现代控制理论 第十七章 模型参考自适应控制
- 格式:ppt
- 大小:3.00 MB
- 文档页数:99
现代控制理论中的模型预测控制和自适应控制在现代控制理论中,模型预测控制和自适应控制是两种广泛应用的控制方法。
这两种控制方法各有优劣,适用于不同的控制场景。
本文将分别介绍模型预测控制和自适应控制的基本原理、应用范围和实现方法。
模型预测控制模型预测控制(MPC)是一种基于数学模型预测未来状态的控制方法。
MPC通过建立系统的数学模型,预测系统未来的状态,在控制循环中不断地更新模型和控制算法,实现对系统的精确控制。
MPC的核心思想是将控制问题转化为优化问题,通过最优化算法求解出最优的控制策略。
MPC的应用范围十分广泛,特别适用于需要对系统动态响应进行精确控制的场合,如过程控制、机械控制、化工控制等。
MPC 在控制精度、鲁棒性、适应性等方面都具有优异的表现,是目前工业控制和自动化领域的主流控制方法之一。
MPC的实现方法一般可分为两种,一种是基于离线计算的MPC,一种是基于在线计算的MPC。
离线计算的MPC是指在系统运行之前,先通过离线计算得到优化控制策略,然后将其存储到控制器中,控制器根据当前状态和存储的控制策略进行控制。
在线计算的MPC则是指在系统运行时,通过当前状态和模型预测计算器实时地优化控制策略,并将其传输到控制器中进行实时控制。
自适应控制自适应控制是指根据系统实时变化的动态特性,自动地调整控制算法和参数,以实现对系统的精确控制。
自适应控制可以适应系统动态响应的变化,提高控制精度和鲁棒性,是现代控制理论中的重要分支之一。
自适应控制的应用范围广泛,特别适用于对控制要求较高的复杂系统,如机械控制、电力控制、化工控制等。
自适应控制可以通过软件和硬件两种实现方式,软件实现是通过控制算法和参数的在线调整来实现,硬件实现则是通过控制器内部的调节器、传感器等硬件来实现。
自适应控制的实现方法一般可分为两种,一种是基于模型参考自适应控制(MRAC),一种是模型无关自适应控制(MIMO)。
MRAC是指通过建立系统的数学模型,基于参考模型的输出来进行控制的方法,适用于系统具有良好动态特性的场合;MIMO则是指在不需要建立系统数学模型的情况下,通过控制器内部的自适应算法来实现控制的方法,适用于系统非线性和时变性较强的场合。
自适应控制什么是自适应控制自适应控制是一种控制系统设计方法,它通过实时监测和调整系统的参数来适应不确定的外部环境和内部系统变化。
自适应控制可以提高控制系统的性能和鲁棒性,使其能够快速、准确地响应不断变化的环境或系统参数。
在传统的控制系统中,通常假设系统的数学模型是已知和固定的。
然而,在实际应用中,系统的动态特性常常受到各种因素的影响,如外部扰动、参数变化、非线性效应等。
这些因素使得传统的控制方法往往无法满足系统的控制要求。
而自适应控制则能够通过不断地观测和在线调整系统参数,使系统能够适应这些变化,并实现良好的控制效果。
自适应控制的基本原理自适应控制的基本原理是根据系统的实时反馈信息来调整控制器的参数。
具体来说,自适应控制系统通常由以下几个部分组成:1.参考模型:参考模型是指描述所期望控制系统输出的理想模型,通常由一组差分方程来表示。
参考模型的作用是指导控制系统的输出,使其能够尽可能接近参考模型的输出。
2.系统模型:系统模型是指描述被控对象的数学模型,包括其输入、输出和动态特性。
系统模型是自适应控制的重要基础,它确定了控制系统需要调整的参数和控制策略。
3.控制器:控制器是自适应控制系统的核心部分,它根据系统输出和参考模型的误差来实时调整控制器的参数。
控制器可以通过不同的算法来实现,如模型参考自适应控制算法、最小二乘自适应控制算法等。
4.参数估计器:参数估计器是自适应控制系统的关键组件,它用于估计系统模型中的未知参数。
参数估计器可以通过不断地观测系统的输入和输出数据来更新参数估计值,从而实现对系统参数的实时估计和调整。
5.反馈环路:反馈环路是指通过测量系统输出并将其与参考模型的输出进行比较,从而产生误差信号并输入到控制器中进行处理。
反馈环路可以帮助控制系统实时调整控制器的参数,使系统能够适应外部环境和内部变化。
自适应控制的应用领域自适应控制在各个领域都有广泛的应用,特别是在复杂和变化的系统中,其优势更为突出。
自适应控制中的模型参考自适应控制算法研究在控制系统中,控制器的设计和应用都是十分重要的,并且也是十分复杂的。
自适应控制是一种在控制器中嵌入智能算法的方法,可以让控制器根据被控制系统的状态自适应地调整参数,以达到最佳控制效果。
在自适应控制中,模型参考自适应控制算法是一种常见的算法,其原理和应用将在本文中进行介绍。
一、模型参考自适应控制算法的基本原理模型参考自适应控制算法是一种基于模型的自适应控制方法,其基本思想是将被控制系统的模型和控制器的模型进行匹配,通过模型匹配的误差来适应地调整控制器的参数。
其主要流程包括:建立被控制系统的模型;建立控制器的模型;将被控制系统的模型和控制器的模型进行匹配,计算出模型匹配误差;根据模型匹配误差来自适应地调整控制器的参数。
模型参考自适应控制算法的具体实现方式可以分为直接调节法和间接调节法两种。
直接调节法是将模型参考自适应控制算法中的误差直接反馈到控制器的参数中,以达到自适应控制的目的。
间接调节法则是通过在模型参考自适应控制算法中引入额外的参数,间接地调节控制器的参数,以达到自适应控制的目的。
二、模型参考自适应控制算法的应用模型参考自适应控制算法在实际工程中有着广泛的应用。
例如,它可以用于磁浮列车的高精度控制系统中,通过模型参考自适应控制算法来适应不同运行条件下的参数,达到最优的控制效果。
另外,模型参考自适应控制算法还广泛应用于机器人控制、电力系统控制等领域,可以有效地提高控制系统的性能和稳定性。
三、模型参考自适应控制算法的优缺点模型参考自适应控制算法的主要优点是可以适应不同的被控制系统和环境条件,具有较高的适应性和鲁棒性。
另外,它具有控制精度高、响应速度快等优点。
不过,模型参考自适应控制算法也存在一些缺点,例如模型误差对控制系统的影响比较大,不易对模型参数进行优化等。
四、结论综上所述,模型参考自适应控制算法是一种重要的自适应控制方法,在实际工程中具有广泛的应用前景。
一、概述1.自适应控制的控制对象:自适应控制的研究对象是具有一定程度不确定性的系统,这里所谓的“不确定性”是指描述被控对象及其环境的数学模型不是完全确定的,其中包含一些未知因素和随机因素。
2.自适应控制的基本思想是:在控制系统设计时,不断地测量受控对象的状态,性能或参数,从而“认识”或“掌握”系统当前的运行状况,并将系统当前的性能指标与期望的指标相比较,从而根据比较结果作出决策,来改变控制器的结构、参数或根据自适应的规律来改变控制作用,以保证系统运行在某种意义下最优或次优的状态。
3.吉布森1962年提出以下定义:(1)在线辨识:一个自适应控制系统必须能提供对象当前状态的连续信息;(2)决策控制:它必须将系统当前的性能和希望的或者最优的性能进行比较,并作出使系统趋向最优性能的决策;(3)在线修正:它必须对控制器进行修正以便是系统趋向最优状态。
这三方面的功能是自适应系统所必须具有的功能。
4.与其他控制方法的比较自适应控制和常规的反馈控制和最优控制一样,也是一种基于数学模型的控制方法,所不同的只是自适应控制所依据的关于模型和扰动的先验知识比较少,需要在系统的运行过程中去不断提取有关模型的信息,使模型逐步完善。
具体地说,可以依据对象的输入输出数据,不断地辨识模型参数,这个过程称为系统的在线辩识。
随着生产过程的不断进行,通过在线辩识,模型会变得越来越准确,越来越接近于实际。
既然模型在不断的改进,显然,基于这种模型综合出来的控制作用也将随之不断的改进。
在这个意义下,控制系统具有一定的适应能力。
比如说,当系统在设计阶段,由于对象特性的初始信息比较缺乏,系统在刚开始投入运行时可能性能不理想,但是只要经过一段时间的运行,通过在线辩识和控制以后,控制系统逐渐适应,最终将自身调整到一个满意的工作状态。
再比如某些控制对象,其特性可能在运行过程中要发生较大的变化,但通过在线辩识和改变控制器参数,系统也能逐渐适应。
常规的反馈控制系统对于系统内部特性的变化和外部扰动的影响都具有一定的抑制能力,但是由于控制器参数是固定的,所以当系统内部特性变化或者外部扰动的变化幅度很大时,系统的性能常常会大幅度下降,甚至是不稳定。
模型参考自适应控制与模型控制比较模型参考自适应控制(Model Reference Adaptive Control, MRAC)和模型控制(Model-based Control)都是现代控制理论中常用的方法。
它们在实际工程应用中具有重要意义,本文将对这两种控制方法进行比较和分析。
一、模型参考自适应控制模型参考自适应控制是一种基于模型的自适应控制方法,主要用于模型未知或参数变化的系统。
该方法基于一个参考模型,通过在线更新控制器参数以追踪参考模型的输出,从而实现对系统的控制。
在模型参考自适应控制中,首先需要建立系统的数学模型,并根据实际系统的特性选择合适的参考模型。
然后通过设计自适应控制器,利用模型参数估计器对系统的不确定性进行补偿,实现对系统输出的精确追踪。
模型参考自适应控制的优点在于其适应性强,能够处理模型未知或参数变化的系统。
它具有很好的鲁棒性,能够适应系统的不确定性,同时可以实现对参考模型的精确追踪。
然而,模型参考自适应控制也存在一些缺点,如对系统模型的要求较高,需要较为准确的模型参数估计。
二、模型控制模型控制是一种基于数学模型的控制方法,通过对系统的建模和分析,设计出合适的控制器来实现对系统的控制。
模型控制方法主要有PID控制、状态反馈控制、最优控制等。
在模型控制中,首先需要建立系统的数学模型,并对模型进行分析和优化。
然后根据系统的特性,设计合适的控制器参数。
最后,将控制器与系统进行耦合,实现对系统的控制。
模型控制的优点在于其理论基础牢固,控制效果较好。
它能够根据系统的数学模型进行精确的设计和分析,具有较高的控制精度和鲁棒性。
然而,模型控制方法在实际应用中对系统模型的要求较高,而且对系统参数变化不敏感。
三、比较与分析模型参考自适应控制与模型控制都是基于模型的控制方法,它们在实际应用中具有各自的优缺点。
相比而言,模型参考自适应控制具有更强的适应性和鲁棒性,能够处理模型未知或参数变化的系统。
10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。
如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。
如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。
所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。
因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。
目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。
10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。
实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。
在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。
在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。
第一章 概述1.1 自适应控制的研究对象自适应控制是研究具有“不确定性”的控制系统的特性分析和综合(控制器设计)。
1. 系统不确定性产生的原因 1)内部不确定性(1)被控对象的结构(阶次)和参数由于建模误差引起的不确定性。
(2)被控对象的结构(阶次)和参数或者动态特性是时变的或随工作作条件改变而变化。
2)外部不确定性被控对象的运行环境(外部干扰)是随机信号而且它们的统计特性不确切知道或者是时变的。
2. 系统“不确定性”的数学描述 1)状态方程设一个线性离散时间系统,其状态方程如下:(1)(,)()(,)()()x k A k x k B k u k k θθε+=++ (1.1-1)()(,)()()y k C k x k v k θ=+式中:()()r r ()m 1 m x k y k u k ⨯⨯⨯——状态向量 n 1——输出向量 1 (由传感器数量决定)——控制向量 (由执行机构决定){()}}{()}k u k ε——单位动态噪声称为随机序列,其统计特性未知——测量噪声(,)A k θ,(,)B k θ,(,)C k θ 分别为系统矩阵,输入矩阵,输出矩阵,其维数为,n n m n ⨯⨯⨯n ,v 。
k ——离散时间,k ~k T 。
其中T 为采样周期。
θ——S 维未知参数向量,可能A ,B ,C 中未知参数不同,为了简单起见,都设为S 维。
2)系统框图根据(1.1-1)式可以画出被控对象的结构框图。
1Z -(,)C k θ(,)B k θ(,)A k θ()u k ()k ε()x k ()y k ()v k (1)x k +图 1.1-1 被控对象的结构框图图中1z -是时间延迟因子,1()(1)x k z x k -=+,噪声{()k ε}和{v (k )}作用于对象的不同部位,对于线性系统,可以等效于作用在输出端的一个噪声。
其统计特性例如期望值、相关函数等由于不确定性而未知,或随时间变化。
自适应滑模控制与模型参考自适应控制比较自适应控制是现代控制理论中的一种重要方法,它可以对复杂系统进行自主建模、参数在线估计和控制策略调整。
其中,自适应滑模控制与模型参考自适应控制是两种常用的自适应控制方法。
本文将就这两种方法进行比较,并分析其优缺点以及适用领域。
一、自适应滑模控制自适应滑模控制(Adaptive Sliding Mode Control,ASMC)是滑模控制(Sliding Mode Control,SMC)的改进和扩展。
SMC通过引入滑模面将系统状态限制在此面上,从而使系统鲁棒性较强。
然而,SMC 在实际应用中易受到系统参数变化和外界扰动的影响,导致滑模面的滑动速度过大或过小,影响系统的稳定性和控制性能。
ASMC通过自适应机制对滑模控制进行改进。
其核心思想是在线估计系统的未知参数,并将估计结果应用于滑模控制律中,使控制器能够自主调整以适应系统参数的变化。
具体来说,ASMC引入自适应法则对系统参数进行估计,并将估计值作为滑动面的参数,实现参数自适应调整。
这样,ASMC具备了适应性较强的控制能力,并能够更好地处理参数辨识的问题,提高了系统的稳定性和控制性能。
二、模型参考自适应控制模型参考自适应控制(Model Reference Adaptive Control,MRAC)是一种将模型参考和自适应控制相结合的方法。
其主要思想是建立系统的参考模型,并通过自适应机制实现控制器参数的自适应调整,使系统的输出与参考模型的输出误差最小化。
通过在线调整控制器的参数,MRAC能够适应系统参数的变化,实现对系统动态特性的自主调节。
在MRAC中,参考模型起到了重要的作用。
通过设计适当的参考模型,可以使系统输出保持在期望的轨迹上,并利用误差进行控制器参数的在线调整。
与ASMC相比,MRAC更加关注系统的闭环性能,能够实现更高的跟踪精度和鲁棒性。
三、比较与分析自适应滑模控制和模型参考自适应控制都是自适应控制的重要方法,但在应用场景和性能表现上存在一些差异。
一 原理及方法模型参考自适应系统,是用理想模型代表过程期望的动态特征,可使被控系统的特征与理想模型相一致。
一般模型参考自适应控制系统的结构如图1所示。
图1 一般的模型参考自适应控制系统其工作原理为,当外界条件发生变化或出现干扰时,被控对象的特征也会产生相应的变化,通过检测出实际系统与理想模型之间的误差,由自适应机构对可调系统的参数进行调整,补偿外界环境或其他干扰对系统的影响,逐步使性能指标达到最小值。
基于这种结构的模型参考自适应控制有很多种方案,其中由麻省理工学院科研人员首先利用局部参数最优化方法设计出世界上第一个真正意义上的自适应控制律,简称为MIT 自适应控制,其结构如图2所示。
图2 MIT 控制结构图系统中,理想模型Km 为常数,由期望动态特性所得,被控系统中的增益Kp 在外界环境发生变化或有其他干扰出现时可能会受到影响而产生变化,从而使其动态特征发生偏离。
而Kp 的变化是不可测量的,但这种特性的变化会体现在广义误差e 上,为了消除或降低由于Kp 的变化造成的影响,在系统中增加一个可调增益Kc ,来补偿Kp 的变化,自适应机构的任务即是依据误差最小指标及时调整Kc ,使得Kc 与Kp 的乘积始终与理想的Km 一致,这里使用的优化方法为最优梯度法,自适应律为:⎰⨯+=tm d y e B Kc t Kc 0)0()(τMIT 方法的优点在于理论简单,实施方便,动态过程总偏差小,偏差消除的速率快,而Yp Yme+__+R参考模型调节器被控对象适应机构可调系统———kmq(s)p(s)KcKpq(s)-----p(s)适应律Rymype+-且用模拟元件就可以实现;缺点是不能保证过程的稳定性,换言之,被控对象可能会发散。
二 对象及参考模型该实验中我们使用的对象为:122)()()(2++==s s s p s q K s G pp 参考模型为:121)()()(2++==s s s p s q K s G mm 用局部参数最优化方法设计一个模型参考自适应系统,设可调增益的初值Kc(0)=0.2,给定值r(t)为单位阶跃信号,即r(t)=A ×1(t)。