材料力学计算题库完整讲解学习
- 格式:doc
- 大小:5.41 MB
- 文档页数:76
第二章轴向拉(压变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(c)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(d)解:(1)求指定截面上的轴力(2)作轴力图中间段的轴力方程为:轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力[习题2-4] 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EC横截面上的应力。
解:(1)求支座反力由结构的对称性可知:(2)求AE和EG杆的轴力①用假想的垂直截面把C铰和EG杆同时切断,取左部分为研究对象,其受力图如图所示。
由平衡条件可知:②以C节点为研究对象,其受力图如图所示。
由平平衡条件可得:(3)求拉杆AE和EG横截面上的应力查型钢表得单个等边角钢的面积为:[习题2-5] 石砌桥墩的墩身高,其横截面面尺寸如图所示。
荷载,材料的密度,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:墩身底面积:因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
[习题2-6]图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当时各斜截面上的正应力和切应力,并用图表示其方向。
解:斜截面上的正应力与切应力的公式为:式中,,把的数值代入以上二式得:轴向拉/压杆斜截面上的应力计算题目编号10000 100 0 100 100.0 0.0 习题2-6100 30 100 75.0 43.310000100 45 100 50.0 50.010000100 60 100 25.0 43.310000100 90 100 0.0 0.010000[习题2-7]一根等直杆受力如图所示。
一、一结构如题一图所示。
钢杆1、2、3的横截面面积为A=200mm 2,弹性模量E=200GPa,长度l =1m 。
制造时3杆短了△=0。
8mm.试求杆3和刚性梁AB 连接后各杆的内力。
(15分)aalABC123∆二、题二图所示手柄,已知键的长度30 mm l =,键许用切应力[]80 MPa τ=,许用挤压应力bs[]200 MPa σ=,试求许可载荷][F 。
(15分)三、题三图所示圆轴,受eM 作用。
已知轴的许用切应力[]τ、切变模量G ,试求轴直径d 。
(15分)四、作题四图所示梁的剪力图和弯矩图。
(15分)五、小锥度变截面悬臂梁如题五图所示,直径2bad d =,试求最大正应力的位置及大小。
(10分)六、如题六图所示,变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E .试用积分法求截面A 的得分评分人F键40633400Aal bM eBd a a aqqaqa 2dbBda AF挠度w A 和截面C 的转角θC .(15分)七、如图所示工字形截面梁AB ,截面的惯性矩672.5610zI -=⨯m 4,求固定端截面翼缘和腹板交界处点a 的主应力和主方向。
(15分)一、(15分)(1)静力分析(如图(a))1N F2N F3N F图(a)∑=+=231,0N N N yF F F F(a)∑==31,0N N CF F M(b)(2)几何分析(如图(b))1l∆2l∆3l∆∆图(b)wql /3x lhb 0b (x )b (x )BAC 50kN AB0.75m303030140150zya∆=∆+∆+∆3212l l l(3)物理条件EA l F l N 11=∆,EA l F l N 22=∆,EAl F l N 33=∆ (4)补充方程∆=++EAlF EA l F EA l F N N N 3212 (c) (5)联立(a)、(b)、(c)式解得:kN FkN FF N N N 67.10,33.5231===二、(15分)以手柄和半个键为隔离体,S0, 204000OM F F ∑=⨯-⨯=取半个键为隔离体,bsS20F F F ==由剪切:S []s FA ττ=≤,720 N F = 由挤压:bs bs bs bs[][], 900N FF Aσσ=≤≤取[]720N F =.三、(15分)eABM M M +=0ABϕ=, A B M a M b ⋅=⋅得 e B a M M a b =+, e A b MM a b=+当a b >时 e316π ()[]M ad a b τ≥+;当b a >时 e316π ()[]M bd a b τ≥+。
2-1 求下列结构中指定杆内的应力。
已知(a)图中杆的横截面面积A 1=A 2=1150mm 2; 解:(1)分析整体,作示力图∑=0)(i BF M:CB 041088=××−×A F AF N1F N2(c)40kN A F =(2)取部分分析,示力图见(b )∑=0)(i CF M:02442.22=×+×−×q F F A N2(404402)36.36kN 2.2N F ×−×==3262236.361031.62MPa 115010N F A σ−×===×(3)分析铰E ,示力图见(c )∑=0ix F :0sin 12=−βN N F F1240.65kN N N F F == 3161137.961035.3MPa 115010N F A σ−×===×2-2 求下列各杆内的最大正应力。
(3)图(c)为变截面拉杆,上段AB 的横截面积为40mm 2,下段BC 的横截面积为30mm 2,杆材料的ρg =78kN/m 3。
解:1.作轴力图,BC 段最大轴力在B 处6N 120.530107812.0kN B F −=+×××AB 段最大轴力在A 处6N 12(0.5300.540)107812.0kN A F −=+×+×××3N 2612.010400MPa 30mm3010B B F σ−−×===× 3N 2612.010300MPa 40mm 4010AA F σ−−×===×杆件最大正应力为400MPa ,发生在B 截面。
EDF BF AF CxF N2(b)A120B120F NC2-4 一直径为15mm ,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm ,直径缩小了0.022mm ,确定材料的弹性模量E 、泊松比µ。
材料力学计算题库完整第一章绪论【例1-1】钻床如图1-6a所示,在载荷P作用下,试确定截面m-m上的内力。
【解】(1)沿m-m 截面假想地将钻床分成两部分。
取m-m 截面以上部分进行研究(图1-6b),并以截面的形心O为原点。
选取坐标系如图所示。
(2)为保持上部的平衡,m-m 截面上必然有通过点O的内力N和绕点O的力偶矩M。
(3)由平衡条件∴【例1-2】图1-9a所示为一矩形截面薄板受均布力p作用,已知边长=400mm,受力后沿x方向均匀伸长Δ=0.05mm。
试求板中a点沿x方向的正应变。
【解】由于矩形截面薄板沿x方向均匀受力,可认为板内各点沿x方向具有正应力与正应变,且处处相同,所以平均应变即a点沿x方向的正应变。
x方向【例1-3】图1-9b所示为一嵌于四连杆机构内的薄方板,b=250mm。
若在p 力作用下CD杆下移Δb=0.025,试求薄板中a点的剪应变。
【解】由于薄方板变形受四连杆机构的制约,可认为板中各点均产生剪应变,且处处相同。
第二章拉伸、压缩与剪切【例题2.1】 一等直杆所受外力如图2. 1 (a)所示,试求各段截面上的轴力,并作杆的轴力图。
解:在AB 段范围内任一横截面处将杆截开,取左段为脱离体(如图2. 1 (b)所示),假定轴力N1F 为拉力(以后轴力都按拉力假设),由平衡方程0xF=∑,N1300F -=得 N130kN F =结果为正值,故N1F 为拉力。
同理,可求得BC 段内任一横截面上的轴力(如图2. 1 (c)所示)为N2304070(kN)F =+=在求CD 段内的轴力时,将杆截开后取右段为脱离体(如图2. 1 (d)所示),因为右段杆上包含的外力较少。
由平衡方程0xF=∑,N330200F --+=得 N3302010(kN)F =-+=-结果为负值,说明N3F 为压力。
同理,可得DE 段内任一横截面上的轴力N4F 为N420kN F =F N4(a)EC BA 30kNF30kN(b)(c)20kN20kN (e)(d)(a)N1F N2F N3(a)EDCBA 20kNF 30kN40kN (b)(c)30kN20kN(d)(b) F N2F N3(a)30kNED C 20kN80kN40kN F(b)(c)30kN 20kN(d)30kN(c)精品资料F N2F N4(f)70kN30kN30kNF30kN40kN (b)(c)20kN (e)(d)(d)F N2F N3F (f)ED C BA 70kN30kN30kNF 30kN40kN(b)(c)(e)(d)(f)(a)30kN ED CBA20kN80kN40kN 30kNF30kN(b)(c)20kN(e)(d)30kN(f)图2. 1 例题2.1图【例题2.2】 一正方形截面的阶梯形砖柱,其受力情况、各段长度及横截面尺寸如图2.8(a)所示。
已知40kN P =。
试求荷载引起的最大工作应力。
解:首先作柱的轴力图,如图2.8(b)所示。
由于此柱为变截面杆,应分别求出每段柱的横截面上的正应力,从而确定全柱的最大工作应力。
Ι、ΙΙ两段柱横截面上的正应力,分别由已求得的轴力和已知的横截面尺寸算得3N1114010N 0.69(MPa)(240mm)(240mm)σ-⨯===-⨯F A (压应力)3N22212010N 0.88(MPa)(370mm)(370mm)F A σ-⨯===-⨯(压应力)由上述结果可见,砖柱的最大工作应力在柱的下段,其值为0.88MPa ,是压应力。
【例题2.3】 一钻杆简图如图2.9(a)所示,上端固定,下端自由,长为l ,截面面积为A ,材料容重为γ。
试分析该杆由自重引起的横截面上的应力沿杆长的分布规律。
解:应用截面法,在距下端距离为x 处将杆截开,取下段为脱离体(如图2.8(b)所示),设下段杆的重量为()G x ,则有()G x xA γ= (a)设横截面上的轴力为N ()F x ,则由平衡条件0=∑xF,N ()()0-=F x G x (b)将(a)式值代入(b)式,得N ()F x A x γ=⋅⋅ (c)即N ()F x 为x 的线性函数。
当0x =时,N (0)0F =当x l =时,N N,max ()F l F A l γ==⋅⋅(a) (b) (a) (b) (c)图2.8 例题2.2图 图2.9 例题2.3图 式中N,max F 为轴力的最大值,即在上端截面轴力最大,轴力图如图2.9(c)所示。
那么横截面上的应力为N ()()F x x x Aσγ==⋅ (d) 即应力沿杆长是x 的线性函数。
当0x =时,(0)0σ= 当x l =时,max ()l l σσγ==⋅式中max σ为应力的最大值,它发生在上端截面,其分布类似于轴力图。
【例题2.4】 气动吊钩的汽缸如图2.10(a)所示,内径180mm D =,壁厚8mm δ=,气压2MPa p =,活塞杆直径10mm d =,试求汽缸横截面B —B 及纵向截面C —C 上的 应力。
解:汽缸内的压缩气体将使汽缸体沿纵横方向胀开,在汽缸的纵、横截面上产生拉应力。
(1) 求横截面B —B 上的应力。
取B —B 截面右侧部分为研究对象(如图2.10(c)所示),由平衡条件0xF=∑,22N ()04D d p F π--=当D d >>时,得B —B 截面上的轴力为2N 4F D p π≈B —B 截面的面积为2()()A D D D δδδδδ=π⋅+⋅=π⋅+≈π那么横截面B —B 上的应力为2N 1802411.25(MPa)448x D p F Dp A D σδδπ⨯=≈===π⨯x σ称为薄壁圆筒的轴向应力。
图2.10 例题2.4图(2) 求纵截面C —C 上的应力。
取长为l 的半圆筒为研究对象(如图2.10(d)所示),由平衡条件0y F =∑,N10d sin 202D p l F θθπ⎛⎫⋅⋅⋅-= ⎪⎝⎭⎰ 得C —C 截面上的内力为N12F plD =C —C 截面的面积为12A l δ=当20D δ≥时,可认为应力沿壁厚近似均匀分布,那么纵向截面C —C 上的应力为N112180222.5(MPa)2228σδδ⨯=====⨯y F plD pD A l y σ称为薄壁圆筒的周向应力。
计算结果表明:周向应力是轴向应力的两倍。
【例题2.7】 螺纹内径15mm d =的螺栓,紧固时所承受的预紧力为22kN F =。
若已知螺栓的许用应力[]150σ=MPa ,试校核螺栓的强度是否足够。
解:(1) 确定螺栓所受轴力。
应用截面法,很容易求得螺栓所受的轴力即为预紧力,有N 22kN F F ==(2) 计算螺栓横截面上的正应力。
根据拉伸与压缩杆件横截面上正应力计算公式(2-1),螺栓在预紧力作用下,横截面上的正应力为3N 2242210124.63.14154σ⨯⨯====π⨯F F d A (MPa)(3) 应用强度条件进行校核。
已知许用应力为[]150(MPa)σ=螺栓横截面上的实际应力为124.6σ=MPa <[]150σ=(MPa)所以,螺栓的强度是足够的。
【例题2.8】 一钢筋混凝土组合屋架,如图2.25(a)所示,受均布荷载q 作用,屋架的上弦杆AC 和BC 由钢筋混凝土制成,下弦杆AB 为Q235钢制成的圆截面钢拉杆。
已知:10kN/m q =,8.8m l =, 1.6m h =,钢的许用应力[]170σ=MPa ,试设计钢拉杆AB 的 直径。
解:(1) 求支反力A F 和B F ,因屋架及荷载左右对称,所以11108.844(kN)22A B F F ql ===⨯⨯=图2.25 例题2.8图(2) 用截面法求拉杆内力N AB F ,取左半个屋架为脱离体,受力如图2.25(b)所示。
由0C M =∑,N 4.4 1.6024AAB l lF q F ⨯-⨯⨯-⨯= 得22N 144 4.4108.8184.4/1.660.5(kN)8 1.6ABA F F ql ⨯-⨯⨯⎛⎫=⨯-== ⎪⎝⎭(3) 设计Q235钢拉杆的直径。
由强度条件N N 24[]σ=πAB ABF F A d ≤ 得21.29(mm)d【例题2.9】 防水闸门用一排支杆支撑着,如图2.26(a)所示,AB 为其中一根支撑杆。
各杆为100mm d =的圆木,其许用应力[]10σ=MPa 。
试求支杆间的最大距离。
解:这是一个实际问题,在设计计算过程中首先需要进行适当地简化,画出简化后的计算简图,然后根据强度条件进行计算。
(1) 计算简图。
防水闸门在水压作用下可以稍有转动,下端可近似地视为铰链约束。
AB 杆上端支撑在闸门上,下端支撑在地面上,两端均允许有转动,故亦可简化为铰链约束。
于是AB 杆的计算简图如图2.26(b)所示。
图2.26 例题2.9图(2) 计算AB 杆的内力。
水压力通过防水闸门传递到AB 杆上,如图2.26(a)中阴影部分所示,每根支撑杆所承受的总水压力为2P 12F h b γ=其中γ为水的容重,其值为103kN/m ;h 为水深,其值为3m ;b 为两支撑杆中心线之间的距离。
于是有323P 11010345102F b b =⨯⨯⨯⨯=⨯根据如图2.26(c)所示的受力图,由平衡条件0CM=∑,P N 10AB F F CD -⨯+⨯=其中223sin 3 2.4(m)34CD α=⨯==+得33P N 451018.75102.4 2.4ABF b F b ⨯===⨯ (3) 根据AB 杆的强度条件确定间距b 的值。
由强度条件3N 2418.7510[]σσπ⨯⨯==⨯AB F b A d ≤得26233[]1010 3.140.1 4.19(m)418.7510418.7510σ⨯π⨯⨯⨯⨯==⨯⨯⨯⨯d b ≤【例题2.10】 三角架ABC 由AC 和BC 两根杆组成,如图2.34(a)所示。
杆AC 由两根No.14a 的槽钢组成,许用应力[]160σ=MPa ;杆BC 为一根No.22a 的工字钢,许用应力为[]100σ=MPa 。
求荷载F 的许可值[]F 。
(a) (b)图2.34 例题2.10图解:(1) 求两杆内力与力F 的关系。
取节点C 为研究对象,其受力如图2.34(b)所示。
节点C 的平衡方程为0xF=∑,N N cos cos 066BC AC F F ππ⨯-⨯= 0yF=∑,N N sinsin 066BC AC F F F ππ⨯+⨯-= 解得N N BC AC F F F ==(a)(2) 计算各杆的许可轴力。
由型钢表查得杆AC 和BC 的横截面面积分别为44218.5110237.0210m AC A --=⨯⨯=⨯,424210m BC A -=⨯。