初二梯形中常用添加辅助线的方法
- 格式:doc
- 大小:1001.50 KB
- 文档页数:3
初二数学教案:有关作梯形的辅助线常用方法以下是查字典数学网为您举荐的有关作梯形的辅助线常用方法,期望本篇文章对您学习有所关心。
有关作梯形的辅助线常用方法教学目标1、进一步把握梯形的判定和性质;2、初步把握梯形中常见的辅助线的添加方法;教学重点辅助线的添加方法教学难点辅助线的添加方法教学过程设计思路由于在解决梯形的问题时,经常要通过对梯形的分割拼接或图形变换,将问题转化为三角形或平行四边形的问题来解决,因此在学习梯形时,应把握作梯形的辅助线的常用方法。
【方法1】平移梯形的一腰从梯形的一个顶点,作一腰的平行线,把梯形分成一个平行四边形和一个三角形.例1、已知梯形ABCD中,AD//BC,AD=5cm,BC=8cm,AB=7cm,求另一腰CD的取值范畴.解:如图2,过D点作DE//AB,交BC于E点.∵AD//BC,DE//AB,四边形ABED是平行四边形DE=AB=7cm,BE=AD=5cm,CE=BC-BE=8cm-5cm=3cm∵在△DEC中,DE-EC4cm【方法2】作高法从同一底的两个端点分别作梯形的高,把梯形分成一个矩形和两个直角三角形.例2、在等腰梯形ABCD中,AD//BC,AB=CD,ABC=60,AD=3cm,BC=5cm,求:(1)腰AB的长;(2)梯形ABCD的面积.解:作AEBC于E,DFBC于F,又∵AD∥BC,四边形AEFD是矩形,EF=AD=3cm∵AB=DC∵在Rt△ABE中,B=60,BE=1cmAB=2BE=2cm,【方法3】延长腰延长梯形的两腰交于一点,得到两个三角形.例3、已知:梯形ABCD中,AD//BC,C,求证:四边形ABCD是等腰梯形.证明:如图,分别延长BA、CD,设它们交于E点.∵在△EBC中,C,EB=EC∵AD∥BC,EAD=B,EDA=C,而C,在△EAD中,EAD=EDAEA=EDAB=DC,即四边形ABCD是等腰梯形.【方法4】平移对角线过底的一端作对角线的平行线,从而借助所得的平行四边形或三角形来研究梯形例4、已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面积.解:如图,作DE∥AC,交BC的延长线于E点.∵AD∥BC 四边形ACED是平行四边形BE=BC+CE=BC+AD=4+1=5,DE=AC=4∵在△DBE中,BD=3,DE=4,BE=5BDE=90.作DHBC于H,则【方法5】以梯形一腰的中点为对称中心作某部分图形的对称图形.例5、已知:梯形ABCD中,AD//BC,E为DC中点,EFAB于F点,AB=3cm,EF=5cm,求梯形ABCD的面积.解:如图,过E点作MN∥AB,分别交AD的延长线于M点,交BC 于N点.∵DE=EC,AD∥BC△DEM≌△CNE四边形ABNM是平行四边形∵EFAB,S梯形ABCD=S□ABNM=ABEF=15cm2.例6、已知:如图13,在梯形ABCD中,AD//BC,ABBC,E是CD 中点,试问:线段AE和BE之间有如何样的大小关系?解:AE=BE,理由如下:延长AE,与BC延长线交于点F.∵DE=CE,AED=CEF,DAE=F△ADE≌△FCEAE=EF∵ABBC,BE=AE.通过平移腰,得到两腰、上下底的差为边的三角形.板书:通过作高,得到以上下底的差、腰、高为三边的直角三角形.板书:得到含梯形的底和两角的三角形.板书:课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
数学篇梯形作为一种比较特殊的四边形,其特点就是只有一组对边是平行的.因此,解答梯形问题的基本思路是通过添加辅助线来“搭桥”,对梯形进行割补、拼接,将其转化为熟悉的基本图形来解答.合理、巧妙地添加辅助线,不仅可以极大地降低解题难度,而且可以提高同学们思维的灵活性和创造性.一、平移一(两)腰平移腰即从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形;或利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中,进而为解题创造条件.例1如图1,在梯形ABCD 中,AD //BC ,∠B +∠C =90°,AD =10,BC =30,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长.图1图2解:过E 作EG //AB 交BC 于G ,过E 作EH //CD 交BC 于点H ,如图2所示.∵AD //BC ,∴四边形ABGE 是平行四边形,∴AE =BG ,同理可得DE =CH ,∴BG +CH =AE +DE =AD =10,又∵BC =30,∴GH =BC -BG -CH =20,又∵E 、F 分别是AD 、BC 的中点,∴BF =CF ,且AE =DE ,又∵AE =BG ,DE =CH ,∴GF =FH ,即F 为GH 的中点,在Rt△EGH 中GH =20,F 是GH 的中点,由直角三角形中线与斜边关系可知,EF =12CH =10,即EF =10.评注:平移梯形的一腰或两腰,可把梯形转化成三角形和平行四边形,从而把相对分散的条件集中到一个图形中以方便解题.二、平移对角线平移对角线即过梯形上底的一个端点作梯形一条对角线的平行线,将梯形转化为一个平行四边形和几个三角形.当题目中有梯形的对角线相等或互相垂直时,可以平移对角线把两条对角线、上下底之和放在一个三角形中,就会出现等腰三角形、直角三角形等特殊三角形,然后利用特殊三角形的性质来解答此类问题.例2如图3,在等腰梯形ABCD 中,AD //BC ,AD =3,BC =7,BD =52,求证:AC ⊥BD.图3图4证明:过点C 作CE //BD 交AD 延长线于学思导引27数学篇学思导引E,如图4所示.∵AD//BC,∴四边形BCED为平行四边形,∴DE=BC且BD=CE,又∵AD=3,BC=7,∴AE=AD+DE=AD+BC=3+7=10,∵ABCD为等腰梯形,∴AC=BD,又∵BD=CE且BD=52,∴AC=CE=BD=52,在△ACE中,AC2+CE2=(52)2+(52)2=100,AE2=102=100,即AC2+CE2=AE2,所以,△ACE是以∠C为直角的直角三角形,即AC⊥BD.评注:过梯形的一个顶点平移对角线,把两条对角线转移到同一个三角形中,若对角线相等,则这个三角形是等腰三角形;若对角线垂直,则这个三角形是直角三角形;若对角线相等又垂直,则这个三角形是等腰直角三角形.这些结论可以为解题创造有利条件.三、延长两腰延长两腰即延长梯形的两腰使其交于一点,化梯形为两个(相似的)三角形.如果是等腰梯形,则得到两个分别以梯形两底为底的等腰三角形.延长两腰可以将梯形转化为多个三角形,从而借助三角形的性质定理等知识要点,为解题铺平道路.例3如图5所示,四边形ABCD中,AD不平行于BC,AC=BD,AD=BC.判断四边形ABCD的形状,并证明你的结论.图5图6解:四边形ABCD为等腰梯形,证明如下.延长AD、BC交于E,如图6所示.在△ABD和△BAC中,有ìíîïïBD=AC,AD=BC,AB=AB,∴△ABD≌△BAC,∴∠BAD=∠ABC,在△EAB中,∵∠BAD=∠ABC,∴△EAB为等腰三角形,即AE=BE,又∵AD=BC,∴DE=CE,∴DE AE=CE BE,即AB//CD,又∵AD=BC,∴四边形ABCD为等腰梯形.评注:预测四边形形状后根据需要寻找条件即可.此题要灵活运用三角形全等、对应线段成比例、平行线的判定等知识点.四、作对角线作对角线即连接对角线将梯形转化为三角形,再利用三角形的一些性质与规律去解答四边形的问题.尤其在特殊梯形中,将没有画出的对角线作出来,再利用特殊梯形对角线的性质(如等腰梯形对角线相等),将题目中的条件进行转化,可以实现有效解题.例4如图7,在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于点E,求证:AD=DE.图7图8解:连接BD,如图8所示.∵AB⊥AD,∴∠BAD=90°,∵BE⊥CD,∴∠BED=90°,∵AD//BC,∴∠1=∠3,∵BC=CD,∴∠2=∠3,∴∠1=∠2,在△DBE和△DBA中,28数学篇学思导引有ìíîïï∠1=∠2,∠BAD =∠BED BD =BD ,,∴△DBE ≌△DBA ,∴AD =DE .评注:在直角梯形中连接对角线往往可以构造直角三角形,然后利用直角三角形与全等三角形的知识来证明.五、连接顶点和一腰中点并延长连接梯形上底一端点和一腰的中点,并延长与下底延长线相交,从而将梯形割补成几个三角形.这样作辅助线可以充分利用梯形中的平行和等量关系,将上下底之和统一到一段线段上来,再结合三角形全等和其他特殊三角形的性质使问题得到解答.例5如图9,在直角梯形ABCD 中,AD //BC ,E 是DC 的中点,连接AE 和BE ,求证:∠AEB =2∠CBE.1234图9图10证明:延长AE 、BC 交于F ,如图10所示,∵四边形ABCD 为直角梯形,且AD //BC ,∴AB ⊥BC ,∴△ABF 为以∠ABF 为直角的直角三角形.∵AD //BC ,∴∠1=∠2,又∵E 是DC 的中点,∴DE =CE ,在△ADE 和△FCE 中,有ìíîïï∠1=∠2,∠3=∠4,DE =CE ,∴△ADE ≌△FCE ,∴AE =EF ,即E 是AF 的中点,又∵△ABF 是直角三角形,∴BE =12AF =EF ,∴△BEF 是等腰三角形,∴∠F =∠CBE ,∴∠AEB =∠F +∠CBE =2∠CBE ,即∠AEB =2∠CBE .评注:在梯形中,只要有腰上的中点,可过中点构造全等三角形,从而把上下底之和与另一条腰集中在一个三角形中,而这个三角形又是一个特殊三角形,问题就简单了.在解答有关梯形的证明题和计算题时,辅助线的作法并不是单一的,有时可同时作两种或两种以上的辅助线,但目的是一致的,就是在梯形中构造三角形、平行四边形,再运用三角形、平行四边形的相关知识来解题.同学们要结合已知条件添加合适的辅助线,以探求简捷的解题方法.《〈圆〉拓展精练》参考答案1.D ;2.A ;3.C ;4.A ;5.23-π;6.6cm ;7.相离;8.30°或150°;9.100或700;10.(1)证明略;(2)S 阴影部分=S △OAC -S 扇形AOE =12×3×33-60π×32360=32π.11.(1)证明略;(2)解:由题意知方程x 2+(m -2)x +m +1=0有两个相等的实数根,∴Δ=(m -2)2-4(m +1)=0,∴m =0或8,当m =0时,方程为x 2-2x +1=0,解得x 1=x 2=1,∴CE =1.当m =8时,方程为x 2+6x +9=0,解得x 1=x 2=-3(不符合题意舍去).∴CE =1.综上所述,CE =1.29。
梯形中添加辅助线的六种常用技巧Prepared on 22 November 2020梯形中添加辅助线的六种常用技巧浙江唐伟锋梯形是不同于平行四边形的一类特殊四边形,解决梯形问题的基本思路是通过添加辅助线,将梯形进行割补、拼接转化为三角形、平行四边形问题进行解决。
一般而言,梯形中添加辅助线的常用技巧主要有以下几种——一、平移一腰从梯形的一个顶点作一腰的平行线,将梯形转化为平行四边形和三角形,从而利用平行四边形的性质,将分散的条件集中到三角形中去,使问题顺利得解。
例1、如图①,梯形ABCD中AD∥BC,AD=2cm,BC=7cm,AB=4cm,求CD的取值范围。
解:过点D作DE∥AB交BC于E,∵AD∥BC,DE∥AB∴四边形ABED是平行四边形(两组对边分别平行的四边形是平行四边形)∴DE=AB=4cm,BE=AD=2cm∴EC=BC-BE=7-2=5cm在△DEC中,EC-DE<CD<EC+DE(三角形两边之和大于第三边,两边之差小于第三边)∴1cm<CD<9cm。
二、延长两腰将梯形的两腰延长,使之交于一点,把梯形转化为大、小两个三角形,从而利用特殊三角形的有关性质解决梯形问题。
例2、如图②,已知梯形ABCD中,AD∥BC,∠B=∠C,求证:梯形ABCD是等腰梯形。
证明:延长BA、CD,使它们交于E点,∵AD∥BC∴∠EAD=∠B,∠EDA=∠C(两直线平行,同位角相等)又∵B=∠C∴∠EAD=∠EDA∴EA=ED,EB=EC(等角对等边)∴AB=DC∴梯形ABCD是等腰梯形(两腰相等的梯形是等腰梯形)。
三、平移对角线从梯形上底的一个顶点向梯形外作一对角线的平行线,与下底延长线相交构成平行四边形和一特殊三角形(直角三角形、等腰三角形等)。
例3、如图③,已知梯形ABCD中,AD=1.5cm,B C=3.5cm,对角线AC⊥BD,且BD=3cm,AC=4cm,求梯形ABCD的面积。
解:过点D作DE∥AC交BC延长线于E∵AD∥BC,DE∥AC∴四边形ACED是平行四边形(两组对边分别平行的四边形是平行四边形)∴CE=AD=1.5cm,DE=AC=4cm∵AC ⊥BD∴DE ⊥BD∴S 梯形ABCD =111()()222AD BC h CE BC h BE h +⨯=+⨯=⨯(h 为梯形的高) 211346cm 22BD DE =⨯=⨯⨯= 。
5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
"7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
1."噢,居然有土龙肉,给我一块!"2.拎着骨棒与阔剑也快步向自家中走去。
浅析梯形的辅助线宣威市羊场镇初级中学 张荣芝梯形的问题可通过添加辅助线化归成我们熟悉的平行四边形和三角形,添辅助线可达到集中已知条件或构造基本图形等目的。
这种化归的思想是数学中研究问题的重要方法.下面我们来看看几种在梯形中常见的添辅助线的方法.(一)与腰有关的辅助线例1、已知:在梯形ABCD 中,AD ∥BC ,AB=CD ,AD=4,BC=12,∠C=60°,求AB 的长.(1)梯形内平移一腰(也就是我们常说的作腰的平行线) 解:方法一(平移腰) 过点D 作DE ∥AB 交BC 于E ∵AD ∥BCC5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
"7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。
而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。
∴四边形ABED 是平行四边形 ∴AD=BE=4 ∴EC=BC-BE=8 ∵AB=CD∴DE=DC ∴∠C=60° ∴EC=DE=DE=8 ∴AB=8 (2)梯形外平移一腰解:方法二过点C 作CE ∥AB 交AD 的延长线于E ∵AD ∥BC∴四边形ABCE 是平行四边形 ∴AB=CE ∵AB=CD ∴CD=CE∵AD ∥BC ,∠C=60°∴∠CDE=60° △CDE 是等边三角形 ∵AD=4,BC=125.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
初中数学梯形中常见的辅助线,记住这些图形,方便解题
1. 梯形中常见的辅助线
我们可以看到,梯形本身的性质并不多,所以实际解梯形的问题时,往往通过添加辅助线将梯形分成三角形或平行四边形,三角形是最简单的直线形,而平行四边形具有很好的对称性质.下面给出几个常见的添加辅助线的方法.
1. 作梯形的高:一般是过梯形的一个顶点作高,其好处是将梯形分成一个直角三角形和一个直角梯形,从而可以用勾股定理,如果过梯形的两个顶点分别作高,则会出现矩形.
2. 过梯形的一个顶点作另一腰的平行线:这样便将梯形分成了一个平行四边形和一个三角形,这样做的好处是可以将两条腰拉到同一个三角形中,并且三角形的另一条边恰好是梯形的两底之差,从而将问题集中到三角形中.
3. 延长梯形的两腰交于一点:这样做可以同样地使问题转化为三角形的问题.
4. 过梯形一腰的中点作另一腰的平行线:可以将梯形等积变换成一个平行四边形.
5. 连接梯形一个顶点和另一腰上的中点并延长交另一底边:可以将梯形等积变换成一个三角形.
常见的辅助线添加方式如下:
梯形中的辅助线较多,其实质是采用割补法将梯形问题划归为三
角形、平行四边形问题处理.解题时要根据题目的条件和结论来确定作哪种辅助线。
梯形的常用辅助线一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。
[例1]如图1,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。
图1析解:过点B 作BM//AD 交CD 于点M ,则梯形ABCD 转化为△BCM 和平行四边形ABMD 。
在△BCM 中,BM=AD=4,CM=CD -DM=CD -AB=8-3=5,所以BC 的取值范围是:5-4<BC<5+4,即1<BC<9。
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。
[例2]如图2,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。
析解:过点E 分别作AB 、CD 的平行线,交BC 于点G 、H ,可得∠EGH +∠EHG=∠B +∠C=90°,则△EGH 是直角三角形因为E 、F 分别是AD 、BC 的中点,容易证得F 是GH 的中点 所以)CH BG BC (21GH 21EF --==1)13(21)AD BC (21)]DE AE (BC [21)DE AE BC (21=-=-=+-=--=3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。
[例3]如图3,在等腰梯形ABCD 中,AD//BC ,AD=3,BC=7,BD=25,求证:AC ⊥BD 。
图3析解:过点C 作BD 的平行线交AD 的延长线于点E ,易得四边形BCED 是平行四边形,则DE=BC ,CE=BD=25,所以AE=AD +DE=AD +BC=3+7=10。
在等腰梯形ABCD 中,AC=BD=25,所以在△ACE 中,22222AE 100)25()25(CE AC ==+=+,从而AC ⊥CE ,于是AC ⊥BD 。
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
梯形辅助线的常见作法梯形辅助线的常见作法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
例1(如图1)已知在梯形ABCD中,AD//BC,BA=DC。
求证:B=C证明:过点D作DM//AB交BC于点M。
因为 AD//BC DM//AB 所以AB=DM因为 BA=DC 所以 DM=DCDMC=CDMC=BB=C(2)梯形外平移一腰例2 (如图2)在梯形ABCD中,AB∥DC,作□ACED延长DC交BE于F求证:EF=FB证明:过点B作BG∥AD,交DC的延长线于G∴四边形ABGD是平行四边形∴AD=BG∵□ACED中,AD∥CE AD=CE∴CE∥BG且CE=BG ∴∠1=∠2又∵∠3=∠4 ∴⊿ECF≌⊿BGF ∴:EF=FB(3)梯形内平移两腰例3 (如图3)在梯形ABCD中,AD∥BC,AD﹤BC,E、F分别为AD、BC的中点,且EF⊥BC,试说明∠B=∠C解:过E作EM∥AB,EN∥CD,分别交BC于M,N得□ABME ,□NCDE ∴AE=BM DE=CN, ∵AE=DE ∴BM=CN又∵BF=CF ∴FM=FN ∵EF⊥BC ∴EM=EN ∴∠1=∠2∵EM∥AB,EN∥CD, ∴∠1=∠B , ∠2=∠C∴∠B=∠C(4)延长两腰例4(如图4)在梯形ABCD中, ∠B=∠C ,AD∥BC。
求证:梯形ABCD是等腰梯形。
证明:延长BA,CD交于点E∵∠B=∠C ∴BE=CE∵AD∥BC ∴∠EAD=∠B ∠EDA=∠C∵∠B=∠C ∴∠EAD=∠EDA∴AB=CD结论得证(5)过梯形上底的两端点向下底作高例5(如图5)在梯形ABCD中,DC∥AB,AD=BC,若AD=5,CD=2 ,AB=8,求梯形ABCD的面积。
解:过点D、C分别作DE⊥AB于E,CF⊥AB于F.根据等腰梯形的轴对称性可知,AE=BF.∵DC∥AB, DE⊥AB,CF⊥AB∴四边形CDEF是矩形∴DC=EF∴AE=(AB-EF)=(AB-CD)=3 ∴ DE===4 ∴=(2+8)x4=20(6)平移对角线例6求证:对角线相等的梯形是等腰梯形。
初中数学辅助线1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍;含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形;它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决;辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:1在梯形内部平移一腰;2梯形外平移一腰3梯形内平移两腰4延长两腰5过梯形上底的两端点向下底作高6平移对角线7连接梯形一顶点及一腰的中点;8过一腰的中点作另一腰的平行线;9作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的;通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键;作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、分角线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:造角、平、相似,和、差、积、商见;如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关;在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移;故作歌诀:“造角、平、相似,和差积商见;”五:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;初中几何常见辅助线口诀人说几何很困难,难点就在辅助线;辅助线,如何添把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;线段垂直平分线,常向两端把线连;线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去;三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;四边形平行四边形出现,对称中心等分点;梯形问题巧转换,变为△和□;平移腰,移对角,两腰延长作出高;如果出现腰中点,细心连上中位线;上述方法不奏效,过腰中点全等造;证相似,比线段,添线平行成习惯;等积式子比例换,寻找线段很关键;直接证明有困难,等量代换少麻烦;斜边上面作高线,比例中项一大片;三角形中作辅助线的常用方法举例一.倍长中线1:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD; 二、截长补短法作辅助线;在△ABC 中,AD 平分∠BAC,∠ACB =2∠B,求证:AB =AC +CD; 三、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BC 分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角; 证明:分别延长DA,CB,它们的延长交于E 点,∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件; 四、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中 ∵⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等五、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F;∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,ABC DEF25-图19-图DCBA E F 12A BCD18-图1234ABCD E17-图O∵⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE 六、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D; 证明:连接BC,在△ABC 和△DCB 中∵⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等七、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB; 分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB; 二 由角平分线想到的辅助线D BA110-图O 111-图D CBAM N口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种; ①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件; 与角有关的辅助线 一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍; 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件; 1-2,AB 21如图图1-2ADBCEF图2-1ABCDE F图示3-1ABCD HE如图所示,在直角梯形ABC D 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长. 解:过点D 作DE ∥BC 交AB 于点E.又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围;解:过点B作BM)(2121CH BGBC GH EF --==512=⨯=BE ED BD DH 6251252DHBC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+15cm20cm12cmDCEACD ABD S S S ∆∆∆==DBEABCD S S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆150cA B DC E Hm 如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形. 证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA. ∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB.又AD 不平行于BC,∴四边形ABCD 是等腰梯形. 三、作对角线即通过作对角线,使梯形转化为三角形;例9如图6,在直角梯形ABCD 中,AD//BC,AB ⊥AD,BC=CD,BE ⊥CD 于点E,求证:AD=DE; 解:连结BD,由AD//BC,得∠ADB=∠DBE ; 由BC=CD,得∠DBC=∠BDC; 所以∠ADB=∠BDE;又∠BAD=∠DEB=90°,BD=BD, 所以Rt △BAD ≌Rt △BED, 得AD=DE;四、作梯形的高 1、作一条高例10如图,在直角梯形ABCD 中,AB//DC,∠ABC=90°,AB=2DC,对角线AC ⊥BD,垂足为F,过点F 作EF//AB,交AD 于点E,求证:四边形ABFE 是等腰梯形;证:过点D 作DG ⊥AB 于点G,则易知四边形DGBC 是矩形,所以DC=BG; 因为AB=2DC,所以AG=GB;从而DA=DB,于是∠DAB=∠DBA;又EF//AB,所以四边形ABFE 是等腰梯形; 2、作两条高例11、在等腰梯形ABCD 中,AD//BC,AB=CD,∠ABC=60°,AD=3cm,BC=5cm, 求:1腰AB 的长;2梯形ABCD 的面积.解:作AE ⊥BC 于E,DF ⊥BC 于F,又∵AD ∥BC, ∴四边形AEFD 是矩形, EF=AD=3cm ∵AB=DC∵在Rt △ABE 中,∠B=60°,BE=1cmA B C D A B C D E A B C D E F∴AB=2BE=2cm,cm BE AE 33==∴2342)(cm AEBC AD S ABCD =⨯+=梯形例12如图,在梯形ABCD 中,AD 为上底,AB>CD,求证:BD>AC;证:作AE ⊥BC 于E,作DF ⊥BC 于F,则易知AE=DF; 在Rt △ABE 和Rt △DCF 中, 因为AB>CD,AE=DF;所以由勾股定理得BE>CF;即BF>CE; 在Rt △BDF 和Rt △CAE 中 由勾股定理得BD>AC 五、作中位线1、已知梯形一腰中点,作梯形的中位线;例13如图,在梯形ABCD 中,AB//DC,O 是BC 的中点,∠AOD=90°,求证:AB +CD=AD;证:取AD 的中点E,连接OE,则易知OE 是梯形ABCD 的中位线,从而OE=21AB +CD ①在△AOD 中,∠AOD=90°,AE=DE 所以AD OE 21=②由①、②得AB +CD=AD;2、已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线;例14如图,在梯形ABCD 中,AD//BC,E 、F 分别是BD 、AC 的中点,求证:1EF//AD ;2)(21AD BC EF -=;证:连接DF,并延长交BC 于点G,易证△AFD ≌△CFG则AD=CG,DF=GF由于DE=BE,所以EF 是△BDG 的中位线 从而EF//BG,且BG EF 21=因为AD//BG,AD BC CG BC BG -=-=所以EF//AD,EF )(21AD BC -=3、在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的;例15、在梯形ABCD 中,AD ∥BC, ∠BAD=900,E 是DC 上的中点,连接AE 和BE,求∠AEB=2∠CBE;解:分别延长AE与BC ,并交于F点∵∠BAD=900且AD∥BC∴∠FBA=1800-∠BAD=900又∵AD∥BC∴∠DAE=∠F两直线平行内错角相等∠AED=∠FEC 对顶角相等DE=EC E点是CD的中点∴△ADE≌△FCE AAS∴ AE=FE在△ABF中∠FBA=900且AE=FE∴ BE=FE直角三角形斜边上的中线等于斜边的一半∴在△FEB中∠EBF=∠FEB∠AEB=∠EBF+ ∠FEB=2∠CBE例16、已知:如图,在梯形ABCD中,AD//BC,AB⊥BC,E是CD中点,试问:线段AE和BE之间有怎样的大小关系解:AE=BE,理由如下:延长AE,与BC延长线交于点F.∵DE=CE,∠AED=∠CEF,∠DAE=∠F∴△ADE≌△FCE∴AE=EF∵AB⊥BC, ∴BE=AE.ABDCEF。
初二梯形中常用添加辅助线的方法
1.作高:过梯形的顶点作底边上的高线,把梯形问题转化为矩形或直角三角形来解决;
例1、已知等腰梯形的上底长为5cm,腰长为7 cm,下底角为600,求这个梯形的周长和面积。
练习:在梯形ABCD中,AB=CD,AD∥BC。
求证:AC2=AB2+BC·AD。
2.平移腰:通过平移梯形的一腰或两腰,使梯形问题转化为平行四边形或三角形来解决;
例2、在梯形ABCD中,AD∥BC,∠B+∠C=900,E、F分别是AD和BC边上的中点,求证:EF=(BC-AD)/2。
练习:在梯形ABCD中,AD∥BC,∠B=800,∠C=500,求证:AB=BC-AD。
3.延长两腰:延长梯形的两腰相交于一点,使梯形问题转化为三角形来解决;
例3、等腰梯形ABCD,AD∥BC,∠B=600,AD=15,AB=45,求BC的长。
练习:梯形ABCD中,AD∥BC,∠B=∠C。
求证:AB=CD。
4.平移对角线:平移其中的一条对角线,使梯形问题转化为直角三角形来解决,此法适合
于已知对角线互相垂直的问题;
例4、等腰梯形ABCD中,AB∥CD,AD=BC,且AC⊥BD,CH是高,求证:AB+CD=2CH。
练习:在梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD互相垂直,GD⊥BC于G,EF是中位线。
求证:EF=DG。
5.连对角线:连结对角线,将梯形问题转化为平行四边形或三角形来解决;
例5、梯形ABCD中,AD=BC,AB∥CD,延长AB到E,使BE=DC,连结AC、CE,求证:AC=CE。
6.取腰的中点:有一腰的中点时,往往取另一腰的中点构成梯形的中位线;
例6、梯形ABCD中,AD∥BC,AB=AD+BC,M为CD的中点。
求证:AM、BM平∠分DAB、∠CBA。
7.连结上底与一腰中点并延长与下底的延长线相交,借助于得到的三角形解决梯形问题;
例7、梯形ABCD中,AB∥CD,E是腰AD的中点,且AB+CD=BC。
求证:BE⊥CE。
三角形中角平分线的处理方法
1、角平分线与垂线段相交时,往往将垂线段延长与这个角的另一边相交,可构成一个等腰
三角形或全等三角形;
例1、等腰直角三角形ABC中,AB=AC,BD是∠ABC的平分线,过C作CE⊥BD交BD 的延长线于E,求证:BD=2CE。
例2、例2、ΔABC中,AC=10,AB=6,AD是∠A的平分线,BD⊥AD,E是BC的中点,求DE的长。
2、有角平分时,可以利用角平分线的轴对称性来构造全等三角形;
例3、ΔABC中,AC=BC,∠ACB=900,AD平分∠CAB,求证:AC+CD=AB。
例4、在ΔABC中,∠B=2∠C,AD是∠B AC的平分线。
求证:AC=BD+AB。
中点问题的处理
1、三角形一条中线把原三角形分成两个面积相等的小三角形;
例1、如图ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE
的中线。
已知ΔABC的面积为2,求ΔDCF的面积。
2、在四边形中有对边相等时,往往取对角线的中点,则可利用三角形的中位线定理;
例2、如图在四边形ABCD中,AB=CD,,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线于G、H。
求证:∠BGE=∠CHE。
3、在四边形中有对角线相等时,往往取对边的中点,则可构造三角形的中位线;
例3、在四边形ABCD中,AC=BD,M、N分别是对角线AB、CD的中点,连结MN交AC、BD于点E、F。
求证:OE=OF。
4、有三角形的中线时,往往想到把三角形的一条边上的中线延长一倍构造全等三角形或平
行四边形;
例4、如图已知ΔABC中,AB=5,AC=3,边BC上的中线AD=2,求BC的长。
例5、如图已知三角形ABC中,AD是∠BAC的角平分线,AD又是BC边上的中线,求证:ABC是
等腰三角形。
5、在直角三角形中有斜边上的中线时,往往应想到斜边上的中线是斜边的一半;
例6、已知梯形ABCD中,AB∥CD,AC⊥BC,AD⊥BD,求
证:AC=BD。