考点46直线的倾斜角与斜率、直线的方程-2019年领军高考数学(理)必刷题Word版含解析
- 格式:doc
- 大小:1.92 MB
- 文档页数:20
考点46 直线的倾斜角与斜率、直线的方程1.(辽宁省葫芦岛市普通高中2019届高三第二次模拟考试数学理)当点(3,2)P 到直线120mx y m -+-=的距离最大时,m 的值为( ) A .3B .0C .1-D .12.(山东省日照市2019届高三1月校际联考数学理)若直线102430x ay x y +-=-+=与垂直,则二项式521ax x ⎛⎫- ⎪⎝⎭的展开式中x 的系数为( )A .2-B .52-C .2D .523.(黑龙江省齐齐哈尔市2019届高三第二次模拟考试数学理)已知双曲线22221(0,0)x y a b a b-=>>的焦距为42,且两条渐近线互相垂直,则该双曲线的实轴长为( )A .2B .4C .6D .84.(宁夏银川一中2019届高三第一次模拟考试数学理)双曲线C :22221(0,0)x y a b a b -=>>和直线153x y +=,若过C 的左焦点和点(0,)b -的直线与l 平行,则双曲线C 的离心率为 A .54B .53C .43D .55.(吉林省长春市2019届高三质量监测二)设直线2y x =的倾斜角为α,则cos2α的值为( ) A .5-B .25-C .35D .45-6.(安徽省黄山市普通高中2019届高三11月“八校联考”数学理)已知函数在区间内任取两个实数,且,不等式恒成立,则实数的取值范围是 ( )A .B .C .D .7.(河南省信阳高级中学2018年普通高等学校招生全国统一考试模拟(二)数学理)已知点是曲线上任意一点,记直线(为坐标系原点)的斜率为,则( )A .至少存在两个点使得B .对于任意点都有C .对于任意点都有D .存在点使得8.(2018年普通高等学校招生全国统一考试模拟试题理)过抛物线上两点分别作抛物线的切线,若两切线垂直且交于点,则直线的方程为( ) A .B .C .D .9.(江西省新余市第四中学2018届高三适应性考试数学理)已知m 为实数,直线:,:,则“”是“”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件10.(湖北省宜昌市一中2018届高三考前适应性训练2数学理)若实数满足不等式组,则目标函数的最大值是( ) A . B .C .D .11.(河南安阳2018届高三第二次模拟考试理)已知圆:与圆:的公共弦所在直线恒过定点,且点在直线上,则的取值范围是( )A .B .C .D .12.(北京市大兴区2019届高三4月一模数学理)设不等式组22(1)x y y k x ⎧+≤⎨+≤+⎩所表示的平面区域为D ,其面积为S .①若4S =,则k 的值唯一;②若12S =,则k 的值有2个;③若D 为三角形,则203k <≤;④若D 为五边形,则4k >.以上命题中,真命题的个数是( ) A .1B .2C .3D .413.(湖北省黄冈市2019届高三上学期元月调研理)过点的直线在两坐标轴上的截距之和为零,则该直线方程为 A . B .C .或D .或14.(黑龙江省齐齐哈尔市2019届高三第二次模拟考试数学理)若曲线()xxf x ae e -=+在点(0,(0))f 处的切线与直线30x y +=垂直,则函数()f x 的最小值为__________. 15.(四川省成都市2016级高中毕业班摸底测试数学理)已知,,若直线与直线互相垂直,则的最大值是__________.16.(安徽省淮南市2019届高三第一次模拟考试数学理)已知等差数列{}n a ,若点()()*,n n a n N ∈在经过点()4,8的定直线l 上,则数列{}n a 的前7项和7S =______.17.(山东省烟台市2019届高三高考一模考试数学理)已知F 为抛物线2:2(0)C y px p =>的焦点,过F的动直线交抛物线C 与,A B 两点,当直线与x 轴垂直时,|4AB|=. (1)求抛物线C 的方程;(2)设直线AB 的斜率为1且与抛物线的准线l 相交于点M ,抛物线C 上存在点P 使得直线,,PA PM PB 的斜率成等差数列,求点P 的坐标.18.(广东省百校联考2019届高三高考模拟数学理)已知为椭圆的右焦点,点在上,且轴.(1)求的方程; (2)过的直线交于两点,交直线于点.判定直线的斜率是否依次构成等差数列?请说明理由.19.(广东省珠海市2019届高三9月摸底考试)已知椭圆,是其左右焦点,为其左右顶点,为其上下顶点,若,。
直线的倾斜角与斜率、直线的方程【课前回顾】1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α⎝⎛⎭⎫α≠π2,则斜率k =tan_α. (2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式【课前快练】1.若直线x =2的倾斜角为α,则α为( ) A .0 B.π4C.π2 D .不存在答案:C2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3D .1或4解析:选A 由k =4-mm +2=1,得m =1. 3.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:由已知,得BC 的中点坐标为⎝⎛⎭⎫32,-12,且直线BC 边上的中线过点A ,则BC 边上中线的斜率k =-113,故BC 边上的中线所在直线方程为y +12=-113⎝⎛⎭⎫x -32,即x +13y+5=0.答案:x +13y +5=04.直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________. 解析:令x =0,得y =k 4;令y =0,得x =-k 3,则有k 4-k3=2,所以k =-24.答案:-24考点一 直线的倾斜角与斜率1.掌握直线倾斜角与斜率问题的3种类型(1)在已知斜率表达式的情况下,研究倾斜角的范围,应首先求出斜率的取值范围,然后借助正切函数的图象求解.(2)解决三点共线问题,若已知三个点中的两个坐标,可以先通过这两个已知点求出直线方程,然后将第三个点代入求解;也可利用斜率相等或向量共线的条件解决.(3)在解决与含参数的直线有关的直线相交问题时,首先要考虑该直线是否过定点. 2.避免2类失误(1)考虑直线的斜率不存在的情况.(2)由直线的斜率k 求倾斜角α的范围时,要对应正切函数的图象来确定,要注意图象的不连续性.3.记牢倾斜角α与斜率k 的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).【典型例题】1.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π)B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 解析:选B 因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 2.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:43.已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.解析:如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m .结合图象知,若直线l 与PQ 有交点, 应满足-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为⎣⎡⎦⎤-23,12. 答案:⎣⎡⎦⎤-23,12 考点二 直线的方程1.求解直线方程的2种方法(1)应用“点斜式”和“斜截式”方程时,要注意讨论斜率是否存在.(2)应用“截距式”方程时要注意讨论直线是否过原点,截距是否为0.(如典题领悟第2题(1))(3)应用一般式Ax +By +C =0确定直线的斜率时注意讨论B 是否为0.【典型例题】1.求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.解:设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.2.已知点A (3,4),求满足下列条件的直线方程: (1)经过点A 且在两坐标轴上截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线在x 轴,y 轴上的截距均为a . ①若a =0,即直线过点(0,0)及(3,4). ∴直线的方程为y =43x ,即4x -3y =0.②若a ≠0,设所求直线的方程为x a +ya =1, 又点(3,4)在直线上,∴3a +4a =1,∴a =7.∴直线的方程为x +y -7=0.综合①②可知所求直线的方程为4x -3y =0或x +y -7=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 故所求直线的方程为x -y +1=0或x +y -7=0.【针对训练】1.直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0 B .3x -y +4=0 C .3x -y -4=0D .x -3y -4=0解析:选C 由题设知,直线l 的斜率存在,故可设直线l 的方程为y -2=k (x -2),即kx -y +2-2k =0,所以|5k -1+2-2k |k 2+(-1)2=10,解得k =3,所以直线l 的方程为3x -y -4=0.2.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 所在直线的方程. 解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点, 由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 经过A (-3,0),D (0,2)两点, 由截距式得AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.考点三 直线方程的综合应用1.迁移要准(1)看到直线与两坐标轴的交点(不过坐标原点),求直线方程时想到直线的截距式. (2)看到直线与两坐标轴相交且同时出现与坐标原点O 有关的三角形面积或周长等问题时想到利用直线的截距式方程求解.2.方法要熟(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.3.易错要明直线在坐标轴上的截距可以是正值、负值、零,注意与距离的区别.【典型例题】过点P (4,1)作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点. (1)当△AOB 面积最小时,求直线l 的方程. (2)当|OA |+|OB |取最小值时,求直线l 的方程. [思维路径]①由于A ,B 两点分别在x 轴,y 轴的正半轴上,因此可考虑设截距式方程x a +yb =1,且a >0,b >0,可得4a +1b =1;②S △AOB 最小,即12ab 最小,考虑到4a +1b =1,可采用“1”的代换及基本不等式求解;③|OA |+|OB |最小,即a +b 最小,思路同第(1)问. 解:设直线l :x a +yb =1(a >0,b >0), 因为直线l 经过点P (4,1),所以4a +1b =1.(1)4a +1b=1≥24a ·1b =4ab,所以ab ≥16, 当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,△AOB 的面积最小, 此时直线l 的方程为x 8+y2=1,即x +4y -8=0.(2)因为4a +1b =1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫4a +1b =5+a b +4b a ≥5+2 a b ·4ba=9,当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.【针对训练】1.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·a b =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1, 即0≤2x 0+2≤1,故-1≤x 0≤-12.3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析:由已知画出简图,如图所示.因为l 1:ax -2y =2a -4, 所以当x =0时,y =2-a , 即直线l 1与y 轴交于点A (0,2-a ). 因为l 2:2x +a 2y =2a 2+4, 所以当y =0时,x =a 2+2, 即直线l 2与x 轴交于点C (a 2+2,0).易知l 1与l 2均过定点(2,2),即两直线相交于点B (2,2). 则四边形AOCB 的面积为S =S △AOB +S △BOC =12(2-a )×2+12(a 2+2)×2=⎝⎛⎭⎫a -122+154≥154. 所以S min =154,此时a =12. 答案:12【课后演练】1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=0解析:选D 由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.3.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =k k -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.4.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠1解析:选D 由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.5.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意可知a ≠0.当x =0时,y =a +2.当y =0时,x =a +2a .故a +2a =a +2,解得a =-2或a =1.6.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <0解析:选A 由于直线ax +by +c =0同时经过第一、第二、第四象限,所以直线斜率存在,将方程变形为y =-a b x -c b .易知-a b <0且-cb >0,故ab >0,bc <0.7.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l的方程为________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案:4x -3y -4=08.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y -2=k (x -1),直线l 在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式得k >12或k <-1.答案:(-∞,-1)∪⎝⎛⎭⎫12,+∞9.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为________. 解析:若直线过原点,则直线方程为3x +2y =0;若直线不过原点,则斜率为1,方程为y +3=x -2,即为x -y -5=0,故所求直线方程为3x +2y =0或x -y -5=0.答案:3x +2y =0或x -y -5=010.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]11.两直线x m -y n =a 与x n -ym=a (其中a 是不为零的常数)的图象可能是( )解析:选B 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同正,同负,故选B.12.已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .2 2 C. 2D .16解析:选A ∵点P (x ,y )在直线x +y -4=0上,∴y =4-x ,∴x 2+y 2=x 2+(4-x )2=2(x -2)2+8,当x =2时,x 2+y 2取得最小值8.13.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].14.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是____________________.解析:∵直线OA 的方程为y =x ,代入半圆方程得A (1,1), ∴H (1,0),直线HB 的方程为y =x -1,代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32. 所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案:3x +y -3-1=015.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:516.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16. 解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6,解得k 1=-23或k 2=-83. 故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.17.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程. 解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A ,P ,B 三点共线得 ⎩⎪⎨⎪⎧ m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.18.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B.⎝⎛⎭⎫1-22,12C.⎝⎛⎦⎤1-22,13D.⎣⎡⎭⎫13,12解析:选B 法一:(1)当直线y =ax +b 与AB ,BC 相交时,如图①所示.易求得:x M =-b a ,y N =a +b a +1.由已知条件得:⎝⎛⎭⎫1+b a ·a +b a +1=1,∴a =b 21-2b.∵点M 在线段OA 上,∴-1<-b a <0, ∴0<b <a .∵点N 在线段BC 上,∴0<a +b a +1<1,∴b <1.由⎩⎨⎧ b 21-2b >b ,b 21-2b >0,b >0,解得13<b <12. (2)当直线y =ax +b 与AC ,BC 相交时,如图②所示.设|MC |=m ,|NC |=n ,则S △MCN =12mn =12,∴mn =1.显然,0<n <2,∴m =1n >22. 又0<m ≤2且m ≠n .∴22<m ≤2且m ≠1. 设D 到AC ,BC 的距离为t , 则t m =|DN ||MN |,t n =|DM ||MN |, ∴t m +t n =|DN ||MN |+|DM ||MN |=1. ∴t =mn m +n ,∴1t =1m +1n =1m +m . 而f (m )=m +1m 22<m ≤2且m ≠1的值域为⎝⎛⎦⎤2,322, 即2<1t ≤322,∴23≤t <12. ∵b =1-CD =1-2t ,∴1-22<b ≤13. 综合(1)(2)可得b 的取值范围是⎝⎛⎭⎫1-22,12.法二:由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +b a +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b>0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为B. 19.已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段PQ 的中点为M (x 0,y 0),且y 0<x 0+2,则y 0x 0的取值范围是________. 解析:依题意可得|x 0+3y 0-2|10=|x 0+3y 0+6|10,化简得x 0+3y 0+2=0,又y 0<x 0+2,k OM =y 0x 0,在坐标轴上作出两直线,如图,当点M 位于线段AB (不包括端点)上时,k OM >0,当点M 位于射线BN 上除B 点外时,k OM <-13. 所以y 0x 0的取值范围是⎝⎛⎭⎫-∞,-13∪(0,+∞).答案:⎝⎛⎭⎫-∞,-13∪(0,+∞)。
直线的倾斜角与斜率、直线方程知识点1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角。
当直线l 与x 轴平行或重合时,规定它的倾斜角为0°。
(2)范围:直线l 倾斜角的范围是[0,π)。
2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ。
(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1。
3.直线方程的五种形式基础专练一 、走进教材1.直线l :x sin30°+y cos150°+1=0的斜率是( )A.33B.3 C .- 3 D .-332. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线方程为( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0走进教材答案1.A ; 2. B ;二、查漏补缺1.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或42.直线x +3y +m =0(m ∈R )的倾斜角为( )A .30°B .60°C .150°D .120°3.已知直线l 过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=04.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为__________。
5.过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是________。
查漏补缺答案5.4x -y +16=0或x +3y -9=0直击考点考点一 直线的倾斜角与斜率……母题发散【典例1】 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________。
高考数学复习 课时作业48 直线的倾斜角与斜率、直线方程一、选择题1.直线x =π4的倾斜角等于( C )A .0 B.π4C.π2D .π解析:由直线x =π4,知倾斜角为π2.2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( D )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3.若三点P (1,1),A (2,-4),B (x ,-9)共线,则( B ) A .x =-1 B .x =3 C .x =92D .x =1解析:三点P (1,1),A (2,-4),B (x ,-9)共线⇒PA →∥PB →,PA →=(1,-5),PB →=(x -1,-10),得1×(-10)=-5(x -1)⇒x =3.故选B.4.直线l 1:ax -y +b =0,l 2:bx +y -a =0(ab ≠0)的图象只可能是( B )解析:因为l 1:y =ax +b ,l 2:y =-bx +a ,由图B 可知,对于直线l 1,a >0且b <0,对于直线l 2,-b >0且a >0,即b <0且a >0,满足题意.故选B.5.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( B )A.13 B .-13 C .-32 D.23解析:依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得⎩⎪⎨⎪⎧a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.6.已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( A ) A .8 B .2 2 C. 2D .16解析:∵点P (x ,y )在直线x +y -4=0上,∴y =4-x ,∴x 2+y 2=x 2+(4-x )2=2(x -2)2+8,当x =2时,x 2+y 2取得最小值8.7.(2019·郑州一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( A )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2解析:∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A.二、填空题8.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为x +13y +5=0.解析:BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上的中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.9.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为3x +2y =0或x -y -5=0.解析:若直线过原点,则直线方程为3x +2y =0;若直线不过原点,则斜率为1,方程为y +3=x -2,即为x -y -5=0,故所求直线方程为3x +2y =0或x -y -5=0.10.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是[-2,2].解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].11.曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)),因为y ′=3x 2-1≥-1,所以tan θ≥-1,结合正切函数的图象可知,θ的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.12.已知在△ABC 中,∠ACB =90°,BC =3,AC =4,P 是线段AB 上的点,则P 到AC ,BC 的距离的乘积的最大值为( A )A .3B .2C .2 3D .9解析:以C 为坐标原点,CB 所在直线为x 轴建立直角坐标系(如图所示),则A (0,4),B (3,0),直线AB 的方程为x 3+y4=1.设P (x ,y )(0≤x ≤3),所以P 到AC ,BC 的距离的乘积为xy ,因为x 3+y 4≥2x 3·y4,当且仅当x 3=y 4=12时取等号,所以xy ≤3,所以xy 的最大值为3.故选A.13.已知过点P (4,1)的直线分别交x ,y 坐标轴于A ,B 两点,O 为坐标原点,若△ABO 的面积为8,则这样的直线有( B )A .4条B .3条C .2条D .1条解析:由题意可设直线的方程为x a +y b=1,因为直线过点P (4,1), 所以4a +1b=1,①所以△ABO 的面积S =12|a ||b |=8,②联立①②消去b 可得a 2=±16(a -4),整理可得a 2-16a +64=0或a 2+16a -64=0. 可判上面的方程分别有1解和2解, 故这样的直线有3条.故选B.14.直线l 1与直线l 2交于一点P ,且l 1的斜率为1k,l 2的斜率为2k ,直线l 1,l 2与x 轴围成一个等腰三角形,则正实数k 的所有可能的取值为24或 2. 解析:设直线l 1与直线l 2的倾斜角分别为α,β,因为k >0,所以α,β均为锐角.由于直线l 1,l 2与x 轴围成一个等腰三角形,则有以下两种情况:(1)当α=2β时,tan α=tan2β,有1k =4k 1-4k 2,因为k >0,所以k =24;(2)当β=2α时,tan β=tan2α,有2k=2k1-1k 2,因为k >0,所以k = 2.故k 的所有可能的取值为24或 2. 尖子生小题库——供重点班学生使用,普通班学生慎用15.直线y =m (m >0)与y =|log a x |(a >0且a ≠1)的图象交于A ,B 两点,分别过点A ,B 作垂直于x 轴的直线交y =k x(k >0)的图象于C ,D 两点,则直线CD 的斜率( C )A .与m 有关B .与a 有关C .与k 有关D .等于-1解析:由|log a x |=m ,得x A =a m,x B =a -m,所以y C =ka -m,y D =ka m,则直线CD 的斜率为y D -y C x D -x C =ka m -ka -ma -m -a m=-k ,所以直线CD 的斜率与m 无关,与k 有关,故选C. 16.(2019·襄阳五中一模)已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段PQ 的中点为M (x 0,y 0),且y 0<x 0+2,则y 0x 0的取值范围是( D )A.⎣⎢⎡⎭⎪⎫-13,0B.⎝ ⎛⎭⎪⎫-13,0C.⎝ ⎛⎭⎪⎫-13,+∞ D.⎝⎛⎭⎪⎫-∞,-13∪(0,+∞)解析:设P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+3y 1-2=0,x 2+3y 2+6=0,x 1+x22=x 0,y 1+y 22=y 0,得x 0+3y 0+2=0,即M (x 0,y 0)在直线x +3y +2=0上.又因为y 0<x 0+2,所以M (x 0,y 0)位于直线x +3y +2=0与直线x -y +2=0交点的右下部分的直线上.设两直线的交点为F ,易得F (-2,0),而y 0x 0可看作点M 与原点O 连线的斜率,数形结合可得y 0x 0的取值范围为⎝ ⎛⎭⎪⎫-∞,-13∪(0,+∞).故选D.。
直线的倾斜角、斜率及方程知识点总结一、倾斜角:重点:取值范围:0≤a <180° 二、斜率k :1、当a ≠90°时,斜率k=tana ;2、当a=90°时,斜率k 不存在;(联系正切函数的定义域去理解)3、两点P1(x1,y1),P2(x2,y2)间的斜率公式:)间的斜率公式:k=y 2-y 1/x 2-x 1理解:①两点间斜率要求x 1≠x 2,因为当x 1=x 2时,直线垂直于x 轴,倾斜角为90°,斜率k 不存在;在;②当x 1≠x 2且y 1=y 2时,直线垂直于y 轴,倾斜角为0°,斜率k=0 三、各表达式之间的区别与联系:名称名称公式公式备注备注点斜式点斜式y-y 0=k(x-x 0)1、联系斜率公式进行理解联系斜率公式进行理解2、已知一定点P 0(x 0,y 0)和斜率k ; 斜截式斜截式 y=kx+b 1、 联系点斜式进行理解;联系点斜式进行理解;2、 此时是已知一定点P (0,b )和斜率k ; 3、 b 表示直线在y 轴上的截距轴上的截距 两点式两点式y-y 1/y 2-y 1=x-x 1/x 2-x 11、 两点式要求x 1≠x 2且y 1≠y 2;2、 当x 1=x 2且y 1≠y 2时,直线垂直于x轴;轴; 3、 当x 1≠x 2且y 1=y 2时,直线垂直于y 轴。
轴。
截距式截距式 x/a+y/b=1 1、 联系两点式进行理解;联系两点式进行理解;2、 点P 1(a ,0),P 2(0,b )分别为直线与坐标轴的交点坐标;线与坐标轴的交点坐标; 一般式一般式Ax+By+C=0(A 、B 不同时为零)不同时为零)1、 联系二元一次方程组的相关知识点理解;理解;2、 熟练掌握A 、B 、C 对直线位置的影响作用。
响作用。
四、斜率k与截距b对直线位置的影响:1、k对直线位置的影响:对直线位置的影响:时,直线向右上方倾斜;①当k>0时,直线向右上方倾斜;时,直线向右下方倾斜;②当k<0时,直线向右下方倾斜;轴;③当k=0时,此时倾斜角为0,直线平行与x轴;轴平行。
《直线的倾斜角与斜率、直线的方程》专题练专题1 直线的倾斜角与斜率1.1 求直线的倾斜角与斜率1.直线x +3y +1=0的倾斜角是2.直线3x -y +a =0(a 为常数)的倾斜角为3.直线x cos140°+y sin40°+1=0的倾斜角是4.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是5.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为6.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于7.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为8.已知三点A (2,-3),B (4,3),C ⎝⎛⎭⎫5,k 2在同一条直线上,则k 的值为9. 若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点在同一条直线上,则m 的值为10.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a 等于11.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为12.直线l 与两直线y =1,x -y -7=0分别交于P ,Q 两点,线段PQ 中点是(1,-1),则l 的斜率是________.13.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为14.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l的斜率为15.若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为16.已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为1.2 求直线的倾斜角与斜率的取值范围1.若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是2.已知点(-1,2)和⎝⎛⎭⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,则直线l 倾斜角的取值范围是3.直线x sin α+y +2=0的倾斜角的范围是 4.直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3 B .⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D .⎣⎡⎦⎤π4,2π35.直线x +(a 2+1)y +1=0的倾斜角的取值范围是6.如果直线l 经过A (2,1),B (1,m 2)(m ∈R)两点,那么直线l 的倾斜角α的取值范围是7.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线的倾斜角α的取值范围是8.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 29.设直线l 的倾斜角为α,且π4≤α≤5π6,则直线l 的斜率k 的取值范围是________.10.若直线l 过点P (-3,2),且与以A (-2,-3),B (3,0)为端点的线段相交,则直线l 的斜率的取值范围是________.11.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是12.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.13.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.14.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 的横坐标的取值范围为专题2 直线方程1.倾斜角为135°,在y 轴上的截距为-1的直线方程是2.过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程是3.过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程是4.直线过点(-4,0),倾斜角的正弦值为1010的直线方程是5.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为6.若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为7.一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是.8.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为9.过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是10.直线过点(5,10),到原点的距离为5的直线方程是11.直线过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是12.过点A (4,1)且在两坐标轴上的截距相等的直线方程是13.经过点M(1,1)且在两坐标轴上截距相等的直线方程是14.经过点P(3,2),且在两坐标轴上的截距相等的直线方程是15.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程为________.16.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为______________.17.过点M(-3,5)且在两坐标轴上的截距互为相反数的直线方程为_________.18.直线l过点(-2,2)且与x轴、y轴分别交于点(a,0),(0,b),若|a|=|b|,则直线l的方程为__________ 19.若直线经过点A(-5,2),且在x轴上的截距等于在y轴上的截距的2倍,则该直线的方程为________.20.已知直线l过点P(1,3),且与x轴,y轴的正半轴所围成的三角形的面积等于6,则直线l的方程是21.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.22.过A(2,1),B(m,3)两点的直线l的方程为23.过直线l:y=x上的点P(2,2)作直线m,若直线l,m与x轴围成的三角形的面积为2,则直线m 的方程为24.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.25.已知菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程;(2)对角线BD 所在直线的方程.26.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.27.求过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5的直线方程专题3 直线方程定点图像问题1.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限2.直线l 的方程为Ax -By -C =0,若A ,B ,C 满足AB >0且BC <0,则直线l 不经过的象限是() A .第一象限 B .第二象限 C .第三象限 D .第四象限3.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <04.若3π2<α<2π,则直线x cos α+ysin α=1必不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.两直线x m -y n =a 与x n -y m =a (其中a 为不为零的常数)的图象可能是( )6.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是()7.直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.8.不论实数m为何值,直线mx-y+2m+1=0恒过定点.9.设点A(-2,3),B(3,2),若直线ax+y+2=0与线段AB没有交点,则a的取值范围是.10.已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S 的最小值及此时直线l的方程.专题4 直线方程的综合应用4.1 与基本不等式相结合求最值问题1.已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA→|·|MB →|取得最小值时直线l 的方程.2.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为4.2 由直线方程解决参数问题1.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是2.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠13.若过点P (1-a,1+a )与Q (4,2a )的直线的倾斜角为钝角,且m =3a 2-4a ,则实数m 的取值范围是________.4.已知直线l:x-my+3m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率k MA与k MB 之积为3,则实数m的取值范围是____________.5.已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a的值.6.直线x-2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b的取值范围是() A.[-2,2]B.(-∞,-2]∪[2,+∞) C.[-2,0)∪(0,2]D.(-∞,+∞)4.3 与直线方程有关的最值问题1.设点A(-1,0),B(1,0),直线2x+y-b=0与线段AB相交,则b的取值范围是2.已知直线x+a2y-a=0(a是正常数),当此直线在x轴,y轴上的截距和最小时,正数a的值是3.若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴、y轴上的截距之和的最小值为________.4.已知动直线l0:ax+by+c-3=0(a>0,c>0)恒过点P(1,m),且Q(4,0)到动直线l0的最大距离为3,则12a+2c的最小值为.5.过点P(4,1)作直线l分别交x轴,y轴正半轴于A,B两点,O为坐标原点.(1)当△AOB面积最小时,求直线l的方程;(2)当|OA|+|OB|取最小值时,求直线l的方程.6.已知过定点P(2,0)的直线l与曲线y=2-x2相交于A,B两点,O为坐标原点,当△AOB的面积取到最大值时,直线l的倾斜角为。
直线的倾斜角与斜率、直线的方程考纲解读 1.求直线的倾斜角和斜率;2.明确直线位置的几何要素,会求直线方程;3.利用直线方程解决关于x、y的一次变量问题.[基础梳理]1.直线的倾斜角(1)定义:(2)范围:直线的倾斜角α的取值范围是[0,π).2.直线的斜率3.4.若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1,P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[三基自测]1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B.3 C .- 3 D .-33答案:A2.已知直线l 经过点P (-2,5),且斜率为-34,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0答案:A3.已知直线斜率的绝对值为1,其倾斜角为________. 答案:π4或34π4.(必修2·3.2练习改编)过点(5,0),且在两轴上的截距之差为2的直线方程为________. 答案:3x +5y -15=0或7x +5y -35=05.(2017·高考全国卷Ⅰ改编)曲线y =1x 在点(1,1)处的切线方程的倾斜角为________.答案:135°考点一 直线的倾斜角与斜率|易错突破[例1] (1)(2018·常州模拟)若ab <0,则过点P ⎝⎛⎭⎫0,-1b 与Q ⎝⎛⎭⎫1a ,0 的直线PQ 的倾斜角的取值范围是________.(2)直线l :ax +(a +1)y +2=0的倾斜角大于45°,求a 的取值范围.[解析] (1)k PQ =-1b -00-1a =ab <0,又倾斜角的取值范围为[0,π),故直线PQ 的倾斜角的取值范围为⎝⎛⎭⎫π2,π . (2)当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-aa +1.则有-a a +1>1或-a a +1<0,解得-1<a <-12或a <-1或a >0.综上可知,实数a 的取值范围是⎝⎛⎭⎫-∞,-12 ∪(0,+∞). [答案] (1)⎝⎛⎭⎫π2,π [易错提醒][纠错训练](2018·太原模拟)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为________.解析:如图,k P A =1+31-2=-4,k PB =1+21+3=34.要使直线l 与线段AB 有交点,则有k ≥34或k ≤-4.答案:(-∞,-4]∪⎣⎡⎭⎫34,+∞考点二 求直线方程|思维突破[例2] 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14倍;(3)求过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程. (4)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. [解析] (1)设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(3,2),∴3a +2a =1,∴a =5,即l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. (2)设所求直线的斜率为k , 依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)法一:由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 故所求直线方程为x +y -3=0或x +2y -4=0.法二:设直线方程为y =kx +b ,则在x 轴上的截距为-bk ,所以b +⎝⎛⎭⎫-b k =6,① 又直线过点(2,1),则2k +b =1.②由①②得⎩⎪⎨⎪⎧k =-1,b =3或⎩⎪⎨⎪⎧k =-12,b =2.故所求直线方程为x +y -3=0或x +2y -4=0. (4)当直线不过原点时,设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0. 当直线过原点时,斜率k =-25,直线方程为y =-25x ,即2x +5y =0,综上可知,所求直线方程为 x +2y +1=0或2x +5y =0. [思维升华]1.求直线方程的方法3.注意设直线方程的常用技巧(1)已知直线纵截距b ,常设其方程为y =kx +b (需保证斜率存在);(2)已知直线横截距x 0,常设其方程为x =my +x 0(它不适用于斜率为0的直线); (3)已知直线过点(x 0,y 0),当斜率k 存在时,常设其方程为y -y 0=k (x -x 0),当斜率k 不存在时,则其方程为x =x 0;(4)与直线l :Ax +By +C =0平行的直线可表示为Ax +By +C 1=0(C 1≠C ); (5)与直线l :Ax +By +C =0垂直的直线可表示为Bx -Ay +C 1=0;(6)过直线l 1:A 1x +B 1y +C 1=0和直线l 2:A 2x +B 2y +C 2=0交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不含l 2).[母题变式]1.在本例(1)中,过点(3,2),且在两轴上截距互为相反数的直线方程是什么? 解析:①若直线过原点,适合题意,其方程为y =23x ,即2x -3y =0.②若直线不过原点,设直线方程为x a +y-a=1,∴3a -2a=1, ∴a =1,方程为x -y -1=0.综上,直线方程为2x -3y =0或x -y -1=0.2.在本例(4)中,改为“过点A (-5,2),且与两坐标轴形成的三角形面积为92”,求直线方程.解析:设所求直线在x 轴的截距为a ,在y 轴上的截距为b , 则⎩⎨⎧-5a +2b=112|ab |=92,∴⎩⎪⎨⎪⎧a =-3b =-3,或⎩⎨⎧a =152b =65.∴方程为x +y +3=0或4x +25y -30=0.考点三 两条直线的位置关系|方法突破[例3] (1)“a =0”是“直线l 1:(a +1)x +a 2y -3=0与直线l 2:2x +ay -2a -1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)如果直线ax +(1-b )y +5=0和(1+a )x -y -b =0同时平行于直线x -2y +3=0,求ab .[解析] (1)当a =0时,l 1:x -3=0,l 2:2x -1=0,故l 1∥l 2. 当l 1∥l 2时,若l 1与l 2斜率不存在,则a =0;若l 1与l 2斜率都存在,则a ≠0,有-a +1a 2=-2a 且3a 2≠2a +1a ,解得a ∈∅,故当l 1∥l 2时,有a =0.故选C.(2)法一:由题意,得⎩⎪⎨⎪⎧a ·(-2)-(1-b )·1=0,(1+a )·(-2)-(-1)×1=0. 解得a =-12,b =0.易知此时它们的截距也不相等,所以ab =0.法二:直线x -2y +3=0的斜率为12,则另两条直线的斜率一定存在且等于12,所以12=-a 1-b =-1+a -1,解得a =-12,b =0,易知此时它们的截距也不相等,所以ab =0.[答案] (1)C[方法提升]两直线位置关系的判断方法[跟踪训练]1.已知直线l 1:(a +2)x +(1-a )y -3=0与直线l 2:(a -1)x +(2a +3)y +2=0,则“a =1”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:l 1⊥l 2的充要条件是(a +2)(a -1)+(1-a )·(2a +3)=0,即a 2-1=0,故有(a -1)(a +1)=0,解得a =±1.显然“a =1”是“a =±1”的充分不必要条件,故选A. 答案:A2.若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________. 解析:∵过点A ,B 的直线平行于直线2x +y +2=0, ∴k AB =4-mm +2=-2,解得m =-8.答案:-81.[考点三](2014·高考福建卷)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=0解析:依题意,得直线l 过点(0,3),斜率为1,所以直线l 的方程为y -3=x -0,即x-y +3=0.故选D.答案:D2.[考点二](2017·高考全国卷Ⅰ)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析:因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率为y ′| x =1=2×1-112=1,所以切线方程为y -2=x -1,即y =x +1.答案:y =x +13.[考点一](2017·高考山东卷)若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.解析:∵直线x a +yb =1(a >0,b >0)过点(1,2),∴1a +2b=1, ∴2a +b =(2a +b )⎝⎛⎭⎫1a +2b =4+4a b +ba≥4+2 4a b ·ba=8, 当且仅当b a =4ab ,即a =2,b =4时,等号成立.故2a +b 的最小值为8. 答案:84.[考点一](2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ), ∴切线l 的方程为y -a =(a -1)(x -1). 令x =0,得y =1,故l 在y 轴上的截距为1. 答案:1。
高考数学《直线的倾斜角与斜率、直线的方程》真题含答案一、选择题1.直线经过点(0,2)和点(3,0),则它的斜率k 为( )A .23B .32C .-23D .-32答案:C解析:k =0-23-0 =-23 .2.直线x + 3 y +1=0的倾斜角是( )A .π6B .π3C .23 πD .56 π答案:D解析:由x + 3 y +1=0,得y =-33 x -33 ,∴直线的斜率k =-33 ,其倾斜角为56 π.3.已知直线l 过点P(-2,5),且斜率为-34 ,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0答案:A解析:由点斜式得y -5=-34 (x +2),即:3x +4y -14=0.4.已知直线l 的倾斜角为α、斜率为k ,那么“α>π3 ”是“k> 3 ”的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B解析:∵当π2 <α<π时,k<0,∴α>π3 D ⇒/k> 3 ; 当k> 3 时,π3 <α<π2 ,∴k> 3 ⇒π3 <α<π2 ,∴α>π3是k> 3 的必要不充分条件. 5.倾斜角为120°,在x 轴上的截距为-1的直线方程是( )A . 3 x -y +1=0B . 3 x -y - 3 =0C . 3 x +y - 3 =0D . 3 x +y + 3 =0答案:D解析:由于倾斜角为120°,故斜率k =- 3 .又直线过点(-1,0),由点斜式可知y =- 3 (x +1),即: 3 x +y + 3 =0.6.经过点P(1,2)且在x 轴、y 轴上的截距相等的直线方程为( )A .2x -y =0B .x +y -3=0C .x -y -3=0或2x -y =0D .x +y -3=0或2x -y =0答案:D解析:若直线过原点,则直线方程为y =2x ,若直线不过原点,设所求的直线方程为x +y =m ,又P(1,2)在直线上,∴1+2=m ,∴m =3,即:x +y =3.7.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab>0,bc<0B .ab>0,bc>0C .ab<0,bc>0D .ab<0,bc<0答案:A解析:ax +by +c =0可化为y =-a b x -c b ,又直线过一、二、四象限,∴-a b<0且-c b>0,即ab>0,bc<0. 8.直线x sin α+y +2=0的倾斜角的取值范围是( )A .[0,π)B .⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π C .⎣⎡⎦⎤0,π4 D .⎣⎡⎦⎤0,π4 ∪⎝⎛⎭⎫π2,π 答案:B解析:设直线的倾斜角为θ,0≤θ<π,由题意得tan θ=-sin α∈[-1,1],∴θ∈⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π .9.已知点A(2,3),B(-3,-2),若直线kx -y +1-k =0与线段AB 相交,则k 的取值范围是( )A .⎣⎡⎦⎤34,2B .⎝⎛⎦⎤-∞,34 ∪[2,+∞) C .(-∞,1]∪[2,+∞)D .[1,2]答案:B解析:直线kx -y +1-k =0恒过P(1,1),k PA =2,k PB =34,∴k 的取值范围是⎝⎛⎦⎤-∞,34 ∪[2,+∞).二、填空题10.若A(4,3),B(5,a),C(6,5)三点共线,则a 的值为________.答案:4解析:由题意得k AC =k BC ,∴5-36-4 =5-a 6-5,得a =4. 11.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为________.答案:45°解析:y′=3x 2-2,当x =1时,该曲线的导函数值为1,∴k =1,其倾斜角为45°.12.过点M(-2,m),N(m ,4)的直线的斜率为1,则m =________.答案:1解析:由题意得,4-m m +2=1,得m =1.。
直线的倾斜角与斜率基础知识梳理1.倾斜角定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向直线l 向上方向之间所成的角叫做直线l 的倾斜角. 范围:)180,0[0.2.斜率(1)斜率计算:倾斜角为α,)90(tan 0≠=ααk ;经过两点))(,(),,(21222111x x y x P y x P ≠的直线的斜率为1212x x y y k --=. α=0° 0°<α<90° α=90° 90°<α<180°k =0 k >0 斜率不存在 k <0 一、选择题1.关于直线的倾斜角和斜率,下列哪些说法是正确的( )A .任一条直线都有倾斜角,也都有斜率B .直线的倾斜角越大,它的斜率就越大C .平行于x 轴的直线的倾斜角是0°D .两直线的倾斜角相等,它们的斜率也相等2.一条直线l 与x 轴相交,其向上的方向与y 轴正方向所成的角为α(0°<α<90°),则其倾斜角为( )A .αB .180°-αC .180°-α或90°-αD .90°+α或90°-α3.直线l 经过第二、四象限,则直线l 的倾斜角α的范围是( )A .0°≤α<90°B .90°≤α<180°C .90°<α<180°D .0°≤α<180°4.已知直线l 的倾斜角为150°,则直线l 的斜率为( )A .33B . 3C .-33D .-3 5.如图,直线l 的倾斜角为( )A .60°B .120°C .30°D .150°6.已知直线的斜率为-3,则它的倾斜角为( )A .60°B .120°C .60°或120°D .150°7.若直线l 经过点M (2,3),N (4,3),则直线l 的倾斜角为( )A .0°B .30°C .60°D .90°8.斜率为2的直线经过点(3,5),(a,7),(-1,b )三点,则a ,b 的值是( )A .a =4,b =0B .a =-4,b =-3C .a =4,b =-3D .a =-4,b =39.经过两点A (2,1),B (1,m )的直线的倾斜角为锐角,则m 的取值范围是( )A .m <1B .m >-1C .-1<m <1D .m >1或m <-110、直线x=1的倾斜角和斜率分别是( )A.45°,1B.135°,-1C.90°,不存在D.180°,不存在11.在平面直角坐标系中,正△ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为()A.-B.0 C D.二、填空题12.如果直线l1与l2关于x轴对称,且与x轴相交,它们的倾斜角分别为α1,α2,则α1与α2的关系是________.13.过点(0,1)与(2,3)的直线的斜率为_________,倾斜角为__________.14.若过点(a,-2)和(4,a)的直线斜率不存在,则a=__________.15.已知点A(-m,5),B(1,3m),且直线AB的倾斜角为135°,则实数m=__________.16.已知点A(1,2),点P在x轴上,且直线P A的倾斜角为135°,则点P的坐标为__________.17.已知点A(3,4),点B在坐标轴上,且直线BA的斜率为2,则点B的坐标为__________.18.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则11a b+的值等于________.三、解答题19.已知坐标平面内三点A(-1,1),B(1,1),C(2,3+1).求直线AB,BC,AC的斜率和倾斜角.20.(1)已知:A(2,2),B(4,0),C(0,4),求证:A,B,C三点共线;(2)若三点A(2,-3),B(4,3),C(5,m)在同一条直线上,求m的值.21.(1)经过两点A(-m,6),B(m+1,3m)的直线倾斜角的正切值为2,求m的值;(2)一束光线从点A(-2,3)射入,经过x轴上点P反射后,通过点B(5,7),求点P的坐标.。
2019年领军高考数学(文)必刷题考点42
直线的倾斜角与斜率、直线的方程
1.已知直线的倾斜角为且过点,其中,则直线的方程为( )
A. B. C. D.
【答案】B
2.点在直线上,则直线的倾斜角为()
A. B. C. D.
【答案】C
【解析】∵点在直线l:ax﹣y+1=0上,
∴,
∴a=,即直线的斜率为,直线l的倾斜角为60°.
故选:C.
3.是“直线和直线垂直”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
【解析】当时,直线的斜率为,
直线的斜率为,两直线垂直;
当时,两直线也垂直,
所以是“直线和直线垂直”的充分不必要的条件,故选
A.
4.已知直线与直线互相平行且距离为.等差数列的公差为,且,令,则的值为()
A. 36 B. 44 C. 52 D. 60
【答案】C
5.以,为端点的线段的垂直平分线方程是( )
A. B. C. D.
【答案】B
【解析】
由题意可得:,则其垂直平分线的斜率,
线段AB的中点M的横坐标为,中点纵坐标为,
据此可得垂直平分线方程是:,
整理为一般式即:.
本题选择B选项.
6.直线在轴上的截距是( )
A. 2 B. 3 C. -2 D. -3
【答案】C
【解析】
令y=0得到x=-2,故答案为:C.
7.已知直线(2m2-m+3)x+(m2+2m)y=4m+1在x轴上的截距为1,则实数m的值为( )。
考点46 直线的倾斜角与斜率、直线的方程
1.设双曲线C:的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为()
A.2 B.C.D.4
【答案】B
2.数学家欧拉在1765年提出,任意三角形的外心、重心、垂心位于同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则顶点C的坐标为A.(-4,0) B.(-3,-1) C.(-5,0) D.(-4,-2)
【答案】A
【解析】
设C(m,n),由重心公式,可得△ABC的重心为,
代入欧拉直线有:,
整理得m-n+4=0①.
AB的中点为(1,2),k AB==-2,
AB的中垂线方程为y-2=(x-1),即x-2y+3=0,
联立可得:,所以△ABC的外心为(-1,1),
外心与点B的距离:,
外心与点B的距离与外心与点C的距离相等,则:
(m+1)2+(n-1)2=10,整理得m2+n2+2m-2n=8②,
联立①②,可得m=-4,n=0或m=0,n=4.
当m=0,n=4时,B,C两点重合,舍去,
当m=-4,n=0时满足题意.
所以点C的坐标为(-4,0).
本题选择A选项.
3.已知双曲线的一个焦点为,则焦点到其中一条渐近线的距离为()
A.2 B.1 C.D.
【答案】C
4.过抛物线上两点分别作抛物线的切线,若两切线垂直且交于点,则直线的方程为()
A.B.C.D.
【答案】B
由和可得且,
∴直线的方程为.
故选B.
5.已知为实数,直线,,则“”是“”
的( )
A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件
【答案】A
6.已知圆,点为直线上一动点,过点向圆引两条切线为切点,则直
线经过定点.()
A.B.C.D.
【答案】B
【解析】
设是圆的切线,
7.已知直线与直线垂直,则的值为()
A.0 B.1 C.D.
【答案】B
【解析】
因为两直线垂直所以:,
解得:.
故选B.
8.已知、、是双曲线上不同的三点,且、连线经过坐标原点,若直线、的斜率乘积,则该双曲线的离心率为()
A.B.C.D.
【答案】C。