5年级-包含排除与数列数表
- 格式:doc
- 大小:81.00 KB
- 文档页数:6
1、50名同学面向老师站成一行。
老师先让大家从左至右按1,2,3, (49)50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。
问:现在面向老师的同学还有多少名?2、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。
按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。
那么游艺会为该项活动准备的奖品铅笔共有多少支?3、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。
问绳子共被剪成了多少段?4、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。
现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?5、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。
那么,这些卡片一共有多少张?6、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?。
7、图书室有100本书,借阅图书者需要在图书上签名。
已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。
问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?8、甲、乙、丙都在读同一本故事书,书中有100个故事。
每个人都从某一个故事开始,按顺序往后读。
已知甲读了75个故事,乙读了60个故事,丙读了52个故事。
那么甲、乙、丙3人共同读过的故事最少有多少个?9、甲、乙、丙同时给100盆花浇水。
已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?。
学科培优数学“数列数表”学生姓名授课日期教师姓名授课时长日常生活中,我们经常接触到许多按一定顺序排列的数,如:自然数:1,2,3,4,5,6,7, (1)年份:1990,1991,1992,1993,1994,1995,1996 (2)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。
根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。
一、数列规律等差数列,简单的等比数列,周期规律,递推规律是数列中常见的形式,在小学阶段的奥数题中,比较多的项数进行计算基本都是可以找到相应规律的。
二、数表规律通过观察数表中的已知数据,发现规律并进行补填与计算的问题.这里要注意数表结构的差异,它们通常是按行、按列、沿斜线或螺旋线逐步形成的.涉及小数的,或与其他方面知识相综合的数列问题.三、递推思想奥数学习需要的是思维的积累,其中递推归纳的思想应用十分广泛。
而在数列数表中,递推的规律体现的淋漓尽致,需要学生用心体会。
注意:1.等差数列及相对应的数学解题思想,倒序相加,递推,对应等。
2.数列求和技巧,简单等比数列求和中措项相消得思想。
3.数表中如何发现规律并转化成已知知识。
4.措项相消思想的运用5.数表与计数数论相联系6.分数数列的计算7.数表的求和例题精讲【试题来源】【题目】0,1,2,3,6,7,14,15,30,________,________,________。
上面这个数列是小明按照一定的规律写下来的,他第一次先写出0,1,然后第二次写出2,3,第三次接着写6,7,第四次又接着写14,15,依次类推。
小学五年级逻辑思维学习—数列数表小学五年级逻辑思维学习—数列数表知识定位日常生活中,我们经常接触到许多按一定顺序排列的数,如:自然数:1,2,3,4,5,6,7,… (1)年份:1990,1991,1992,1993,1994,1995,1996 (2)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第 1 个数称为这个数列的第 1 项,第 2 个数称为第 2 项,…,第 n 个数就称为第 n 项.如数列(3)中,第 1 项是 45,第 2 项也是 45,第 3 项是 44,第 4 项是 46,第 5 项 45。
根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。
知识梳理一、数列规律等差数列,简单的等比数列,周期规律,递推规律是数列中常见的形式,在小学阶段的奥数题中,比较多的项数进行计算基本都是可以找到相应规律的。
二、数表规律通过观察数表中的已知数据,发现规律并进行补填与计算的问题.这里要注意数表结构的差异,它们通常是按行、按列、沿斜线或螺旋线逐步形成的.涉及小数的,或与其他方面知识相综合的数列问题.三、递推思想奥数学习需要的是思维的积累,其中递推归纳的思想应用十分广泛。
而在数列数表中,递推的规律体现的淋漓尽致,需要学生用心体会。
注意:1.等差数列及相对应的数学解题思想,倒序相加,递推,对应等。
2.数列求和技巧,简单等比数列求和中措项相消得思想。
3.数表中如何发现规律并转化成已知知识。
4.措项相消思想的运用5.数表与计数数论相联系 6.分数数列的计算 7.数表的求和例题精讲【题目】0,1,2,3,6,7,14,15,30,________,________,________。
第33周包含与排除(容斥原理)专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。
如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。
组成集合的每个事物称为这个集合的元素。
如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。
两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。
计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。
在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。
有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。
例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。
两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。
显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。
练习一1,一个班的52人都在做语文和数学作业。
有32人做完了语文作业,有35人做完了数学作业。
语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。
其中语文得优的有65人,数学得优的有87人。
语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。
如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。
已知有35人懂英语,34人懂日语,两种语言都懂的有21人。
这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。
小学数学解决简单的数列和数表问题数列和数表问题在小学数学中是一个重要的学习内容,它涉及到数的顺序排列和规律性的发现。
本文将探讨如何解决小学数学中的简单数列和数表问题。
一、数列问题数列是按照一定规律排列的一组数,其中每个数都有特定的位置和值。
解决数列问题的关键是分析数列的规律,找出其中的规律性,并能够通过规律性推导出任意位置的数值。
下面以一个简单的数列问题为例进行说明。
例子:有一个数列,前三项依次为2,4,6,求第十一项的值。
解析:观察前三项的规律,可以发现每一项都是前一项加2得到的。
根据这个规律,我们可以得出数列的通项公式为an=2n。
带入n=11,即可求得第十一项的值为22。
二、数表问题数表是由数列表示的一种形式,通常以二维数组的形式呈现出来。
解决数表问题的关键是分析数表的规律,通过观察数表中的数字间的关系来推导出其他位置的数字。
下面以一个简单的数表问题为例进行说明。
例子:下面是一个数表,求问“?”处应填入的数字。
1 2 3 4 52 4 6 8 103 6 9 12 154 8 ? 16 205 10 15 20 25解析:观察数表中每个数字的位置与值的关系,可以发现每个数字都是由对应位置的行数和列数相乘得到的。
即第n行第m列的数字为n*m。
根据这个规律,我们可以填入“?”处的数字为12。
结语:通过以上两个例子,我们可以看出解决数列和数表问题的关键是观察与分析其中的规律性。
只有通过对规律的发现和理解,才能准确地解答数列和数表问题。
因此,在小学数学学习中,学生需要经常进行这类问题的练习,培养他们的观察力和逻辑推理能力,提高他们解决问题的能力。
希望本文对解决小学数学中的简单数列和数表问题有所帮助。
奥数五年级上一、数列规律地应用--找规律(四> (1)二、等差数列求和地应用--数列(二> (7)三、包含与排除(二> (14)四、小数地巧算--巧算(四> (19)五、行程问题(三> (25)六、行程问题(四> (31)七、牛吃草问题 (36)八、平面图形地面积(二> (39)九、计数问题 (45)十、数地进位制(二> (50)十一、简单抽屉原理(一> (54)十二、简单地统筹规划问题 (60)部分答案 (68)一、数列规律地应用--找规律(四>按一定地顺序排列地一串数,叫做数列,每一个数是数列地一项,排在第几个位置就叫第几项.要找到数列地规律,必须善于观察,一般可以从以下几方面去观察数列:①数列地每一项怎样随项数变化而变化;②后面地项与前面地项有什么关系;③数列分组后有什么规律.注意:同一个数列,从不同地方面去观察,可以有不同地规律性.如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,……规律2:每一项=它地项数地平方.把这个数列看作:12,22,32,42,52,62,……例1、准备题,按规律填数.(1> 2,9,16,23,,。
(2> 1,2,4,7,11,,。
(3> ,,,,,。
(4> 2,4,5,10,11,22,23,,。
例2、把自然数中地偶数:2,4,6,8,……依次排成5列<如图)从上到下为列,从左到右为行,最左边地一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 816 14 12 1018 20 22 2432 30 28 26例3、把自然数如右图排列, ①第10行正中地数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几? 例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8,…,从第3个数起,每个数都是前两个数乘积地个位数字,那么这一列数地第80个数是多少?例8、有一列数:1,1989,1988,1,1987,…,从第3个数起,每一个数都是前两个数中大数减小数地差,那么第1989个数是多少?例9、如数表,第n 行有一个数A,它地下一行(第n+1行>有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?例10、右图是一个由数字组成地三角形.试研究它地组成规律,从而确定其中地x.34 36 38 40… … … … 第一行 1 第二行 2 3 4 第三行 5 6 7 8 9 第四行 10 11 12 13 14 15 16…1 3 6 10 15 21 …2 5 914 20 …4 813 19 …712 18 …11 17 … 16 …A BC D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17 … … …… … … … A B CD E F G 1 2 3 47 6 5 8 9 10 11 14 13 12 15 16 …………第1行 12345… 14 15第2行 30 29 28 27 26 … 17 16 第3行 31 32 33 34 35 … 44 45 ……………………………………………………第n 行 ………………………A……第n+1行 ……………………… B ……11例11、把自然数如图排列:①第8行左起第8个数是多少?②97位于第几行第几列?例12、在1997后面写一串数字,写下地每个数字都是它前面两个数字乘积地个位数.这样得到地一串数是199731……,问这串数字从1开始往右第2002个数字是几?例13、求2000个333…3,除以7地余数. 例14、1998个47地乘积地个位数字是几? 例15、a n ,如果a 是整数,填表后解答: ①a n 地个位数有什么规律?②根据规律求下面计算结果地个位数字(尾数>.19915+19925+19935+19946+19956+19967+19977+19988+19998填表:a n 地尾数例16、在一张足够长地纸条上从左到右依次写上1到1999这1999个自然数,然后从左到右每隔三位点一个逗号:1 10 1 2 2 5 5 42 0 0 5 10 14 1616 61 61 56 46 32 16· · · x · ·· ·1 2 510 174 3 6 11 18 … 9 8 7 12 19 …1615 14 13 20 … 25 24 23 22 21 … ……123,456,789,101,112,……,那么第100个逗号前地那个数字是多少?例17、把自然数依次写下来得到一个数:1234567891……问这个数从左边第一位起第1999个数字是几?。
小学五年级数学思维专题训练—数表例1 一列自然数0,1,2,3,…,2005,…,2024,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024. 现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第行和第列.例2 伸出你的左手,从大拇指开始如下图所示的那样数数,1,2,3,…,问:数到1991时,你数在哪个手指上?例3 自然数按从小到大的顺序排成下图所示螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯,……,问第二十个拐弯的地方是哪一个数?例4将奇数1,3,5,7,9,…,按下图的规律排列,如下表,数19排在第3行第3列,数37排在第5行第4列,那么数2011排在第行第列。
例5 将自然数按如下顺序排列:1 2 6 7 15 16 …3 5 8 14 17 ….4 9 13 …10 12 …11 …在这样的排列下,数字3排在第二行第一列,13排在第三行第三列,问:1993排在第几行第几列?例6 下面是一个由数字组成的三角形,试研究它的组成规律,从而确定其中的x数值.例7 下图是中国古代的“杨辉三角形”,问:写在图中“网点”处所有数的和是多少?例8 根据某种规律列出如下算式:321=+87654+=++1514131211109++=+++ 以上各式的计算结果是3,15,42,… 请求出含有2003的算式的计算结果.例9 25个同样大小的等边三角形拼成了下图的大等边三角形,在图中每个结点处都标上一个数,使得图中每条直线上所标的数都顺次成等差数列.已知在大等边三角形的三个顶点放置的数分别是100,200,300.求所有结点上数的总和.例10 下面是著名德国数学家莱布尼茨给出的三角形:则排在由上而下的第10行中从右边数第三个位置的数是 。
例11 观察下列正方形数表:表1中的各数之和为1,表2中的各数之和为17,表3中的各数之和为65,……,(每个正方形数表比前一个正方形数表多一层方格,增加的一层方格中所填的数比前一数表的最外层方格的数大1).如果表n 中的各数之和等于15505,那么n 等于 。
第4讲包含与排除内容概念:有重叠部分的若干对象的计数问题,能利用文氏图进行辅助分析,弄清文氏图中每部分的含义;结合文氏图理解两个对象和三个对象的容斥原理;灵活处理具有一些不确定性的计数问题,以及其他形式的重复计数问题。
典型问题:兴趣篇:1.暑假里,小悦和冬冬一起讨论“金陵十八景”。
他们发现十八景中的每一处都有人去过,而且有五处是两人都去过的。
如果小悦去过其中的十二景,那么冬冬去过其中的几景?2.在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人两部动画片都看过。
请问:至少看过其中一部的小朋友有多少人?3、五年级一班45个学生参加期末考试。
成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人。
请问:语文成绩得满分的有多少人?4.某餐馆有27道招牌菜。
小悦吃过其中的13道,冬冬吃过其中的7道,而且有2道菜是两人都吃过的。
请问:有多少道招牌菜是两人都没有吃过的?5.如图4-1,已知甲、乙、丙三个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6、8、5,同时被这三个圆覆盖的部分的面积为2。
请问:(1)只被甲或乙覆盖,却不被丙覆盖的部分的面积是多少?(2)只被这3个圆中某一个圆覆盖的部分的面积是多少?6.在一个由30人组成的合唱队中,每个人都爱喝红茶、绿茶、花茶中的一种或者几种。
其中有10个人爱喝红茶,12人不爱喝红茶却爱喝绿茶。
请问:只爱喝花茶的有多少人?7.光明小学五年级课外活动有体育、音乐、书法三个小组,参加的人数分别是54人、46人、36人。
同时参加体育小组和音乐小组的有4人,同时参加体育小组和书法小组的有7人,同时参加音乐小组和书法小组的有10人,三组都参加的有2人。
光明小学五年级参加课外活动的一共有多少人?8.卫生部对120种食物是否含有维生素A、C、E进行调查,结果发现:含维生素A的有62种,含维生素C的有90种,含维生素E的有68种,同时含维生素A和C的有48种,同时含维生素A和E的有36种,同时含维生素C和E的有50种,同时含这三种维生素的有25种。
部编人教版五年级上册数学表五年级上册数学表是为了帮助学生研究和掌握五年级数学知识而设计的一份重要工具。
本数学表依据部编人教版五年级上册数学教材中的内容编写,旨在帮助学生更好地理解和应用所学的数学知识。
表格结构数学表共包含以下部分:1. 算式表:列出了五年级上册数学教材中涉及的常见算式,如加法、减法、乘法和除法等。
学生可以通过这一部分,了解到不同算式的运算规则和方法。
算式表:列出了五年级上册数学教材中涉及的常见算式,如加法、减法、乘法和除法等。
学生可以通过这一部分,了解到不同算式的运算规则和方法。
2. 数学术语表:整理了五年级上册数学教材中所涉及的常用数学术语及其简要解释。
这部分的目的在于帮助学生理解和记忆数学术语的含义,以便在解题过程中能够正确运用。
数学术语表:整理了五年级上册数学教材中所涉及的常用数学术语及其简要解释。
这部分的目的在于帮助学生理解和记忆数学术语的含义,以便在解题过程中能够正确运用。
3. 几何图形表:展示了五年级上册数学教材中出现的各种几何图形及其名称。
通过查阅这一部分,学生可以更好地认识和区分不同的几何图形,并了解它们的性质和特点。
几何图形表:展示了五年级上册数学教材中出现的各种几何图形及其名称。
通过查阅这一部分,学生可以更好地认识和区分不同的几何图形,并了解它们的性质和特点。
4. 数字表:列举了五年级上册数学教材中的一些重要数字,如自然数、整数、分数、小数等。
学生可以通过这一部分,熟悉不同数字的表达形式和数值大小的关系。
数字表:列举了五年级上册数学教材中的一些重要数字,如自然数、整数、分数、小数等。
学生可以通过这一部分,熟悉不同数字的表达形式和数值大小的关系。
5. 公式表:整理了五年级上册数学教材中一些重要的数学公式,如周长公式、面积公式等。
学生可以通过查阅这一部分,掌握不同公式的运用方法,进而解决相关问题。
公式表:整理了五年级上册数学教材中一些重要的数学公式,如周长公式、面积公式等。
包含与排除(容斥原理)例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。
两种报纸都订的有多少人?分析用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。
显然,两种报刊都订的人数被统计了两次:64+48=112人,比总人数多112-96=16人,这16人就是两种报刊都订的人数。
练习一1,一个班的52人都在做语文和数学作业。
有32人做完了语文作业,有35人做完了数学作业。
语文、数学作业都做完的有多少人?2,五年级有122人参加语文、数学考试,每人至少有一门功课得优。
其中语文得优的有65人,数学得优的有87人。
语文、数学都得优的有多少人?3,某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。
如果两次测验都没得过满分的学生有17人,那么,两次测验都得满分的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。
已知有35人懂英语,34人懂日语,两种语言都懂的有21人。
这个学校共有多少名教师?分析把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。
练习二1,某校的每个学生至少爱体育和文娱中的一种活动。
已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。
这个学校共有学生多少人?2,某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。
这个班共有多少人?3,第一小组的同学们都在做两道数学思考题,做对第一题的有15人,做对第二题的有10人,两题都做对的有7人,两题都做错的有2人。
第一小组共有多少人?例3:学校开展课外活动,共有250人参加。
其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。
容斥问题与数列数表
1:六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有 19 人.
2:在1至1000中不能被5或7整除的数共有 686 个.
3:某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没有一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有 4 人.
4:分母是108的最简真分数有 36 个.
5:在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有 31 人,最多有 56 人.
6:某进修班有50人,开甲、乙、丙三门进修课、选修甲这门课的有38人,选修乙这门课有的35人,选修丙这门课的有31人,兼选甲、乙两门课的有29人,兼选甲、丙两门课的有28人,兼选乙、丙两门课的有26人,甲、乙、丙三科均选的有24人.问三科均未选的人数? 38+35+31-29-28-26+24=45人,50-45=5人
7:三角形ABC 面积是1,M 与N 都是中点,求三角形BGC 面积。
3
1提示:连接MN ,得到沙漏MNG 与BCG ,三角形ABM+ACN=1,所以阴影面积=ANMG
8:如图,正方形面积是16,A 在长方形DEFG 边EF 上,G 在BC 上,若FG 与AB 交于P 点,求三角形PAF 与PBG 面积之差。
连接AG ,正方形边长4,三角形ADG 面积是8,所以矩形DEFG 面
积是16
所以DE=16/5=3.2. 勾股定理求AE=2.4,CG=3
由于矩形面积=正方形面积
所以APF+AED+ADGP=PBG+CDG+APGD
即APF+AED=PBG+CDG
所以APF-PBG=CDG-ADF=6-3.84=2.16
9:黑板上写有从1开始的若干个连续奇数,1,3,5,7,...擦去其中一个奇数后,剩下的所有奇数之和是1998.那么擦去的奇数是多少?
是27
10:一串有规律的数:1,32,85,2113,...那么第8个数是多少?987
610
11:100最多可以写成多少个不同的正整数之和?
13个
12:将8个数从左到右排成一行,从第三个数开始,每个数恰好等于它前面两个数之和。
如果第7个数和第8个数分别是81,131,那么第一个数是多少?
是5
13:1,2,3,2,3,4,3,4,5,4,5,6,…。
上面是一串按某种规律排列的自然数,问其中第101个数至第110个数之和是多少? 1 2 3
2 3 4
3 4 5
... 101/3=33...2,即第34组的第2个开始
第34组:34,35,36
35组35 36 37
36组36 37 38
37组 37 38 35+36+(35+36+37)+(36+37+38)+37+38=365
14:在1,2两数之间,第一次写上3;第二次在1,3之间和3,2之间分别写上4,5,得到 14352。
以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和。
这样的过程共重复了8次,那么所有数的和是多少?
第一次,是6
第二次是6153-3=⨯
第三次是15423-3=⨯
第四次是421233-3=⨯
依次类推,第8次是9843
15:将从1到60的60个自然数排成一行,成为111位自然数,即12345678910111213…5960。
在这111个数字中划去100个数字,余下数字的排列顺序不变,那么剩下的11位数最小可能是多少?
是10000012340
作业:
1:64人订A、B、C三种杂志.订A种杂志的28人,订B种杂志的有41人,订C种杂志的有20人, 订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人,问三种杂志都订的有多少人?
2:分母是:105的最简真分数有多少个?
3:300以内既不是5的倍数又不是7的倍数的数有多少个?它们的和是多少?
4:P是长方形ABCD内一点,三角形PAB面积是5,三角形PBC面积是13,求三角形PBD面积。
5:一根长180厘米的绳子,从一端开始,每隔3厘米作一个记号,每隔4厘米也作一个记号,然后将有记号的地方剪断,共剪成多少段?
6:有一列由三个数组成的数组,它们依次是
(1,5,10);(2,10,20);(3,15,30);……。
问第99个数组内三个数的和是多少?
7:如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213…996997998999。
那么在这个多位数里,从左到右的第1000个数字是多少?
8: 130最多可以写成多少个不同的正整数的和?
9:将1到40写在一起1234567891011...383940,划掉一些数字后得到一个9位数,这个9位数最小是多少?
10:7个小队共种树100棵,各小队种的棵数都不相同,其中种树最多的小队种了18 棵,种树最少的小队最少种了多少棵?。