电力电子技术实验一、二、三
- 格式:doc
- 大小:415.50 KB
- 文档页数:12
实验一单结晶体管触发电路及示波器使用班级学号姓名同组人员实验任务一.实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用。
2.掌握单结晶体管触发电路的调试步骤和方法。
3.详细学习万用表及示波器的使用方法。
二.实验设备及仪器1.教学实验台主控制屏2.NMCL—33组件3.NMCL—05E组件4.MEL—03A组件5.双踪示波器(自备)6.万用表(自备)7. 电脑、投影仪三.实验线路及原理将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。
图1单结晶体管触发电路图四.注意事项双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。
为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。
当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。
五.实验内容1.实验预习(1)画出晶闸管的电气符号图并标明各个端子的名称。
(2)简述晶闸管导通的条件。
(3)示波器在使用两个探针进行测量时需要注意的问题。
2. 晶闸管特性测试请用万用表测试晶闸管各管脚之间的阻值,填写至下表。
+A K G-AKG3.单结晶体管触发电路调试及各点波形的观察按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。
合上主电源,即按下主控制屏绿色“闭合”开关按钮。
这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。
电力电子技术实验二单相桥式全控整流电路实验一.实验目的1.了解单相桥式整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电动势负载时的工作。
3.熟悉触发电路(锯齿波触发电路)。
二.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感负载。
三.实验线路及原理1)电源控制屏位于NMCL -32/MEL-002T等。
2)锯齿触发电路位于NMCL -36C或NMCL -05D等。
3) L 平波电抗器位于NMCL -331。
4) Rd 可调电阻位于NMEL -03/4或NMCL -03等。
5) G 给定(Ug )位于NMCL -31或NMCL -31A或SMCL -01调速系统控制单元中。
6) Uct 位于锯齿触发电路中。
四.实验设备及仪器1.教学实验台主控制屏2.触发电路(锯齿波触发电路)组件3.变压器组件4.双踪示波器(自备)5.万用表(自备)五.实验结果五.注意事项1实验载必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。
2.为保护整流元件不受损坏,品闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U=0时,接通主电源。
然后逐渐增大Ua,使整流电路投入工作。
(3)断开整流电路时,应先把Ua降到零,使整流电路无输出,然后切断总电源。
3.注意示波器的使用。
六.总结在可控整流电路中,两个整流二极管VD2、VD4既起到整流作用,又起到续流作用。
电阻电感性负载时,无论接或不接续流二极管,输出直流电压Ud的波形均与接电阻性负载时的直流电压波形相同。
实验中,根据VT1.上的电压波形确定移相控制角a的度数,因此误差较大。
从实验波形中可见续流二极管的作用。
在整流桥接电阻电感性负载、不接续流二极管时,如晶闸管VT3的触发脉冲消失,VT3始终不导通,则输出电压Ud失控。
《电力电子技术》实验指导书兰州工业高等专科学校电气工程系实验中心目录实验安全操作规程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄Ⅰ实验一单结晶体管触发电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 1 实验二正弦波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 3 实验三锯齿波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 5 实验四西门子TCA785集成触发电路实验┄┄┄┄┄┄┄┄┄┄ 7 实验五单相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 11 实验六单相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 14 实验七单相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄┄ 17 实验八三相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 20 实验九三相半波有源逆变电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 23 实验十三相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 26 实验十一三相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄ 29 实验十二单相交流调压电路实验(1) ┄┄┄┄┄┄┄┄┄┄┄ 33 实验十三单相交流调压电路实验(2) ┄┄┄┄┄┄┄┄┄┄┄ 36 实验十四单相交流调功电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 39 实验十五三相交流调压电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 42 实验十六直流斩波电路原理实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 45实验十七单相正弦波脉宽调制(SPWM)逆变电路实验┄┄┄┄ 48实验十八全桥DC-DC变换电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 53 实验十九直流斩波电路的性能研究(六种典型线路)┄┄┄┄ 55 实验二十单相斩控式交流调压电路实验┄┄┄┄┄┄┄┄┄┄ 61实验安全操作规程为了顺利完成电力电子技术实验,确保实验时人身安全与设备可靠运行要严格遵守如下安全操作规程:(1)在实验过程时,绝对不允许实验人员双手同时接到隔离变压器的两个输出端,将人体作为负载使用。
(2)为了提高学生的安全用电常识,任何接线和拆线都必须在切断主电源后方可进行。
电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。
波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
《电力电子技术》仿真实验实验一单相桥式全控整流电路说明:1、为选修《电力电子技术》的工科本科生编写的实验指导书;2、课前安排了一节Matlab、Simulink入门课,让同学们仿真了单相桥式不可控整流电路;3、本指导书适用于新版本Matlab。
实验一单相桥式全控整流电路一、实验目的1、掌握单相桥式全控整流电路的工作原理;2、掌握单相桥式全控整流电路的仿真方法;3、了解不同类型负载输出波形的差异。
二、实验环境及器件仿真软件:Simulink所用器件如下表1所示(以Matlab2019b版本为例)。
表1 实验器件三、实验原理(a )电阻负载(b )阻感负载图1 单相桥式全控整流电路单相桥式全控整流电路是常用的单相整流电路之一,主电路由两对桥臂构成,晶闸管VT 1和VT 4组成一对桥臂,VT 2和VT 3组成另一对桥臂。
认为输入电压u2正半周时上端电压为正。
1、电阻负载如图1(a )所示,以一个电流周期为例,在正半周时某一时刻t ,触发VT 1和VT 4可导通流过电流,若交流电周期为T ,则VT 1和VT 4在T/2时刻,电压过零变负时关断。
在T/2+t 时刻触发VT 2和VT 3可以导通,VT 2和VT 3在T 时刻电压过零变正时关断。
整流电压的平均值为:2211cos sin d()0.92d U t t U πααωωπ+==⎰ 其中α为时刻t 对应的电角度,U 2为输入交流电的电压幅值,α的变化范围为0~180°。
2、电感电阻负载如图1(b )所示,VT 1和VT 4导通后,电压过零变负时,由于电感的作用,仍有电流流过VT 1和VT 4,VT 1和VT 4不会关断,直到在T/2+t 时刻触发VT 2和VT 3导通,反向电压使VT 1和VT 4关断。
同理,VT 2和VT 3导通后,电压过零变正时不会关断,直到VT 1和VT 4导通时承受反向电压关断。
整流电压的平均值为:d 221sin d()0.9cos U t t U παωωαπ+==⎰其中α为时刻t 对应的电角度,U 2为输入交流电的电压幅值,L 极大时,α的变化范围为0~90°。
电力电子技术实验实验报告一、实验目的电力电子技术实验是电气工程及其自动化专业的重要实践环节,通过实验,我们旨在深入理解电力电子器件的工作原理、特性以及电力电子电路的构成和工作过程。
具体目的包括:1、熟悉各类电力电子器件的特性和参数测试方法。
2、掌握基本电力电子电路的工作原理、分析方法和调试技巧。
3、培养实际动手能力和解决问题的能力,提高对电力电子技术在实际应用中的认识。
二、实验设备本次实验所使用的主要设备包括:1、电力电子实验台:提供电源、控制电路和测量仪表等。
2、示波器:用于观测电路中的电压、电流波形。
3、万用表:测量电路中的电压、电流、电阻等参数。
4、电力电子器件模块:如晶闸管、IGBT 等。
三、实验内容1、晶闸管特性测试(1)导通特性测试将晶闸管接入实验电路,逐渐增加阳极电压,观察并记录晶闸管导通时的电压和电流值。
(2)关断特性测试在晶闸管导通后,减小阳极电流至维持电流以下,观察并记录晶闸管关断时的电压和电流变化。
2、单相半波可控整流电路实验(1)搭建电路按照电路图连接好单相半波可控整流电路,包括电源、晶闸管、负载电阻等。
(2)调节触发角通过改变触发电路的参数,调节晶闸管的触发角,观察输出电压的变化。
(3)测量输出电压和电流使用示波器和万用表测量不同触发角下的输出电压和电流值,并记录数据。
3、三相桥式全控整流电路实验(1)电路连接仔细连接三相桥式全控整流电路,确保连接正确无误。
(2)触发脉冲调试调整触发脉冲的相位和宽度,保证晶闸管的正确导通和关断。
(3)性能测试测量不同负载条件下的输出电压、电流和功率因数等参数。
四、实验步骤1、实验前准备(1)熟悉实验设备的使用方法和注意事项。
(2)预习实验内容,理解实验原理和电路图。
2、进行实验(1)按照实验内容的要求,依次进行各项实验。
(2)在实验过程中,认真观察实验现象,准确记录实验数据。
3、实验结束(1)关闭实验设备的电源。
(2)整理实验仪器和设备,保持实验台的整洁。
实验一、单相半控桥整流电路实验一、主要内容1.实现控制触发脉冲与晶闸管同步;2.观测单相半控桥在纯阻性负载时u d,u VT波形,测量最大移相范围及输入-输出特性;3.单相半控桥在阻-感性负载时,测量最大移相范围,观察失控现象并讨论解决方案;二、方法和要领1.实现同步:◆从三相交流电源进端取线电压Uuw〔约230v〕到降压变压器〔MCL-35〕,输出单相电压〔约124v〕作为整流输入电压u2;◆在〔MCL-33〕两组基于三相全控整流桥的晶闸管阵列〔共12只〕中,选定两只晶闸管,与整流二极管阵列〔共6只〕中的两只二极管组成共阴极方式的半控整流桥,保证控制同步,并外接纯阻性负载。
思考:接通电源和控制信号后,如何判断移相控制是否同步?2.半控桥纯阻性负载实验:◆连续改变控制角α,测量并记录电路实际的最大移相范围,用数码相机记录α最小、最大和90o时的输出电压u d波形〔注意:负载电阻不宜过小,确保当输出电压较大时,Id 不超过0.6A〕;思考:如何利用示波器测定移相控制角的大小?◆在最大移相范围内,调节不同的控制量,测量控制角α、输入交流电压u2、控制信号u ct和整流输出Ud的大小,要求不低于8组数据。
3.半控桥阻-感性负载〔串联L=200mH〕实验:◆断开总电源,将负载电感串入负载回路;◆连续改变控制角α,记录α最小、最大和90o时的输出电压u d波形,观察其特点〔Id 不超过0.6A〕;◆固定控制角α在较大值,调节负载电阻由最大逐步减小〔分别到达电流断续、临界连续和连续A值下测量。
注意Id ≤0.6A〕,并记录电流Id波形,观察负载阻抗角的变化对电流Id的滤波效果;思考:如何在负载回路获取负载电流的波形?◆调整控制角α或负载电阻,使Id≈0.6A,突然断掉两路晶闸管的脉冲信号〔模拟将控制角α快速推到180o〕,制造失控现象,记录失控前后的u d波形,并思考如何判断哪一只晶闸管失控;三、实验报告要求1.实验根本内容〔实验工程名称、条件及实验完成目标〕2.实验条件描述〔主要设备仪器的名称、型号、规格等;小组人员分工:主要操作人、辅助操作人、数据记录人和报告完成人〕3.实验过程描述〔含每个步骤的实验方法、电路原理图、使用仪器名称型号、使用量程等〕;4.实验数据处理〔含原始数据记录单、计算结果及工程特性曲线,〕;5.实验综合评估〔对实验方案、结果进行可信度分析,提出可能的优化改良方案〕;6.思考:◆阐述选择实验面板晶闸管序号构成半控桥的依据。
电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。
它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。
本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。
实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。
通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。
在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。
通过实验,我们进一步理解了直流电源的工作原理和设计方法。
实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。
通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。
实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。
这些结果对于电力系统的稳定运行和节能优化具有重要意义。
实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。
通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。
实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。
这对于提高电力系统的能效和稳定性具有重要意义。
实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。
通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。
实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。
这对于推广和应用太阳能发电技术具有重要意义。
结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。
实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。
我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。
电力电子技术实验内容实验一:单相桥式全控整流电路实验一、实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉NMCL—05锯齿波触发电路的工作。
二、实验线路及原理参见图4-7。
三、实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四、实验设备及仪器1.NMCL系列教学实验台主控制屏。
2.NMCL—18组件(适合NMCL—Ⅱ)或NMCL—31组件(适合NMCL—Ⅲ)。
3.NMCL—33组件或NMCL—53组件(适合NMCL—Ⅱ、Ⅲ、Ⅴ)4.NMCL—05组件或NMCL—05A组件5.NMEL—03三相可调电阻器或自配滑线变阻器。
6.NMCL-35三相变压器。
7.双踪示波器 (自备)8.万用表 (自备)五、注意事项1.本实验中触发可控硅的脉冲来自NMCL-05挂箱,故NMCL-33(或NMCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。
2.电阻RP的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变变压器采用NMCL-35三相变压器,原边为220V,低压绕组为110V。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
7.带反电势负载时,需要注意直流电动机必须先加励磁。
六、实验方法1.将NMCL—05(或NMCL—05A,以下均同)面板左上角的同步电压输入接NMCL—18的U、V输出端(如您选购的产品为NMCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连), “触发电路选择”拨向“锯齿波”。
电力电子技术直流斩波电路的性能研究实验总结
备注:序号(一)、(二)、(三)、(四)为实验预习填写项。
五、实验内容与步骤
图1 降压斩波电路的原理图及波形
图2 升压斩波电路的原理图及波形
图3 升降压斩波电路的原理图及波形
1、控制与驱动电路的测试
(1)启动实验装置电源,开启PE-19 控制电路电源开关。
(2)调节PWM 脉宽调节电位器改变Ur,用数字存储示波器分别观测SG3525 的第11 脚与第14 的波形,观测输出PWM 信号的变化情况。
(3)用示波器分别观测A、B 和PWM 信号的波形,记录其波形、频率和幅值。
(4)用数字存储示波器的两个探头同时观测11 脚和14 脚的输出波形,调节PWM 脉宽调节电位器,观测两路输出的PWM 信号,测出两路信号的相位差,并测出两路PWM 信号之间最小的“死区”时间。
2、直流斩波器的测试
斩波电路的输入直流电压Ui 由三相调压器输出的单相交流电经DJK20 挂箱上的单相桥式整流及电容滤波后得到。
接通交流电源,观测Ui 波形,记录其平均值。
实验一锯齿波同步触发电路实验一、实验目的1、加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
2、掌握锯齿波同步移相触发电路的调试方法。
二、实验主要仪器与设备:三、实验原理锯齿波同步移相触发电路的原理图如图1-1所示。
锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见电力电子技术教材中的相关内容。
图1-1 锯齿波同步移相触发电路原理图图1-1中,由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压U T来控制锯齿波产生的时刻及锯齿波的宽度。
由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R4、V3放电。
调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。
控制电压U ct、偏移电压U b和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压U ct和偏移电压U b的大小。
V6、V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图1-2所示。
本装置有两路锯齿波同步移相触发电路,I和II,在电路上完全一样,只是锯齿波触发电路II输出的触发脉冲相位与I恰好互差180°,供单相整流及逆变实验用。
电位器RP1、RP2、RP3均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。
图1-2 锯齿波同步移相触发电路各点电压波形(α=90°)四、实验内容及步骤1、实验内容:(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
2、实验步骤:(1) 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V (不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V±10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。
①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。
②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。
③调节电位器RP1,观测“2”点锯齿波斜率的变化。
④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。
(2)调节触发脉冲的移相范围将控制电压U ct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压U b(即调RP3电位器),使α=170°,其波形如图1-3所示。
图1-3锯齿波同步移相触发电路(3)调节U ct(即电位器RP2)使α=60°,观察并记录U1~U6及输出“G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。
五、预习要求(1)阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。
(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。
六、实验注意事项(1) 双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。
为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。
当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。
(2)由于脉冲“G”、“K”输出端有电容影响,故观察输出脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100Ω左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值),否则无法观察到正确的脉冲波形。
七、思考题(1)锯齿波同步移相触发电路有哪些特点?(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?(3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大?八、实验报告(1)整理、描绘实验中记录的各点波形,并标出其幅值和宽度。
(2)总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在U ct=0的条件下,使α=90°,如何调整?(3)讨论、分析实验中出现的各种现象。
实验二单相桥式全控整流电路实验一、实验目的1、加深理解单相桥式全控整流及逆变电路的工作原理。
2、研究单相桥式变流电路整流的全过程。
二、实验主要仪器与设备三、实验原理图2为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。
触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。
R图2 单相桥式整流实验原理图四、实验内容及步骤1、实验内容:(1)触发电路的调试;(2)单相桥式全控整流电路带电阻负载整流电压U d和晶闸管两端电压u VT的波形;(3)单相桥式全控整流电路带电阻电感负载整流电压U d和晶闸管两端电压u VT的波形。
2、实验步骤:(1)触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。
将控制电压Uct调至零(将电位器RP2顺时针旋到底),观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=180°。
将锯齿波触发电路的输出脉冲端分别接至全控桥相应晶闸管的门极和阴极,注意不要把相序接反了,将DJKO2上的正桥和反桥触发脉冲开关都打到“断”位置,使U lf和U lr悬空,确保晶闸管不被误触发。
(2)单相桥式全控整流电路带电阻性负载按图2接线,将平波电抗器L d(70OmH)短接并电阻器放在最大阻值处,按下“启动”按钮,保持U b偏移电压不变(即RP3固定),逐渐增加Uct(调节RP2),在α=0°、30°、60°、90°、120°时,用示波器观察、记录整流电压U d和晶闸管两端电压Uvt的波形,并记录电源电压U2和负载电压Ud的数值于表1中。
表1(3) 单相桥式全控整流电路带电阻电感性负载按图2接线,将负载换成将平波电抗器L d(70OmH)与电阻R串联。
,并电阻器放在最大阻值处。
按下“启动”按钮,保持U b偏移电压不变(即RP3固定),逐渐增加Uct(调节RP2),用示波器观察不同控制角α时U d、U VT、U VD1、I d的波形,并测定相应的U2、U d数值,记录于表2中。
表2五、实验注意事项1、双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。
为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。
当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。
2、在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将U lf及U lr 悬空,避免误触发。
六、思考题单相桥式整流电路什么情况下会逆变失败?七、实验报告1、画出α=30°、60°、90°、120°时U d和U VT的波形。
2、画出电路的移相特性U d=f(α)曲线。
实验三三相半波可控整流电路实验一、实验目的1、了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。
2、研究三相半波有源逆变电路的工作,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。
二、实验所需挂件及附件三、实验线路及原理三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。
不足之处是晶闸管电流即变压器的副边电流在一个周期内只有1/3 时间有电流流过,变压器利用率较低。
图3-1 中晶闸管用DJK02 正桥组的三个,电阻R 用D42 三相可调电阻,将两个900Ω接成并联形式,Ld电感用DJK02面板上的700mH,其三相触发信号由DJK02-1 内部提供,只需在其外加一个给定电压接到Uct端即可。
直流电压、电流表由DJK02 获得。
图3-1 三相半波可控整流电路实验原理图图3-2 三相半波有源逆变电路实验原理图图3-2中晶闸管可选用DJK02 上的正桥,电感用DJK02 上的Ld=700mH,电阻R 选用D42 三相可调电阻,将两个900Ω接成串联形式,直流电源用DJK01上的励磁电源,其中DJK10 中的心式变压器用作升压变压器使用,变压器接成Y/Y 接法,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C 输出。
直流电压、电流表均在DJK02 上。
四、实验内容(1)研究三相半波可控整流电路带电阻性负载。
(2)研究三相半波可控整流电路带电阻电感性负载。
(3) 研究三相半波可控整流电路的有源逆工作状态。
五、预习要求阅读电力电子技术教材中有关三相半波整流电路的内容。
六、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?(3)可控整流电路在β=60o和β=90o时输出电压有何差异?七、实验方法(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。