半长头校车车身结构有限元分析
- 格式:pdf
- 大小:286.98 KB
- 文档页数:4
汽车结构的常规有限元分析唐述斌本文介绍了与产品研发同步的5个有限元分析阶段,阐述了有限元模型建立过程中应注意的问题,简单介绍了汽车产品的4种常规分析方法,建立汽车设计标准的方法,以及3个强度分析范例。
范例1说明了有限元分析应注意的内容,范例2和3介绍了“应力幅值法”在解决汽车车轮轮辐开裂和汽车发动机汽缸体水套底板开裂问题的应用。
汽车是艺术和技术的结合。
一辆好车的主要特点是造型美观、有时代感、结构设计合理、轻量化、材料利用率高,车辆性能先进并且满足国家法规、标准和环保的要求,质量可靠、保养方便、低成本、用户满意、满足市场需求等。
在竞争日益激烈的汽车市场,汽车性价比已经成为市场竞争的焦点。
采用有限元的常规分析技术,用计算机辅助设计代替经验设计,预测结构性能、实现结构优化,提高产品研发水平、降低产品成本,加快新产品上市。
1. 与产品研发同步的5个有限元分析阶段在汽车产品研发流程中,一般有如下5个同步的有限元分析阶段:第0阶段:对样车进行试验和分析;第1阶段:概念设计阶段的分析;第2阶段:详细设计阶段的分析;第3阶段:确认设计阶段的分析;第4阶段:产品批量生产后改进设计的分析。
有限元分析在产品研发的不同阶段有不同的分析目的和分析内容。
有限元分析和试验分析是互相结合和验证的。
在详细设计阶段,有些汽车公司对白车身和成品车车身都进行有限元分析,有些汽车公司只对白车身进行有限元分析。
2. 有限元分析的关键环节――建立合理的有限元模型有限元模型的建立是有限元分析的关键环节。
通过力学分析,把实际工程问题简化为有限元分析的问题,提出建立有限元模型的具体意见和方法,确定载荷和位移边界条件,使得有限元分析有较好的模拟(仿真)效果。
前处理自动生成的网格可能存在问题。
建立有限元模型的好坏直接影响计算结果的误差和分析结论的正确性。
在结构的几何图形上,划分有限元网格是建立有限元模型的主要内容之一。
在用有限元分析的前处理自动生成网格时,特别是用常应变单元自动生成有限元网格时要非常注意,有可能存在问题,应引起注意,必要时加以改进。
半挂牵引车整车结构有限元分析的开题报告一、研究背景和意义随着交通运输业的发展,半挂牵引车的使用越来越广泛,而对其安全性能的研究也越来越重要。
传统的半挂牵引车结构设计多采用经验式或试错方法,难以充分考虑车辆在行驶过程中所受到的各种力和变形,因此需要采用有限元方法对其整车结构进行分析和优化设计。
本研究旨在通过有限元分析方法,建立半挂牵引车整车模型,对其结构进行静力学和动力学分析,探索提高半挂牵引车结构的安全性能和效率的途径,为半挂牵引车的工程设计和制造提供理论依据和技术支持。
二、研究内容和方法本研究将采用有限元分析方法,建立半挂牵引车整车模型,研究其静力学和动力学性能。
具体研究内容包括:1. 建立半挂牵引车整车有限元模型,包括车架、车轮、悬架系统、驱动系统等部件。
2. 对半挂牵引车整车进行静力学分析,计算其在不同载荷条件下的应力和变形情况,并分析其承载能力和耐久性。
3. 对半挂牵引车整车进行动力学分析,模拟车辆在行驶过程中所受到的各种力和变形,计算其对车辆性能的影响。
4. 优化半挂牵引车整车结构设计,探索提高车辆结构安全性和效率的途径。
本研究主要采用理论分析和计算机仿真方法进行。
三、研究计划本研究计划分为以下阶段:1. 文献调研和理论分析,研究有限元分析方法在半挂牵引车整车结构分析中的应用,明确研究的目的和内容。
2. 建立半挂牵引车整车有限元模型,包括车架、车轮、悬架系统、驱动系统等部件。
3. 对半挂牵引车整车进行静力学分析,计算其在不同载荷条件下的应力和变形情况,并分析其承载能力和耐久性。
4. 对半挂牵引车整车进行动力学分析,模拟车辆在行驶过程中所受到的各种力和变形,计算其对车辆性能的影响。
5. 优化半挂牵引车整车结构设计,探索提高车辆结构安全性和效率的途径。
6. 编写研究报告,总结研究成果,并提出进一步研究的方向和建议。
四、预期成果和意义通过有限元分析方法,本研究将得到半挂牵引车整车结构的静力学和动力学特性参数,为提高半挂牵引车结构的安全性能和效率提供技术支持。
整车入库检验指导书附件—校车车身结构、尺寸标准检验指导书、定义:1.1 校车 School bus用于有组织地运送不少于5 名幼儿和义务教育阶段等教育机构的学生上下学的载客汽车。
1.2 专用校车 Special school bus设计和制造上专门用于运送学生的客车。
1.3 幼儿专用校车 Special school bus for infants用于运送3 周岁以上学龄前幼儿上下学的专用校车。
1.4 小学生专用校车 Special school bus for primary student用于运送1 年级至6 年级学生的专用校车。
1.5 中小学生专用校车 Special school bus for junior middle school student用于运送1 年级至9 年级学生的专用校车。
1.6 停车示意牌 Stop signal card用以警示其它车辆不要超越已停驻待上、下学生的校车的示意牌二、车辆要求:3.7轻型专用校车:车长大于5米且小于等于6米;大中型专用校车:车长大于6米且小于等于12米。
2、整车结构和外观标示:2.1 专用校车前部应设置碰撞安全结构。
若为前横置发动机,则发动机曲轴中心线应位于前风窗玻璃最前点以前;若为前纵置发动机,则发动机第一缸和第二缸的中心线应位于前风窗玻璃最前点以前;若大中型专用校车其前部碰撞性能不低于前两种结构,可以不限定发动机布置形式。
2.2 专用校车车高不得大于3.7m。
2.3 如果有行李舱体,则行李舱体顶部离地面高度小于1.0m。
2.4 校车不得设置车外顶行李架。
2.5车内不得有容易卡住手指的孔洞。
3、装载质量3.1、幼儿专用校车的每个学生的装载质量按30kg;3.2、小学生专用校车的每个学生的装载质量按48kg;3.3、中小学生专用校车的每个学生的装载质量按53kg;3.4、每个照管人员的装载质量按68kg,驾驶员的装载质量按75k。
4、动力性及底盘要求:4.1、校车比功率应不小于 9.0 kW/t。
作者简介:柴新伟(1981-),男,山西夏县人,在读硕士研究生,研究方向:车辆工程。
收稿日期:2009-07-02;修回日期:2009-12-01引言汽车车架是发动机、底盘、车身各总成及专用车专用设施的安装基础和关键承载部件。
我国对于一般车架的设计及强度校核,是依靠经典的材料力学、弹性力学、结构力学的经验公式。
传统分析设计方法,具有简单易行的优点,目前在我国的车辆设计计算中仍起一定作用。
传统方法也有明显不足,带有相当的盲目性,每次车架设计改进都不会有明显的突破;而且设计周期长,使得车架的更新换代的速度较慢,不能与现代化商品主产竞争相适应;也不能对车架结构的应力分布及刚度分布进行定量分析。
因此,设计中不可避免地造成车架各部分强度分配不合理现象;使得整个车架设计成本提高,而且某些部位强度不足,容易引起事故;某些部位强度又过于富余,造成浪费,达不到优化设计的目的。
随着CAD/CAE 技术的推广及计算机软硬件的发展,汽车行业已将CAD/CAE 技术用于汽车车架的设计与研究,为工作人员提供了可靠的计算工具[1]。
如果直接从CAD 软件导入Ansys ,会出现一些模型上相关问题,例如失去面,且其前处理不是很好;然而hyperworks 却有良好的CAD 兼容性和很好的有限元模型前后处理功能。
在CAD 中建立车架三维模型时,由于结构复杂,对一些附属结构和工艺结构,简化:1)略去某些功能件和非承载构件。
有些构件仅为满足工艺或使用要求设置,并非根据强度要求设置,对车架结构内力分布和变形的影响较小,因此建模时可以忽略(如工艺孔,缓冲座等)。
2)对某些部件进行简化。
车架主要是用槽钢和钢板铆接和螺栓连接而成,建立结合模型时只保证零件间的相对准确位置和连接孔的对应.根据副车架和主车架的连接方式,可将其简化为主车架左右边梁上的均部载荷,不再单独建模[2]。
将模型从CAD 软件导入hypermesh 中,车架边梁和横梁采用壳单元(SHELL63),实体零件(如吊耳,平衡悬架等)选用实体单元(solid45),钢板和板簧使用刚性梁单元和弹簧单元模拟。
汽车结构有限元分析合肥工业大学车辆工程系谭继锦主讲2010年元月课件仅作为学习交流之用,不能用于商业用途第一讲概述1.汽车产品设计流程的变化2.产品研发流程3.开发方法4.“V字形”开发流程5.结构有限元分析重要性6.汽车CAE技术的应用热点7.汽车结构有限元分析8.有限元法概述9.结构有限元模型10.有限元方法学习1.汽车产品设计流程的变化—昨天—今天—现代—将来设计制造试验再设计设计(CAD)虚拟试验(CAE)制造试验再设计再设计设计(CAD)虚拟试验(CAE)制造试验再设计优化概念设计优化2.世界一流的产品研发流程世界一流的产品研发流程–30个月步骤关键点布置项目计划概念开发系列开发与准备产能爬坡项目启动概念决策试生产开始生产-35-30-23-5造型内外部设计原型测试CAE 工程虚拟步骤/工艺开发部件测试综合测试验证耐久性测试样车循环生产前测试工业化布置确定布置(-23)设计冻结(-23)布置冻结(-19)设计循环CAD 100% (-17)大量使用虚拟仿真基于最优化的测试策略的跨功能汽车重要的鉴定测试仅使用一次样车循环3.开发方法人机工效环境舒适性安全性结构分析工程设计虚拟试验工艺分析以功能与性能设计为主线,强化概念设计阶段的虚拟开发能力,对性能进行预测和控制。
实现协同设计,在操纵性、平顺性、安全性、可靠性等方面,在车身设计、工程设计、产品验证、生产准备的全过程实现分析设计与试验的协调。
4.“V字形”开发流程5.结构有限元分析重要性汽车CAE技术的应用面向整车开发的全过程,在汽车开发过程(概念设计-详细设计-样机验证-定型生产)中实现全过程、整车及部件级虚拟样机仿真,减少原型车试验次数,降低生产成本、缩短新车研发周期。
随着CAE应用深度及广度的提高,实现CAE工作的规范化和制度化是提升企业的技术能力和市场竞争力的有力保证。
6.汽车CAE技术的应用热点动力学操纵稳定性分析---应用多体系统动力学分析软件(MBS),ADAMS及CarSim;NVH性能分析---低频振动和高频噪声(刚弹耦合、声固耦合);疲劳耐久性分析---加速疲劳设计验证方法;碰撞安全性分析---以LSDYNA为代表的显式有限元软件来模拟;流场分析及热管理---基于计算流体力学(CFD); 多目标优化、多物理场耦合、多性能协调分析; ……7.汽车结构有限元分析1)汽车设计中对所有结构件、主要零部件的强度、刚度和稳定性分析2)汽车结构件或零部件的优化设计,如以汽车质量或体积为目标函数的最优设计,还有对比分析中的参数化设计和形状优化;3)对汽车结构件进行模态分析、瞬态分析、谐响应分析和响应谱分析,为结构的动态设计提供方便有效的工具;4)汽车零部件及整车的疲劳分析,在概念或详细设计阶段估计产品的寿命或是分析部件损坏的原因;5)车身内的声学设计,将车身结构模态与车身内声模态耦合,评价乘员感受的噪声并进行噪声控制;6)车身空气动力学计算,解决高速行驶中的升力、阻力和湍流等问题,为汽车性能和造型设计服务;7)汽车碰撞历程仿真和乘员安全保护分析,提高汽车结构的被动安全性。
关于半挂车车架有限元分析与轻量化分析摘要:文章主要从半挂车实体建模及有限元的简述出发,分别简述了车架有限元模型的建立,以及轻量化的车架结构优化,旨在与广大同行共同探讨学习。
关键词:半挂车车架;有限元分析;轻量化一、半挂车实体建模及有限元的简述1.半挂车介绍半挂车是一种道路运输车辆,由两部分构成,一部分是带有动力的车头,另一部分为承载货物的半挂。
半挂车是目前普遍应用的运输工具,按用途分为专用和普通两种。
按大梁的结构来分有平板式、阶梯式、凹梁式三种。
如下图1-1所示。
图1-1 半挂车分类板式半挂车可以最大利用空间,同时离地面较高,方便公路运输。
阶梯式半挂车货台比较低,方便货物的装卸,凹梁式半挂车具有较小的离地间隙和较低的货台。
半挂车第二部分半挂结构主要由车架、双侧保护装置、工具箱、挡泥板、轮轴、牵引装置、电路、气制动、支撑、悬架装置、备胎、车箱、后保险杠等结构组成。
2.有限元法介绍有限元法是用简单的问题替换复杂的问题并进行求解,具有计算精度较高的优点,可对不同复杂形状的工程问题进行科学有效的分析以及计算。
二、车架有限元模型的建立建立有限元模型是进行有限元分析的基础,也即选择单元类型、赋予材料属性、划分网格、模拟连接方式、施加边界条件的过程,其中划分网格是前处理最为重要也是最为繁琐的步骤。
1.建立车架有限元模型应遵循的原则(1)确保模型的计算效率。
网格的大小、稀疏程度,也即单元与节点的数目多少,决定着计算结果的准确性和计算效率,在进行车架有限元模型建立的过程中应权衡好计算结果的准确性与计算效率的矛盾,找到最合适的网格尺寸。
(2)确保计算结果的准确性。
建立车架三维几何模型的过程中,在不影响分析结果的前提下,已经对车架进行了一定的简化,目的就是为了能够得到准确的结果,避免造成应力集中等问题。
2.模型导入及中面抽取(1)三维几何模型的导入和修复我们将利用 Solidworks 软件建立的车架的三维几何模型导入 Hypermesh 中。