材料力学计算题库完整
- 格式:doc
- 大小:5.14 MB
- 文档页数:58
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 导电性答案:D2. 根据胡克定律,当材料受到正应力时,其应变与应力成正比,比例系数称为:A. 杨氏模量B. 剪切模量C. 泊松比D. 屈服强度答案:A3. 在材料力学中,材料的屈服强度是指:A. 材料开始发生塑性变形的应力B. 材料发生断裂的应力C. 材料发生弹性变形的应力D. 材料发生脆性断裂的应力答案:A4. 材料的疲劳寿命与下列哪一项无关?A. 材料的疲劳极限B. 应力循环次数C. 材料的弹性模量D. 应力循环的幅度答案:C5. 在材料力学中,下列哪一项不是材料的力学性能指标?A. 硬度B. 韧性C. 密度D. 冲击韧性答案:C二、简答题(每题5分,共10分)6. 简述材料力学中弹性模量和剪切模量的区别。
答:弹性模量,也称为杨氏模量,是描述材料在受到正应力作用时,材料的纵向应变与应力成正比的比例系数。
剪切模量,也称为刚度模量,是描述材料在受到剪切应力作用时,材料的剪切应变与剪切应力成正比的比例系数。
7. 什么是材料的疲劳寿命,它与哪些因素有关?答:材料的疲劳寿命是指材料在反复加载和卸载过程中,从开始加载到发生疲劳断裂所需的循环次数。
它与材料的疲劳极限、应力循环的幅度、材料的微观结构和环境因素等有关。
三、计算题(每题15分,共30分)8. 一根直径为20mm的圆杆,材料的杨氏模量为200GPa,当受到100N的拉力时,求圆杆的伸长量。
答:首先计算圆杆的截面积A = π * (d/2)^2 = π * (0.02/2)^2m^2 = 3.14 * 0.01 m^2。
然后根据胡克定律ΔL = F * L / (A * E),其中 L 为杆长,假设 L = 1m,代入数值得ΔL = 100 * 1 / (3.14* 0.01 * 200 * 10^9) m = 7.96 * 10^-6 m。
材料力考试题姓名学号一、填空题:(每空1分,共计38分)1、变形固体的变形可分为:弹性变形和塑性变形。
2、构件安全工作的基本要求是:构件必须具有足够的强度、足够刚度和足够稳定性。
3、杆件变形的基本形式有拉(压)变形、剪切变形、扭转变形和弯曲变形 .4、吊车起吊重物时,钢丝绳的变形是拉伸变形 ;汽车行驶时,传动轴的变形是扭转变形;教室中大梁的变形是弯曲变形;螺旋千斤顶中的螺杆受压杆受压变形。
5、图中σ——ε曲线上,对应p点的应力为比例极限,符号__σp__、对应y点的应力称为屈服极限,符号_σs__、对应b点的应力称为强化极限符号_σb ___ __。
k6、内力是外力作用引起的,不同的外力引起不同的内力,轴向拉、压变形时的内力称为轴力 .剪切变形时的内力称为剪力,扭转变形时内力称为扭矩,弯曲变形时的内力称为弯矩。
7、下图所示各杆件中受拉伸的杆件有 AB、BC、CD、AD ;受力压缩杆件有 BE 。
8、胡克定律的两种表达式为EALN l ⨯=∆和εσE =。
E 称为材料的 弹性模量 。
它是衡量材料抵抗 变形 能力的一个指标。
E 的单位为MPa ,1 MPa=_106_______Pa. 9、衡量材料强度的两个重要指标是 屈服极限 和 强化极限 。
10、通常工程材料丧失工作能力的情况是:塑性材料发生 屈服 现象,脆性材料发生 强化 现象。
11、挤压面为平面时,计算挤压面积按 实际面积 计算;挤压面为半圆柱面的 投影 面积计算。
12、在园轴的抬肩或切槽等部位,常增设 圆弧过渡 结构,以减小应力集中。
13、扭转变形时,各纵向线同时倾斜了相同的角度;各横截面绕轴线转动了不同的角度,相邻截面产生了 转动 ,并相互错动,发生了剪切变形,所以横截面上有 剪 应力。
14、因半径长度不变,故切应力方向必与半径 垂直 由于相邻截面的间距不变,即园轴没有 伸长或缩短 发生,所以横截面上无 正 应力.15、长度为l 、直径为d 的圆截面压杆,两端铰支,则柔度λ为 ,若压杆属大柔度杆,材料弹性模量为E ,则临界应力σcr 为______________。
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本力学性质?A. 弹性B. 塑性C. 硬度D. 韧性2. 材料在拉伸过程中,当应力达到屈服点后,材料将:A. 断裂B. 产生永久变形C. 恢复原状D. 保持不变3. 材料的弹性模量是指:A. 材料的密度B. 材料的硬度C. 材料的抗拉强度D. 材料在弹性范围内应力与应变的比值4. 根据材料力学的胡克定律,下列说法正确的是:A. 应力与应变成正比B. 应力与应变成反比C. 应力与应变无关D. 应力与应变成线性关系5. 材料的疲劳寿命是指:A. 材料的总寿命B. 材料在循环加载下达到破坏的周期数C. 材料的断裂寿命D. 材料的磨损寿命6. 材料的屈服强度是指:A. 材料在弹性范围内的最大应力B. 材料在塑性变形开始时的应力C. 材料的抗拉强度D. 材料的极限强度7. 材料的断裂韧性是指:A. 材料的硬度B. 材料的抗拉强度C. 材料抵抗裂纹扩展的能力D. 材料的屈服强度8. 材料力学中的泊松比是指:A. 材料的弹性模量B. 材料的屈服强度C. 材料在拉伸时横向应变与纵向应变的比值D. 材料的断裂韧性9. 在材料力学中,下列哪一项是衡量材料脆性程度的指标?A. 弹性模量B. 屈服强度C. 断裂韧性D. 泊松比10. 材料在受力过程中,当应力超过其极限强度时,将:A. 发生弹性变形B. 发生塑性变形C. 发生断裂D. 恢复原状答案1. C2. B3. D4. A5. B6. B7. C8. C9. C10. C试题二、简答题(每题10分,共30分)1. 简述材料力学中材料的三种基本力学性质。
2. 解释什么是材料的疲劳现象,并简述其对工程结构的影响。
3. 描述材料在拉伸过程中的四个主要阶段。
答案1. 材料的三种基本力学性质包括弹性、塑性和韧性。
弹性指的是材料在受到外力作用时发生变形,当外力移除后能够恢复原状的性质。
塑性是指材料在达到一定应力水平后,即使外力移除也无法完全恢复原状的性质。
材料力学的试题及答案一、选择题1. 材料力学中,下列哪个选项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D2. 根据材料力学的理论,下列哪个选项是正确的?A. 材料在弹性范围内,应力与应变成正比B. 材料在塑性变形后可以完全恢复原状C. 材料的屈服强度总是高于其抗拉强度D. 材料的硬度与弹性模量无关答案:A二、填空题1. 材料力学中,应力是指_______与_______的比值。
答案:单位面积上的压力;受力面积2. 在材料力学中,材料的弹性模量E与_______成正比,与_______成反比。
答案:杨氏模量;泊松比三、简答题1. 简述材料力学中材料的三种基本变形类型。
答案:材料力学中材料的三种基本变形类型包括拉伸、压缩和剪切。
2. 描述材料的弹性模量和屈服强度的区别。
答案:弹性模量是指材料在弹性范围内应力与应变的比值,反映了材料的刚性;屈服强度是指材料开始发生永久变形时的应力值,反映了材料的韧性。
四、计算题1. 已知一材料的弹性模量E=200 GPa,杨氏模量E=210 GPa,泊松比ν=0.3,试计算该材料的剪切模量G。
答案:G = E / (2(1+ν)) = 200 / (2(1+0.3)) = 200 / 2.6 ≈ 76.92 GPa2. 某材料的抗拉强度为σt=300 MPa,若该材料承受的应力为σ=200 MPa,试判断材料是否发生永久变形。
答案:由于σ < σt,材料不会发生永久变形。
五、论述题1. 论述材料力学在工程设计中的重要性。
答案:材料力学是工程设计中的基础学科,它提供了对材料在力作用下行为的深入理解。
通过材料力学的分析,工程师可以预测材料在各种载荷下的响应,设计出既安全又经济的结构。
此外,材料力学还有助于新材料的开发和现有材料性能的优化。
2. 讨论材料的疲劳寿命与其力学性能之间的关系。
答案:材料的疲劳寿命与其力学性能密切相关。
材料的疲劳寿命是指在循环载荷作用下材料能够承受的循环次数。
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,弹性模量E的单位是()。
A. N/mB. N·mC. PaD. m/N答案:C2. 材料力学中,材料的屈服强度通常用()表示。
A. σyB. σsC. σbD. E答案:A3. 根据胡克定律,当应力超过材料的弹性极限时,材料将()。
A. 保持弹性B. 发生塑性变形C. 发生断裂D. 无法预测答案:B4. 材料力学中,第一强度理论认为材料破坏的原因是()。
A. 最大正应力B. 最大剪应力C. 最大正应变D. 最大剪应变答案:A5. 下列哪种材料不属于脆性材料()。
A. 玻璃B. 铸铁C. 混凝土D. 铝答案:D6. 材料力学中,梁的弯曲应力公式为()。
A. σ = Mc/IB. σ = Mc/IbC. σ = Mc/ID. σ = Mc/Ib答案:C7. 在材料力学中,梁的剪应力公式为()。
A. τ = VQ/IB. τ = VQ/ItC. τ = VQ/ID. τ = VQ/It答案:B8. 材料力学中,梁的挠度公式为()。
A. δ = (5PL^3)/(384EI)B. δ = (5PL^3)/(384EI)C. δ = (PL^3)/(48EI)D. δ = (PL^3)/(48EI)答案:C9. 材料力学中,影响材料屈服强度的因素不包括()。
A. 材料的微观结构B. 加载速度C. 温度D. 材料的密度答案:D10. 材料力学中,影响材料疲劳强度的因素不包括()。
A. 应力集中B. 表面粗糙度C. 材料的硬度D. 材料的导热性答案:D二、填空题(每题2分,共20分)1. 材料力学中,材料在外力作用下,其形状和尺寸发生的变化称为______。
答案:变形2. 材料力学中,材料在外力作用下,其内部产生的相互作用力称为______。
答案:应力3. 材料力学中,材料在外力作用下,其内部产生的相对位移称为______。
答案:应变4. 材料力学中,材料在外力作用下,其内部产生的单位面积上的力称为______。
材料力学试题一、填空题(共15分)1、 (5分)一般钢材的弹性模量E = 210 GPa ;吕材的弹性模量E = 70 GPa2、 (10分)图示实心圆锥杆受扭转外力偶作用,材料的剪切弹性模量为G ,该杆的man τ1、(5(A )各向同性材料;(B )各向异性材料; (C 正确答案是 A 。
2、(5分)边长为d 杆(1)是等截面,杆(2荷系数d k 和杆内最大动荷应力d σ论:(A )()(,)()(1max 21d d d k k σ<<(B )()(,)()(1max 21d d d k k σ><(C )()(,)()(1max 21d d d k k σ<>(D )1max 21()(,)()(d d d k k σ>>正确答案是 A 。
三、计算题(共75分) 1、(25应力相等,求:(1)直径比21/d d ; (2)扭转角比AB φ解:AC 轴的内力图:(105);(10355M Nm M BC AB ⨯=⨯= 由最大剪应力相等:8434.05/3/16/1050016/10300321323313max==⨯=⨯==d d d d W M n n ππτ 由;594.0)(23232;41221242411=••=•=⇒∴⋅=d M M M d G d G a M GI l M n n n n BC AB P n ππφφφ(2)2、(3、(15分)有一厚度为6mm 的钢板在板面的两个垂直方向受拉,拉应力分别为150Mpa 和55Mpa ,材料的E=2.1×105Mpa ,υ =0.25。
求钢板厚度的减小值。
解:钢板厚度的减小值应为横向应变所产生,该板受力后的应力状态为二向应力状态,由广义胡克定律知,其Z 向应变为:0244.010)55150(101.225.0)(69-=⨯+⨯-=+-=y x z E σσνε则 mm t Z Z 146.0-=⨯=∆ε(本资料素材和资料部分来自网络,仅供参考。
材料力学试题及答案一、选择题(每题5分,共25分)1. 下列哪个选项是材料力学的基本假设之一?A. 材料是各向同性的B. 材料是各向异性的C. 材料是均匀的D. 材料是线弹性的答案:A2. 在材料力学中,下列哪个公式表示杆件的正应力?A. σ = F/AB. τ = F/AC. σ = F/LD. τ = F/L答案:A3. 当材料受到轴向拉伸时,下列哪个选项是正确的?A. 拉伸变形越大,材料的强度越高B. 拉伸变形越小,材料的强度越高C. 拉伸变形与材料的强度无关D. 拉伸变形与材料的强度成正比答案:B4. 下列哪种材料在拉伸过程中容易发生断裂?A. 钢材B. 铸铁C. 铝合金D. 塑料答案:B5. 下列哪个选项表示材料的泊松比?A. μ = E/GB. μ = G/EC. μ = σ/εD. μ = ε/σ答案:C二、填空题(每题10分,共30分)6. 材料力学研究的是材料在______作用下的力学性能。
答案:外力7. 材料的强度分为______强度和______强度。
答案:屈服强度、断裂强度8. 材料在受到轴向拉伸时,横截面上的正应力公式为______。
答案:σ = F/A三、计算题(每题25分,共50分)9. 一根直径为10mm的圆钢杆,受到轴向拉伸力F=20kN 的作用,求杆件横截面上的正应力。
解:已知:d = 10mm,F = 20kNA = π(d/2)^2 = π(10/2)^2 = 78.5mm^2σ = F/A = 20kN / 78.5mm^2 = 255.8N/mm^2答案:杆件横截面上的正应力为255.8N/mm^2。
10. 一根长度为1m的杆件,受到轴向拉伸力F=10kN的作用,已知材料的弹性模量E=200GPa,泊松比μ=0.3,求杆件的伸长量。
解:已知:L = 1m,F = 10kN,E = 200GPa,μ = 0.3ε = F/(EA) = 10kN / (200GPa × π(10mm)^2) =0.025δ = εL = 0.025 × 1000mm = 25mm答案:杆件的伸长量为25mm。
一.是非题:(正确的在括号中打“√”、错误的打“×”)(60小题)1.材料力学研究的主要问题是微小弹性变形问题,因此在研究构件的平衡与运动时,可不计构件的变形。
( √ )2.构件的强度、刚度、稳定性与其所用材料的力学性质有关,而材料的力学性质又是通过试验测定的。
( √ )3.在载荷作用下,构件截面上某点处分布内力的集度,称为该点的应力。
(√ )4.在载荷作用下,构件所发生的形状和尺寸改变,均称为变形。
( √ )5.截面上某点处的总应力p可分解为垂直于该截面的正应力σ和与该截面相切的剪应力τ,它们的单位相同。
( √ )6.线应变ε和剪应变γ都是度量构件内一点处变形程度的两个基本量,它们都是无量纲的量。
( √ )7.材料力学性质是指材料在外力作用下在强度方面表现出来的性能。
( )8.在强度计算中,塑性材料的极限应力是指比例极限σ,而脆性材p料的极限应力是指强度极限σ。
( )b9.低碳钢在常温静载下拉伸,若应力不超过屈服极限σ,则正应力sσ与线应变ε成正比,称这一关系为拉伸(或压缩)的虎克定律。
( ) 10.当应力不超过比例极限时,直杆的轴向变形与其轴力、杆的原长成正比,而与横截面面积成反比。
( √ )11.铸铁试件压缩时破坏断面与轴线大致成450,这是由压应力引起的缘故。
( )12.低碳钢拉伸时,当进入屈服阶段时,试件表面上出现与轴线成45o的滑移线,这是由最大剪应力τ引起的,但拉断时截面仍为横截max面,这是由最大拉应力σ引起的。
( √ )max13.杆件在拉伸或压缩时,任意截面上的剪应力均为零。
( )14.EA 称为材料的截面抗拉(或抗压)刚度。
( √ )15.解决超静定问题的关键是建立补充方程,而要建立的补充方程就必须研究构件的变形几何关系,称这种关系为变形协调关系。
( √ )16.因截面的骤然改变而使最小横截面上的应力有局部陡增的现象,称为应力集中。
(√ )17.对于剪切变形,在工程计算中通常只计算剪应力,并假设剪应力在剪切面内是均匀分布的。
材料力学试题及答案一、选择题1. 材料力学中,下列哪个参数是用来描述材料在受力时抵抗变形的能力?A. 弹性模量B. 屈服强度C. 抗拉强度D. 断裂韧性答案:A2. 以下哪种材料在受力后能够完全恢复原状?A. 弹性体B. 塑性体C. 粘弹性体D. 脆性体答案:A3. 应力集中现象主要发生在哪种情况下?A. 材料表面存在缺陷B. 材料内部存在孔洞C. 材料受到均匀分布的载荷D. 材料受到单一集中载荷答案:D4. 根据胡克定律,当应力不超过比例极限时,应力与应变之间的关系是:A. 线性的B. 非线性的C. 指数的D. 对数的答案:A5. 材料的疲劳破坏是指在何种条件下发生的?A. 单次超负荷B. 长期重复载荷C. 瞬间高温D. 腐蚀环境答案:B二、填空题1. 在简单的拉伸和压缩实验中,应力(σ)是力(F)与横截面积(A)的比值,即σ=______。
答案:F/A2. 材料的韧性是指其在断裂前能够吸收的能量,通常通过______试验来测定。
答案:冲击3. 当材料在受力时发生塑性变形,且变形量随时间增加而增加,这种现象称为______。
答案:蠕变4. 剪切应力τ是剪切力(V)与剪切面积(A)的比值,即τ=______。
答案:V/A5. 材料的泊松比是指在单轴拉伸时,横向应变与纵向应变的比值,通常用希腊字母______表示。
答案:ν三、简答题1. 请简述材料弹性模量的定义及其物理意义。
答:弹性模量,又称杨氏模量,是指材料在弹性范围内抵抗形变的能力的量度。
它定义为应力与相应应变的比值。
物理意义上,弹性模量越大,表示材料在受力时越不易发生形变,即材料越硬。
2. 描述材料的屈服现象,并解释屈服强度的重要性。
答:屈服现象是指材料在受到外力作用时,由弹性状态过渡到塑性状态的过程。
在这个过程中,材料首先经历弹性变形,当应力达到某个特定值时,即使应力不再增加,材料也会继续发生显著的塑性变形。
屈服强度是衡量材料开始屈服的应力值,它对于工程设计和材料选择具有重要意义,因为它决定了结构在载荷作用下的安全性和可靠性。
第一章绪论【例1-1】钻床如图1-6a所示,在载荷P作用下,试确定截面m-m上的内力。
【解】(1)沿m-m 截面假想地将钻床分成两部分。
取m-m 截面以上部分进行研究(图1-6b),并以截面的形心O为原点。
选取坐标系如图所示。
(2)为保持上部的平衡,m-m 截面上必然有通过点O的内力N和绕点O的力偶矩M。
(3)由平衡条件∴【例1-2】图1-9a所示为一矩形截面薄板受均布力p作用,已知边长=400mm,受力后沿x方向均匀伸长Δ=0.05mm。
试求板中a点沿x方向的正应变。
【解】由于矩形截面薄板沿x方向均匀受力,可认为板内各点沿x方向具有正应力与正应变,且处处相同,所以平均应变即a 点沿x 方向的正应变。
x 方向【例1-3】 图1-9b 所示为一嵌于四连杆机构内的薄方板,b=250mm 。
若在p 力作用下CD 杆下移Δb=0.025,试求薄板中a 点的剪应变。
【解】由于薄方板变形受四连杆机构的制约,可认为板中各点均产生剪应变,且处处相同。
第二章 拉伸、压缩与剪切【例题2.1】 一等直杆所受外力如图2. 1 (a)所示,试求各段截面上的轴力,并作杆的轴力图。
解:在AB 段范围内任一横截面处将杆截开,取左段为脱离体(如图2. 1 (b)所示),假定轴力N1F 为拉力(以后轴力都按拉力假设),由平衡方程0xF=∑,N1300F -=得 N130kN F =结果为正值,故N1F 为拉力。
同理,可求得BC 段内任一横截面上的轴力(如图2. 1 (c)所示)为N2304070(kN)F =+=在求CD 段内的轴力时,将杆截开后取右段为脱离体(如图2. 1 (d)所示),因为右段杆上包含的外力较少。
由平衡方程0xF=∑,N330200F --+=得 N3302010(kN)F =-+=-结果为负值,说明N3F 为压力。
同理,可得DE 段内任一横截面上的轴力N4F 为N420kN F =F N4(f)(a)C BA 20kN30kNF30kN(b)(c)20kN20kN (e)(d)(a)N1F N2F N3F N4(f)(a)EDCBA 20kN20kNF 30kN 40kN(b)(c)30kN20kN20kN(e)(d)(b) F N2F N3F N4(f)(a)30kNED C20kN20kN80kN 40kN F(b)(c)30kN 20kN20kN (e)(d)30kN(c)N2F N4(f)(a)30kN EB A70kN30kN20kN80kN40kN 30kNF 30kN 40kN (b)(c)20kN (e)(d)30kN(d)F N2F N3F (f)(a)E D C BA 70kN30kN80kN 40kN30kNF 30kN 40kN (b)(c)(e)(d)30kN(f)(a)30kNEA20kN 80kN 40kN 30kN F30kN(b)(c)20kN(e)(d)30kN(f)图2. 1 例题2.1图【例题2.2】 一正方形截面的阶梯形砖柱,其受力情况、各段长度及横截面尺寸如图2.8(a)所示。
已知40kN P =。
试求荷载引起的最大工作应力。
解:首先作柱的轴力图,如图 2.8(b)所示。
由于此柱为变截面杆,应分别求出每段柱的横截面上的正应力,从而确定全柱的最大工作应力。
Ι、ΙΙ两段柱横截面上的正应力,分别由已求得的轴力和已知的横截面尺寸算得3N1114010N 0.69(MPa)(240mm)(240mm)σ-⨯===-⨯F A (压应力)3N22212010N 0.88(MPa)(370mm)(370mm)F A σ-⨯===-⨯(压应力)由上述结果可见,砖柱的最大工作应力在柱的下段,其值为0.88MPa ,是压应力。
【例题2.3】 一钻杆简图如图2.9(a)所示,上端固定,下端自由,长为l ,截面面积为A ,材料容重为γ。
试分析该杆由自重引起的横截面上的应力沿杆长的分布规律。
解:应用截面法,在距下端距离为x 处将杆截开,取下段为脱离体(如图2.8(b)所示),设下段杆的重量为()G x ,则有()G x xA γ= (a)设横截面上的轴力为N ()F x ,则由平衡条件0=∑xF,N ()()0-=F x G x (b)将(a)式值代入(b)式,得N ()F x A x γ=⋅⋅ (c)即N ()F x 为x 的线性函数。
当0x =时,N (0)0F =当x l =时,N N,max ()F l F A l γ==⋅⋅(a) (b) (a) (b) (c)图2.8 例题2.2图 图2.9 例题2.3图式中N,max F 为轴力的最大值,即在上端截面轴力最大,轴力图如图2.9(c)所示。
那么横截面上的应力为N ()()F x x x Aσγ==⋅ (d) 即应力沿杆长是x 的线性函数。
当0x =时,(0)0σ=当x l =时,max ()l l σσγ==⋅式中max σ为应力的最大值,它发生在上端截面,其分布类似于轴力图。
【例题2.4】 气动吊钩的汽缸如图2.10(a)所示,内径180mm D =,壁厚8mm δ=,气压2MPa p =,活塞杆直径10mm d =,试求汽缸横截面B —B 及纵向截面C —C 上的 应力。
解:汽缸内的压缩气体将使汽缸体沿纵横方向胀开,在汽缸的纵、横截面上产生拉应力。
(1) 求横截面B —B 上的应力。
取B —B 截面右侧部分为研究对象(如图 2.10(c)所示),由平衡条件0x F =∑,22N ()04D d p F π--=当D d >>时,得B —B 截面上的轴力为2N 4F D p π≈B —B 截面的面积为2()()A D D D δδδδδ=π⋅+⋅=π⋅+≈π那么横截面B —B 上的应力为2N 1802411.25(MPa)448x D p F Dp A D σδδπ⨯=≈===π⨯x σ称为薄壁圆筒的轴向应力。
图2.10 例题2.4图(2) 求纵截面C —C 上的应力。
取长为l 的半圆筒为研究对象(如图2.10(d)所示),由平衡条件0y F =∑,N10d sin 202D p l F θθπ⎛⎫⋅⋅⋅-= ⎪⎝⎭⎰ 得C —C 截面上的内力为N12F plD =C —C 截面的面积为12A l δ=当20D δ≥时,可认为应力沿壁厚近似均匀分布,那么纵向截面C —C 上的应力为N112180222.5(MPa)2228σδδ⨯=====⨯y F plD pD A ly σ称为薄壁圆筒的周向应力。
计算结果表明:周向应力是轴向应力的两倍。
【例题 2.7】 螺纹内径15mm d =的螺栓,紧固时所承受的预紧力为22kN F =。
若已知螺栓的许用应力[]150σ=MPa ,试校核螺栓的强度是否足够。
解:(1) 确定螺栓所受轴力。
应用截面法,很容易求得螺栓所受的轴力即为预紧力,有N 22kN F F ==(2) 计算螺栓横截面上的正应力。
根据拉伸与压缩杆件横截面上正应力计算公式(2-1),螺栓在预紧力作用下,横截面上的正应力为3N 2242210124.63.14154σ⨯⨯====π⨯F F d A (MPa)(3) 应用强度条件进行校核。
已知许用应力为[]150(MPa)σ= 螺栓横截面上的实际应力为124.6σ=MPa <[]150σ=(MPa)所以,螺栓的强度是足够的。
【例题2.8】 一钢筋混凝土组合屋架,如图2.25(a)所示,受均布荷载q 作用,屋架的上弦杆AC 和BC 由钢筋混凝土制成,下弦杆AB 为Q235钢制成的圆截面钢拉杆。
已知:10kN/m q =,8.8m l =, 1.6m h =,钢的许用应力[]170σ=MPa ,试设计钢拉杆AB 的 直径。
解:(1) 求支反力A F 和B F ,因屋架及荷载左右对称,所以11108.844(kN)22A B F F ql ===⨯⨯=图2.25 例题2.8图(2) 用截面法求拉杆内力N AB F ,取左半个屋架为脱离体,受力如图2.25(b)所示。
由0CM=∑,N 4.4 1.6024A AB l lF q F ⨯-⨯⨯-⨯=得22N 144 4.4108.8184.4/1.660.5(kN)8 1.6ABA F F ql ⨯-⨯⨯⎛⎫=⨯-== ⎪⎝⎭(3) 设计Q235钢拉杆的直径。
由强度条件N N 24[]σ=πAB ABF F A d≤ 得3N 4460.51021.29(mm)[]170σ⨯⨯==ππ⨯AB F d【例题2.9】 防水闸门用一排支杆支撑着,如图2.26(a)所示,AB 为其中一根支撑杆。
各杆为100mm d =的圆木,其许用应力[]10σ=MPa 。
试求支杆间的最大距离。
解:这是一个实际问题,在设计计算过程中首先需要进行适当地简化,画出简化后的计算简图,然后根据强度条件进行计算。
(1) 计算简图。
防水闸门在水压作用下可以稍有转动,下端可近似地视为铰链约束。
AB 杆上端支撑在闸门上,下端支撑在地面上,两端均允许有转动,故亦可简化为铰链约束。
于是AB 杆的计算简图如图2.26(b)所示。
图2.26 例题2.9图(2) 计算AB 杆的内力。
水压力通过防水闸门传递到AB 杆上,如图2.26(a)中阴影部分所示,每根支撑杆所承受的总水压力为2P 12F h b γ=其中γ为水的容重,其值为103kN/m ;h 为水深,其值为3m ;b 为两支撑杆中心线之间的距离。
于是有323P 11010345102F b b =⨯⨯⨯⨯=⨯根据如图2.26(c)所示的受力图,由平衡条件0CM=∑,P N 10AB F F CD -⨯+⨯=其中223sin 3 2.4(m)34CD α=⨯==+得33P N 451018.75102.4 2.4AB F bF b ⨯===⨯(3) 根据AB 杆的强度条件确定间距b 的值。
由强度条件3N 2418.7510[]σσπ⨯⨯==⨯AB F b A d ≤得26233[]1010 3.140.1 4.19(m)418.7510418.7510σ⨯π⨯⨯⨯⨯==⨯⨯⨯⨯d b ≤【例题2.10】 三角架ABC 由AC 和BC 两根杆组成,如图2.34(a)所示。
杆AC 由两根No.14a 的槽钢组成,许用应力[]160σ=MPa ;杆BC 为一根No.22a 的工字钢,许用应力为[]100σ=MPa 。
求荷载F 的许可值[]F 。
(a) (b)图2.34 例题2.10图解:(1) 求两杆内力与力F 的关系。
取节点C 为研究对象,其受力如图2.34(b)所示。
节点C 的平衡方程为0x F =∑,N N cos cos 066BC AC F F ππ⨯-⨯= 0yF=∑,N N sinsin 066BC AC F F F ππ⨯+⨯-= 解得N N BC AC F F F == (a)(2) 计算各杆的许可轴力。