的分离和纯化方法,在生物、医药、化工等领域具有广泛的应用。
通过不断改进实验条件和方法,我们可以进一步了解和应用溶胶的特点,为相关研究提供参考和依据。
中国石油大学(溶胶的制备与电泳)实验报告实验日期:2013.4.2 成绩:班级:石工11-11 学号:11021522 姓名:卢志鹏教师:同组者:周帆溶胶的制备与电泳一、实验目的1、学会溶胶制备的基本原理、并掌握溶胶制备的主要方法;2、利用界面电泳法测定A gI 溶胶的电动电位。
二、实验原理溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7~10-9m范围。
1.溶胶制备要制备出稳定的溶胶一般需满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在液体介质中要保持分散不聚结,为此,一般需要加稳定剂。
制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。
(1)分散法分散法主要有 3 种方式,即机械研磨、超声分散和胶溶分散。
①研磨法:常用的设备主要有胶体磨和球磨机等。
胶体磨由两片靠得很近的盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。
当上下两磨盘以高速反向转动时(转速约 5000-10000rpm),粗粒子就被磨细。
在机械磨中胶体研磨的效率较高,但一般只能将质点磨细到 1um 左右。
②超声分散法;频率高于 16000Hz 的声波称为超声波,高频率的超声波传入介质,在介质中产生相同频率的疏密交替,对分散相产生很大的撕碎力,从而达到分散效果。
此法操作简单,效率高,经常用作胶体分散及乳状液制备。
③胶溶法:胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。
例如,氢氧化铁、氢氧化铝等的沉淀实际上是胶体质点的聚集体,由于制备时缺少稳定剂,故胶体质点聚在一起而沉淀。
此时若加入少量的电解质,胶体质点因吸附离子而带电,沉淀就会在适当的搅拌下重新分散成胶体。
有时质点聚集成沉淀是因为电解质过多,设法洗去过量的电解质也会使沉淀转化成溶胶。
利用这些方法使沉淀转化成溶胶的过程成为胶溶作用。
胶溶作用只能用于新鲜的沉淀。
若沉淀放置过久,小粒经过老化,出现粒子间的连接或变化成大的粒子,就不能利用胶溶作用来达到重新分散的目的。
(2)凝聚法主要有化学反应法及更换介质法,此法的基本原则是形成分子分散的过饱和溶液,控制条件,使形成的不溶物颗粒大小在溶胶分散度内。
此法与分散度相比不仅在能量上有限,而且可以制成高分散度的胶体。
①化学反应法:凡能形成不溶物的复分解反应、水化反应以及氧化还原反应等皆可用来制备溶胶。
由于离子的浓度对胶体的稳定性有直接的影响,在制备溶胶时要注意控制电解质的浓度。
②改换介质法:此法系利用同一物质在不同溶剂中溶解度相差悬殊的特性,使溶解 于良溶剂中的溶质,在加入不良溶剂后,因其溶解度下降而以胶体粒子的大小析出,形成溶胶。
此法作溶胶方法简便,但得到的溶胶粒子不太细。
2.溶胶的电泳在电场的作用下,胶体粒子向正极或负极移动的现象叫电泳。
电泳现象证实胶体粒子的带电性。
胶体粒子带电是因为在其周围形成了扩散双电层。
按对固体的关系,扩 散双电层离子可沿滑动面分为吸附层离子和扩散层离子两部分,使固体表面和分散介质之间有电势差,即ξ 电势。
ξ 电势的大小可通过电泳实验测得。
在外电场的作用下,根据胶体粒子的相对运动速度计算ζ电势的基本公式是: ξ=tvld εη (3-1) 式中: ξ-胶体粒子的电动电势(V);η-介质的动力粘度(Pa.s );d -溶胶界面移动的距离(m);l -两电极之间的距离(m);ε-介电常数(F/m);v -两级间的电位差(V);t -电泳进行的时间(s)。
水的粘度和介电常数查附录二和附录七。
利用电泳测定电动电势有宏观法和微观法两种。
宏观法是观察在电泳管内溶胶与辅助液间界面在电场作用下的移动速度。
微观法借助于超显微镜观察单个胶体粒子在电场作用下的移动速度。
本实验用宏观法测定,所使用的电泳管如图 3-1 所示。
图 3-1 电泳管示意图1.电极;2.辅助液;3.界面;4.溶胶;5.活塞三、仪器与药品1.仪器电泳仪,电导率仪,电炉,秒表,电泳管,电极 2 支,100mL 烧杯 2 个,50mL 、150mL 、250mL 、500mL 烧杯各 1 个,滴定管 2 支,滴管 6 支,10mL 量筒 2 个,250mL 量筒 1 个,100mL 、500mL 的锥形瓶各 2 个,试管 2 支,漏斗 2 个,洗瓶 1 个。
2.药品20 % FeCl 3, 3% FeCl 3,, 0.02mol/L AgNO 3, 0.02mol/L KI, 0.1mol/L AgNO 3,10%NH3.H2O, 0.01mol/L KCl, 2%松香乙醇溶液,火棉胶。
四、实验步骤(一)溶胶的制备1.胶溶法氢氧化铁(Fe(OH)3)溶胶的制备:取 10mL20%FeCl3放在小烧杯中,加水稀释到 100mL 然后用滴管逐滴加入 10%NH3.H2O 到稍微过量为止。
过滤生成的Fe(OH)3沉淀,用蒸馏水洗涤数次。
将沉淀放入一烧杯中,加 10mL 蒸馏水,再用滴管滴加约 10 滴 20%FeCl3溶液,并用小火加热,最后得到棕红色透明的Fe(OH)3溶胶。
2.改换介质法松香溶胶的制备:配制 2%的松香乙醇溶液,用滴管将溶液逐滴滴入到盛有蒸馏水的烧杯中,同时剧烈搅拌,可得到半透明的溶胶。
如果发现有较大的质点,需将溶胶再过滤 1 次。
3.化学反应法(1)氢氧化铁的溶胶制备(水解法):在一个 250mL 的烧杯中加入 150mL 蒸馏水并加热至沸腾,在不断搅拌的下滴加 8mL3%的 FeCl3溶液,溶液变成暗棕红色的 Fe(OH)3溶胶。
然后对此溶胶进行渗析,除去多余的电解质。
渗析的方法是按下列步骤先做一个渗析用的火棉胶袋:将一个 500mL 的锥形瓶洗净烘干,将火棉胶液倒入锥形瓶中,倾斜锥形瓶并慢慢地移动,使锥形瓶内均匀地涂上一层胶液,然后倒出火棉胶。
当火棉胶干后(不粘手),将瓶口的胶膜剥离开一小部分。
从此剥离口慢慢的加入蒸馏水,胶带逐渐与瓶壁剥离。
取出胶袋,在蒸馏水中浸泡数小时。
将上面制备的 Fe(OH)3溶胶倒入火棉胶袋,并悬挂在盛有蒸馏水的大烧杯中,每小时换一次蒸馏水,直到用 0.1mol/L AgNO3溶液检验无 Cl 时渗析便可结束。
(2)碘化银(AgI)溶胶的制备(复分解法):在两个锥形瓶中分别准确的加入5mL0.02mol/L KI 和 0.02mol/L AgNO3溶液,在盛有 KI 溶液的瓶中在搅拌下再准确地滴加4.5mL0.02mol/LAgNO3 溶液。
在另一盛有 AgNO3溶液的瓶中再准确的滴加 4.5mol/L KI 溶液。
观察两锥形瓶中 AgI 溶胶透射光及散射光颜色。
(二)AgI 溶胶的电泳1.AgI 负溶胶的制备在 400mL 的烧杯中加入 100mL0.01mol/L 的 KI 溶液,搅拌下用滴定管加入95mL0.01mol/L 的 AgNO3溶液,即制得 AgI 负溶胶。
2.辅助液的制备先测定溶胶的电导率。
用少量溶胶将试管及电导率池洗 3 次,在试管中加入适量溶胶,插入导电池,测定室温下溶胶电导率。
向 0.01mol/L KI 溶液中加蒸馏水至其电导率与溶胶相同,本实验用的辅助液是浓度约为 0.005mol/L 的 KCl。
3.电势的测定仔细洗净电泳管,检查活塞是否润滑良好,且不漏。
用少量已配好的 AgI 溶胶将电泳管的漏斗至活塞的支管洗一遍。
用滴管由漏斗加入少量溶胶,使活塞孔内充满溶胶,迅速关闭活塞。
用辅助液洗涤 U 形管部分。
活塞以上若由溶胶也应洗去。
将电泳管垂直固定在铁支架上。
沿 U 型管加入辅助液,直到液面超过管上最底刻度线 3-4cm。
从漏斗加入溶胶,慢慢开活塞(不要全部打开,一定要慢,否则得不到清晰的溶胶界面)。
使溶胶慢慢上升。
当辅助液面离管口 5-6cm 处,轻轻插入两个电极,装好。
当辅助液将电极浸没 1 厘米时,停止加溶胶,关闭活塞。
整个过程注意保持平稳,不使电泳管受振动。
将电泳仪电源开关扳下(关),将输出调节选钮反时针方向旋至输出电压最小位置,接好电源线,做好开机准备。
将两电极引线接在电泳仪上,将电泳仪电源开关扳上(开),指示灯亮,预热 5 分钟后,调节输出旋钮到电压指示为 150V。
观察溶胶上升界面清晰后,用秒表测量界面上升 0.5、1.0、1.5cm 所需时间。
测量完毕,先将输出调节选钮旋至输出电压最小位置,扳下电源开关,指示灯灭,拆下电极引线。
用细铜丝仔细量出两电极之间的距离。
实验结束后,洗净使用过的所有玻璃仪器。
注意:由于电泳仪输出电压较高,在通电过程中不要接触电极,否则有触电危险。
五、数据处理1.总结溶胶的制备方法。
答:制备胶体有两种方法:分散法和凝聚法。
(1)分散法:将大块固体分割到交替分散度的大小。
主要有3种方式,即机械磨损、超声分散和胶溶分散。
(2)凝聚法:使小分子或离子聚集成胶体大小。
主要有化学反应法和介质交换法2.计算 AgI 负溶胶的ξ电势,并取平均值。
实验中记录数据如下:两极之间电压v=200V;室温:T=14.5℃;两极之间的距离l=7.8cmd(cm)d(cm)t(s)0.0 0.5 2811.0 526 1.5 796进行数据处理:以第一组为例,由附录二和附录六得,当温度为14.5℃时,η=1.139×103-Pa.s,介电常数为ε≈7.261×1010-F/m;两电极之间电压v=200V;两电极之间距离为l=7.8×102-m;溶胶液面移动的距离d1=5×103-m;电泳进行的时间t1=281s;ξ1=tvldεη= 1.1×103-Pa.s×7.8×102-m×5×103-m/7.261×1010-F/m×281s×200V=0.01089V 用同样的方法得:d2=1×102-m,t2=526s,得ξ2=0.01163Vd3=1.5×102-m,t3=796s,得ξ3=0.01152V求平均值:ξ=332 1ξξξ++=(0.01089V+0.01163V+0.01152V)/3=0.01135V六、思考题1.是比较不同溶胶的制备方法有什么共同点和不同点?答:共同点:都是把分散相的直径变至胶体分散度的大小不同点:分散法是将大块固体分割到胶体分散度的大小;凝聚法是使小分子或粒子聚集成胶体大小。
2.为什么要求辅助液与溶胶的电导率相同?这对计算电动电势有什么作用。
答:只有辅助液与溶胶的电导率相同,才能保证辅助液移动速率与溶胶相等,可以避免界面处电场强度突变造成两壁界面移动速率不等产生界面模糊。
可以简化计算,忽略掉因辅助液与溶胶电导率不同而带来的误差。
3.注意观察,电泳时溶胶上升界面与下降界面的颜色、清晰程度及移动速度有什么不同。