4.2.4 模糊控制【6学时】
- 格式:ppt
- 大小:2.63 MB
- 文档页数:68
模糊控制课程教学大纲课程名称:模糊控制课程编号:Q50322英文名称:Fuzzy Control 课程属性:专业任选课学时:32 学分: 2先修课程:经典集合论,过程控制系统适用专业:测控技术与仪器一、课程简介本课程是测控技术与仪器专业的主要专业课。
本课程的任务是通过本课程的学习,使学生掌握模糊控制系统设计的基本理论、基本方法和基本技能及其在测控自动化及其他领域中的应用,特别是模糊控制理论及高性能模糊控制器的研究方面还有许多理论与技术创新的内容,以达到实际应用与技术创新的目的。
本课程采用多媒体教学,帮助学生理解模糊数学以及掌握对模糊控制器的设计方法。
二、课程内容及学时分配第一单元:经典集合论,模糊集合,两个重要定理(建议学时数:6学时)本单元首先从经典集合论的局限性入手,介绍了模糊控制技术的产生背景与发展状况,主要论述了经典集合与模糊集合的基本概念,运算性质和基本定律,简要介绍了函数、隶属度、模糊集合的运算以及经典集合与模糊集合之间的关系及相互转换。
通过本单元学习,应熟悉模糊控制的概念;理解模糊集合的含义;掌握扩张定理与分解定理;了解模糊控制的性质、发展过程。
【学习目的和要求】1.知识掌握:掌握模糊集合及模糊控制的基础知识。
2.能力培养:培养智能控制创新思维及创新能力。
3.教学方法:多媒体结合工程实例教学,设问式教学方法。
【重点】模糊集合界定;隶书函数及隶属度的含义;两个重要定理其应用。
【难点】扩张定理与分解定理的理解。
第二单元:模糊关系及模糊语言(建议学时数:10学时)【学习目的和要求】1.知识掌握:掌握模糊关系、模糊语言以及模糊推理的概念、运算其应用。
2.能力培养:培养智能控制创新思维及创新能力。
3.教学方法:多媒体结合工程实例教学,设问式教学方法。
【重点】模糊关系、模糊语言以及模糊推理的概念、运算其应用。
【难点】模糊关系、模糊语言以及模糊推理之间的关系。
第三单元模糊控制器的设计(建议学时数:10学时)【学习目的和要求】1.知识掌握:熟悉模糊控制器的构成;熟悉不同类型模糊控制器的设计方法;掌握基本模糊控制器的设计实现,了解先进模糊控制器的设计步骤。
《模糊控制理论及应用》课程教学大纲学分:2 总学时:36理论学时:36 面向专业:电气工程及其自动化大纲执笔人:王冉冉大纲审定人:李有安一、说明1.课程的性质、地位和任务《模糊控制理论及应用》是电气工程及自动化专业的选修课。
主要任务是模糊控制技术作为现代工业与新产品开发的高新技术之一,受到国内外普遍重视。
通过本课程的学习掌握模糊控制技术的一般原理和方法,尤其是模糊推理技术与模糊系统模型的建模技术。
2.课程教学的基本要求先修课程:《高等数学》,《线性代数》,《自动控制理论基础》,《模糊数学》等。
在这些课程中注意讲授:模糊数学的定义,计算方法,控制的基本概念和基本方法等。
由于模糊控制理论内容抽象,国内大部分模糊课程都是面向研究生教学的,同学理解起来较困难。
同时保证课程内容的稳定性,讲课力求突出重点,突出基本原理和基本内容,同时尽量列举应用了模糊系统的实际例子,使同学们理解起来更加容易。
本课程的教学环节包括:课堂讲授、课外作业等。
通过本课程各个教学环节的学习,重点培养学生应用自动控制理论分析和设计调速系统方法的掌握。
注重培养学生的自学能力、动手能力、分析问题、解决问题的能力,培养学习设计计算以及利用已掌握的知识分析实际问题的能力。
3.课程教学改革总体设想:为解决授课学时少授课内容多的矛盾,在有限的教学时间里较好的完成授课任务,必须做到重点突出、精讲多练,尽量使用现代教学手段如多媒体教学等,在增加信息量的前提下也能保证教学质量。
采用启发式教学,对重点内容讲深、讲透,鼓励学生自学和课上讨论,调动学生的学习主动性,通过讲解应用实例,提高学生的学习兴趣,扩大学生在本学科领域的知识面。
二、教学大纲内容第一章模糊控制系统的结构(讲课8学时)§1-1模糊控制系统产生的背景介绍模糊控制系统产生的背景、目前的应用情况和以后的发展展望等。
§1-2自然语言与模糊集合通过对自然语言的介绍,认识模糊集合的概念。
《智能控制技术》课程教学大纲(本科)课程编号:课程名称:智能控制技术课程学分:4课程学时:64课程性质:专业选修课授课对象:本科三年级学生授课教师:X一、课程目标1. 理论目标:使学生掌握智能控制技术的基本理论、基本方法和基本应用,了解智能控制技术的发展趋势。
2. 技能目标:培养学生具备智能控制系统的设计、分析和调试能力,能够独立完成智能控制系统的开发和应用。
3. 创新目标:激发学生的创新意识,培养学生的创新能力和团队协作精神。
二、课程内容1. 智能控制技术概述1.1 智能控制技术的定义和发展历程1.2 智能控制技术的分类和应用领域2. 智能控制理论基础2.1 模糊控制理论基础2.2 神经网络控制理论基础2.3 遗传算法控制理论基础3. 智能控制方法3.1 模糊控制方法3.2 神经网络控制方法3.3 遗传算法控制方法4. 智能控制系统设计4.1 智能控制系统设计原则4.2 智能控制系统设计步骤4.3 智能控制系统设计案例分析5. 智能控制系统应用5.1 智能控制系统在工业领域的应用5.2 智能控制系统在农业领域的应用5.3 智能控制系统在医疗领域的应用三、教学方法1. 讲授法:教师通过讲解、演示等方式,传授智能控制技术的基本理论和方法。
2. 讨论法:组织学生分组讨论,激发学生的思维,培养学生的团队协作精神。
3. 案例分析法:通过案例分析,使学生了解智能控制技术的实际应用。
4. 实验法:通过实验,使学生掌握智能控制系统的设计、分析和调试方法。
四、考核方式1. 平时成绩:占40%,包括出勤、课堂表现、作业完成情况等。
2. 实验成绩:占30%,包括实验报告、实验操作、实验结果分析等。
3. 期末考试成绩:占30%,采用闭卷考试形式,主要考察学生对智能控制技术基本理论、方法和应用的理解。
1. 教材:《智能控制技术》,作者:X,出版社:,年份:。
六、课程安排1. 第12周:智能控制技术概述2. 第34周:模糊控制理论基础3. 第56周:神经网络控制理论基础4. 第78周:遗传算法控制理论基础5. 第910周:模糊控制方法6. 第1112周:神经网络控制方法7. 第1314周:遗传算法控制方法8. 第1516周:智能控制系统设计9. 第1718周:智能控制系统应用10. 第1920周:复习、考试七、教学要求1. 学生应认真听讲,做好笔记,积极参与课堂讨论。
控制工程领域工程硕士专业课程教学大纲课程编号:E232-40课程名称:现代控制理论,Modern Control Theory教学方式:授课总学时和学分:60学时,3学分,其中授课56学时,习题2学时,考试2学时适合专业:控制工程领域,计算机技术工程领域考试方式:笔试课程作用与任务:本课程为控制工程领域的工程硕士研究生的必修学位课程,主要内容为线性多变量系统基本理论、最优控制理论、最优状态估计理论、系统辨识。
通过本课程的学习,使硕士研究生掌握现代控制理论的基本分析与设计方法,并为后续课程的学习奠定坚实的基础。
教学内容与学时分配:第 1 章绪论(1学时)第 2 章多变量系统的描述(3学时)第 3 章线性系统的可控性、可观性、标准型(4学时)第 4 章状态反馈与状态观测器(4学时)第 5 章系统的稳定性分析(2学时)第 6 章变分法及其在最优控制中的应用(6学时)第 7 章极大值原理和典型最优控制(6学时)第 8 章动态规划与最优控制(4学时)第 9 章最优状态估计(6学时)第 10 章线性二次型高斯问题(2学时)第 11 章系统辨识的基本概念(2学时)第 12 章经典系统辨识方法(2学时)第 13 章最小二乘类辨识方法(6学时)第 14 章其他辨识方法(4学时)第 15 章模型阶次的确定(4学时)参考书目:[1]Patel R V. Munro N. Multivariable System Theory and Design. Pergamon Press, 1982[2]白方周,庞国仲. 多变量频域理论与设计技术. 北京:国防工业出版社,1988[3]庞富胜. 线性多变量系统. 武汉:华中理工大学出版社,1992[4]Sage A P. Optimum System Control, 2nd ed. Prentice-Hall Inc, Englewood Cliffs NJ, 1977[5]吴受章.应用最优控制.西安:西安交通大学出版社,1987[6]Astrom K J. An Introduction to Stochastic Control Theory. Academic Press, 197094控制工程领域工程硕士专业课程教学大纲[7]方崇智,萧德云. 过程辨识. 北京:清华大学出版社,1988学习要求:先修课程:矩阵理论,线性代数,自动控制原理学习方法:课堂教学+查阅有关文献资料所属学院:信息科学与工程学院编制人:顾幸生审核人:顾幸生课程编号:E232-41课程名称:先进控制系统,Advanced Control System教学方式:授课总学时和学分:40学时,2学分,其中:课堂教学 30学时,研讨及撰写小论文 10学时适合专业:控制工程领域,计算机技术工程领域考试方式:小论文课程作用与任务:本课程讨论那些比较成熟且在工业过程控制中比较行之有效的控制系统的基本原理、系统设计及工业应用等问题,特点是理论联系实际,内容切合信息时代的需要,反映当前最新科研成果,并力求深入浅出,着重概念。
《智能控制》课程教学大纲课程代码:060132016课程英文名称:Intelligent Control课程总学时:32 讲课:32 实验:0 上机:0适用专业:自动化专业大纲编写(修订)时间:2017.11一、大纲使用说明(一)课程的地位及教学目标本课程是自动化专业的专业基础课。
智能控制课程是面向控制学科的前沿知识,全面介绍了智能控制的基本概念,系统分析、设计的基本方法,培养学生对正在不断出现的智能控制新理论新方法的把握能力和研究能力及正确的解决工程控制问题的方法。
本课程重点阐述专家控制、模糊控制技术、神经网络控制和遗传算法的分析及设计方法,包括相关的控制基本原理、控制器结构与设计等方面的知识,强调理论与实践的相结合。
通过本课程的学习,学生将达到以下要求:1.了解智能控制理论的新发展;2.掌握智能控制的基本原理、设计方法;3.具有对控制系统的计算机仿真能力;4.具有工程设计的初步能力。
(二)知识、能力及技能方面的基本要求1.基本知识:学习和掌握智能控制的基本概念、特征、类型和智能控制系统应用现状及前景,了解与掌握专家控制、模糊控制技术、神经网络控制和遗传算法的相关知识。
2.基本理论和方法:掌握智能控制的基本概念,系统分析、设计的基本方法,重点阐述专家控制、模糊控制技术、神经网络控制和遗传算法,包括控制器结构、控制原理等方面,强调理论与实践的相结合。
采用理论讲授与课堂讨论相结合的方式,使学生由被动学习转变为主动学习,重点培养学生的自学能力。
加强基本理论与实践经验的相结合,增强学生综合分析和解决实际问题的能力。
3.基本技能:掌握对控制系统的分析与设计,具有独立的仿真与实验能力。
(三)实施说明1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性;注意培养学生成为全面型、综合型、实用型的人才。
《模糊数学及应用》课程教学大纲制定日期:2008-09-18课程名称:模糊数学及应用英文名称:Fuzzy Mathematics and its application学时:32学分:2适用学科:信息与通信工程、计算机科学与技术课程性质:信息与通信工程学位课程先修课程:高等数学、离散数学一、课程的性质及教学目标模糊数学方法是信息与通信工程专业一门必修的重要的基础理论课程,它是为培养我国社会主义现代化建设所需要的高质量人才服务的。
通过本课程的学习,要使学生掌握崭新的思维方法,打破以二值逻辑为基础的传统思维,使模糊推理成为严格的数学方法。
在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力。
二、课程的教学内容及基本要求(一)序论1.了解模糊数学的发展史以及常见的数学模型及其区别。
2.了解模糊数学在现实生活中的广泛应用。
3.理解亦真亦假的命题,打破以二值逻辑为基础的传统思维。
(二)预备知识1、理解集合的相关概念以及运算;2、理解关系的概念,掌握等价关系和偏序关系的证明方法,理解等价关系和集合划分的联系;3、理解特征函数和关系矩阵的概念;4、理解映射和袋鼠系统的概念和性质;5、理解格的概念以及格与偏序集、代数系统的关系;6、理解特殊格的概念及性质。
(三)模糊集基础1.理解模糊集和隶属函数的概念,熟悉模糊集的运算规则。
2.掌握模糊集运算的推广,理解t-模和t-余模、模并和模交。
3.掌握模糊集的分解定理。
4.理解模糊集的数学表现,掌握模糊集的表现定理。
5.掌握模糊模式识别方法。
6.掌握隶属函数的确定方法。
(四)模糊关系1.理解模糊关系的基本概念及运算,理解截关系与强截关系的概念。
2.理解模糊关系的合成,熟悉模糊关系合成的性质定理。
3.理解模糊等价关系的概念以及它与普通等价关系的联系。
模糊控制摘要:模糊控制是一种针对非线性系统的控制方法,通过使用模糊集合和模糊逻辑对系统进行建模和控制。
本文将介绍模糊控制的基本原理、应用领域以及设计步骤。
通过深入了解模糊控制,读者可以更好地理解和应用这一控制方法。
1. 导言在传统的控制理论中,线性系统是最常见和最容易处理的一类系统。
然而,许多实际系统都是非线性的,对于这些系统,传统的控制方法往往无法取得良好的效果。
模糊控制方法由于其对于非线性系统的适应性,广泛用于工业控制、机器人控制、汽车控制等领域。
2. 模糊控制的基本原理模糊控制的基本原理是建立模糊集合和模糊逻辑,通过模糊化输入和输出,进行模糊推理和解模糊处理,完成对非线性系统的控制。
模糊集合是实数域上的一种扩展,它允许元素具有模糊隶属度,即一个元素可以属于多个集合。
模糊逻辑则描述了这些模糊集合之间的关系,通过模糊逻辑运算,可以从模糊输入推导出模糊输出。
3. 模糊控制的应用领域模糊控制方法在许多领域中都有着广泛的应用。
其中最常见的应用领域之一是工业控制。
由于工业系统往往具有非线性和复杂性,传统的控制方法往往无法满足要求,而模糊控制方法能够灵活地处理这些问题,提高系统的控制性能。
另外,模糊控制方法还广泛应用于机器人控制、汽车控制、航空控制等领域。
4. 模糊控制的设计步骤模糊控制的设计步骤一般包括五个阶段:模糊化、建立模糊规则、进行模糊推理、解模糊处理和性能评估。
首先,需要将输入和输出模糊化,即将实际的输入输出转换成模糊集合。
然后,根据经验和知识,建立模糊规则库,描述输入与输出之间的关系。
接下来,进行模糊推理,根据输入和模糊规则,通过模糊逻辑运算得到模糊的输出。
然后,对模糊输出进行解模糊处理,得到实际的控制量。
最后,需要对控制系统的性能进行评估,以便进行调整和优化。
5. 模糊控制的优缺点模糊控制方法具有一定的优点和缺点。
其优点包括:对于非线性、时变和不确定系统具有较好的适应性;模糊规则的建立比较直观和简单,无需精确的数学模型;能够考虑因素的模糊性和不确定性。