纳米散热涂料
- 格式:doc
- 大小:173.50 KB
- 文档页数:4
纳米涂层的介绍和用途纳米科技在当今世界迅速发展,纳米涂层便是在纳米科技基础上发展起来的一种新型涂层。
与传统涂层相比,纳米涂层具有优异的性能和广阔的应用前景。
本文将从性能和应用两个方面对纳米涂层进行介绍和归纳。
一、性能纳米涂层的性能优越主要体现在以下几个方面:1.高硬度纳米涂层采用的是纳米材料,其硬度远远大于传统涂层。
比如,钻石样纳米涂层的硬度可以达到40Gpa以上,而传统金刚石涂层也只有10Gpa左右。
这意味着纳米涂层可以更好地保护表面不受刮伤和磨损。
2.低摩擦纳米涂层可以大大降低表面之间的摩擦系数,甚至可以降低到0.01,这是传统涂层难以达到的。
这种性能可以让机械设备运行更加流畅,延长设备的使用寿命。
3.耐腐蚀纳米涂层具有很好的耐腐蚀性能,可以抵抗酸、碱、盐等腐蚀物质的侵袭。
这种特性可以降低设备的修理和更换成本。
4.高透明度纳米涂层可以达到高透明度,和传统涂层相比,能更加真实地展示物体外表的颜色和纹理,甚至可以用于保护玻璃表面。
5.高绝缘性纳米涂层具有较高的绝缘性能,可用于电子元器件的表面保护,同时还能减轻电子设备的体积,提高物体的整体性能。
二、应用纳米涂层广泛应用于各个领域,包括了以下几个方面:1.机械领域纳米涂层可以应用于机械设备表面,如地铁的轨道表面,可减少摩擦,提高机械设备的使用寿命。
同时,纳米涂层还可以用于汽车发动机高温部位的涂层,以提高发动机的使用寿命和性能。
2.生物医学纳米涂层在生物医学领域应用广泛,可以用于人体假肢和金属植入物的涂层,避免对人体的刺激和腐蚀。
同时,纳米涂层还可以用于医疗设备的表面保护,使得设备更加耐用和健康。
3.电子领域纳米涂层可以用于电子设备的保护,如手机、平板电脑等,以保证设备的稳定性和使用寿命。
同时,纳米涂层还可以用于电池的保护,降低电池损坏和漏液的风险。
4.建筑领域纳米涂层可以用于建筑物的表面涂层,如玻璃表面涂层,可防止建筑物玻璃受到风化、紫外线、冲击和腐蚀。
碳纳米涂层的散热原理
碳纳米涂层是一种新型的散热材料,它将碳纳米管和多种其他材料结合在一起,形成一种高效的散热效果。
碳纳米涂层的优点在于可以更轻巧、更薄、更安全,同时具有较高的无机抗腐蚀性。
它还可以有效地提升散热性能,可以非常有效地减少热峰值,使元件受到更少的损伤。
1、介电散热:碳纳米管具有很高的介电常数,能更有效地将方向上的电磁辐射转化成热能,并以此产生内热,提高外部传热的效率。
2、隔热减少传热:碳纳米涂层的工作原理是通过屏蔽热传播,减少来自周围环境的温度对元件的影响。
一方面,它可以阻止热量的滞留,另一方面它可以把元件的热量封闭在管内,即使环境温度非常高也不会使其失效。
3、化学降温:碳纳米管的表面带有可吸附水分以及水蒸气的特性,可以产生化学反应下降温度。
这种特性使得碳纳米涂层能够能够从全新的角度把热量进行散热,从而更加有效地控制热源的温度。
以上是碳纳米涂层的散热原理,由于它具备良好的介电性能以及特殊的反应特性,碳纳米涂层可以有效抵抗热量的辐射,降低元件的热量温度,是能源效率非常高的一种散热材料。
专利名称:一种水性碳纳米管的散热涂料及其制备方法专利类型:发明专利
发明人:李蕾蕾,吴功松
申请号:CN202210119242.7
申请日:20220208
公开号:CN114350231A
公开日:
20220415
专利内容由知识产权出版社提供
摘要:本发明提供一种水性碳纳米管的散热涂料及其制备方法,涉及散热涂料技术领域,其原料按重量份包括:环氧树脂65%‑82%,聚四氟乙烯5%‑10%,石墨5%‑10%,抗氧剂2%‑3%,氮化硅2%‑5%,消泡剂1%‑3%,乳化剂1%‑3%,防老剂3%‑5%。
本发明中,通过在传统散热涂料中添加石墨和聚四氟乙烯,有效地提升了该散热涂料的散热和防腐性能,通过氮化硅的结构硬度以及耐热性能,使该散热涂料的抗冷热冲击能力得到了有效提升,使涂抹该涂料的涂层具有更好的结构稳定性能,通过防老剂和抗氧剂的添加,使该涂料的成品抗风化抗老化的性能得到了有效提升,通过该种方式对于该涂料的品质提供了有力保证,并且涂料所形成的涂层的使用寿命以及保护性能也得到了大幅提升。
申请人:深圳市中科纳米科技有限公司
地址:518035 广东省深圳市宝安区新安街道留仙二路飞扬兴业科技厂区厂房B栋916房
国籍:CN
代理机构:东莞市卓易专利代理事务所(普通合伙)
代理人:张静
更多信息请下载全文后查看。
纳米涂料的抗菌性能及应用探讨在当今科技迅速发展的时代,纳米技术已经在众多领域展现出了其独特的魅力和巨大的应用潜力。
其中,纳米涂料作为一种新型的功能性材料,凭借其出色的抗菌性能,逐渐成为了研究和应用的热点。
纳米涂料之所以能够具备抗菌性能,关键在于其独特的纳米结构和成分。
纳米尺度的粒子具有较大的比表面积,这使得它们能够与细菌等微生物充分接触,并通过多种机制发挥抗菌作用。
常见的纳米抗菌材料包括纳米银、纳米氧化锌、纳米二氧化钛等。
以纳米银为例,银离子本身就具有较强的抗菌活性。
在纳米尺度下,其表面积大幅增加,从而释放出更多的银离子,能够更有效地破坏细菌的细胞膜、干扰细菌的代谢过程,最终导致细菌死亡。
纳米氧化锌则通过产生氧自由基来破坏细菌的细胞结构,实现抗菌效果。
纳米二氧化钛在光照条件下能够激发产生强氧化性的物质,对细菌进行氧化分解。
纳米涂料的抗菌性能具有诸多显著的优点。
首先,其抗菌效果持久且高效。
与传统的抗菌剂相比,纳米粒子在涂料中的分散更加均匀稳定,不易流失和失效,能够长时间保持良好的抗菌性能。
其次,纳米涂料具有广谱抗菌性。
它不仅能够有效抑制常见的细菌,如金黄色葡萄球菌、大肠杆菌等,还对一些真菌、病毒等微生物有一定的抑制作用。
再者,纳米涂料的使用相对安全环保。
由于纳米粒子的使用量较少,且其抗菌作用机制相对温和,对人体和环境的潜在危害较小。
纳米涂料的抗菌性能在众多领域都有着广泛的应用。
在医疗领域,医院的墙壁、医疗器械的表面涂层等都可以采用纳米涂料,有效减少交叉感染的风险。
例如,病房内的墙壁涂上纳米抗菌涂料后,能够抑制病菌的滋生和传播,为患者提供更清洁、安全的治疗环境。
手术器械经过纳米涂料处理后,可以降低术后感染的几率,提高手术的成功率。
在食品工业中,纳米涂料可应用于食品包装材料。
通过在包装材料表面涂覆纳米抗菌涂层,可以延长食品的保质期,防止食品受到细菌、霉菌等微生物的污染。
这对于保障食品安全、减少食品浪费具有重要意义。
精碳空调外机散热抗腐纳米涂料
使用说明
主要特点:高散热系数高比表面积高效率降温
主要功效:增强散热,耐候抗腐,易洁抗垢,杀菌防霉,抗辐射抗老化,延长散热翅片寿命,减少空调用电量。
用法:
1、开机检查空调是否正常,然后进行节能处理。
2、打开空调外机壳顶盖,用酸性涤尘清洗剂将空调外机散热翅片彻
底清洗干净之后才能实施喷涂。
3、将精碳空调外机散热抗腐纳米涂料搅拌均匀后倒入喷枪容器即可
喷涂,若抗腐剂太稠影响施工,可加5~10%(按重量)自来水稀释。
4、喷枪对准空调外机散热片,先由内往外,再由外往内,对散
热翅片各喷涂一遍,涂层均匀覆盖散热翅片即可,喷涂要求:
喷枪口径1.3~1.5mm,枪口距离喷射目标10cm,雾状散射喷
涂,空压6㎏/cm2;空调在喷涂完毕后即可正常开机使用,涂层厚度控制在20~30微米(喷涂一遍大约15微米);喷涂完毕后马上用清水清洗喷枪,涂层在喷涂2小时后表干,3天后完全干固,不要在雨天施工;空调内机散热翅片只做清洁不喷涂抗腐剂。
环保性:本品是环保水性溶剂,不含任何有毒物质,喷涂工具的清洗或皮肤被抗腐剂沾溅,用清水清洗即可。
保质期:常温保存一年,若已兑水稀释,当天内用完。
透明隔热涂料中常用的三种纳米材料透明隔热涂料是一种专门用于降低建筑物能耗并提高住宅舒适度的新型材料。
其特点是能够在不改变建筑外观的情况下,大大减少来自太阳辐射和室内空调热量的损失,从而实现节能降耗和环保减排的目标。
在透明隔热涂料中,纳米材料是起到关键作用的。
本文将介绍透明隔热涂料常用的三种纳米材料。
1. 碳纳米管碳纳米管(Carbon Nanotube,CNT)是由单层碳原子在指定方向上自组装成的一维纳米材料,其具有非常优异和独特的物理特性。
在透明隔热涂料中,碳纳米管作为透明導熱材料,可以将热量快速引导到透明材料表面,从而防止了热量在材料内部的传导,提高了透明材料的导热性,增加了隔热效果。
除此之外,由于碳纳米管具有优异的光吸收和防紫外线能力,还可以作为太阳能电池器件的重要组成部分,提高太阳能电池的效率。
2. 纳米氧化铝纳米氧化铝(Nano aluminum oxide,NAO)是常见的纳米材料之一,具有高强度、高稳定性以及优异的光学和电学性能。
在透明隔热涂料中,纳米氧化铝可以作为隔热剂使用。
由于纳米氧化铝具有非常小的颗粒尺寸,可以优化涂层的性质,增加涂层的牢度,从而提高隔热效果。
此外,纳米氧化铝还可作为填充剂,增加透明隔热涂料的硬度和耐擦擦性,延长其使用寿命。
3. 纳米二氧化硅纳米二氧化硅(Nano silicon dioxide,NSD)是一种无机纳米材料,具有良好的热稳定性、力学性能和光学性能。
在透明隔热涂料中,纳米二氧化硅可用作多种功能材料的添加剂,如增塑/增粘剂、防晒剂和流平剂等。
它们在透明隔热涂料中的作用如下:•增塑/增粘剂: 因为纳米二氧化硅可以分散到涂料中,它可以增加涂层间的黏合作用,提高涂层的韧性和耐久性。
•防晒剂:纳米二氧化硅可以有效吸收紫外线,从而保护被涂表面不被太阳辐射所损坏。
•流平剂:纳米二氧化硅可增加透明隔热涂料的流动性,防止涂层产生气泡和纹理不均。
结论透明隔热涂料的研发和应用对于改善建筑物的能源利用效率和降低温室气体排放具有极大的作用。
纳米沉积石墨烯高导热散热涂层涂层外观:黑色哑光粗糙面;高导热散热,显著增大散热面积,兼具常规防腐黑色光滑面:高防腐,导热散热良好,基本不增加散热面积涂层材质与工艺:以石墨烯为主的碳复合材料,少量纳米复合陶瓷以及表面改性助剂。
通过中微纳专利技术纳米沉积,碳材料趋于定向排列,形成微翅片,显著提高导热散热,增大散热面积。
适用基材:铝材、铜材、镁合金、钢材以及其它金属材质,石墨以及碳纤维材质。
说明:不同基材,不同性能侧重,可根据运用调整。
适用温度:长期-60℃—300℃;短期-100℃—400℃。
耐冷热冲击抗热震。
涂层特性:1、高热导率:水平方向最高可达800W/M.K以上,垂直方向最高可达30W/M.K以上,有助工件散热不蓄热,延长寿命。
2、高辐射系数:最高可达0.96以上;3、微翅片结构显著增加散热面积:最高可增加散热面积2倍以上;4、涂层厚度15微米左右,也可根据需要在3—50微米范围内调整定制;5、涂层防静电,具有一定电磁屏蔽功效,具有一定电绝缘性能(耐电压1000伏特左右);6、涂层附着力1级,结合强度最高可达15MPa以上;7、涂层硬度最高可达6H,柔韧性1级,耐一定次数的折弯,耐冲击50cm以上;8、涂层耐腐蚀,涂层厚度15微米,耐盐雾1920小时以上,最高可耐2400小时以上。
增加涂层厚度,耐盐雾最高可达6000小时以上。
涂层耐酸碱腐蚀,散热防腐一体解决;9、涂层耐湿热,耐水长期浸泡,耐水煮。
纳米沉积系统(中微纳专利技术:纳米材料技术与可控涂层工艺设备的集合)1、工艺技术说明:A、液相纳米沉积和气相纳米沉积相结合,涂层微观粒子趋于定向,微观粒子间离子级结合;B、可实现低温(最低可达60℃)纳米沉积,正常180℃—400℃实现纳米沉积;C、主要工艺流程:工件上工装—工件表面前处理(除油除脂除锈除氧化层)—液相沉积—气相沉积—工件下工装—质检包装。
2、工艺主要特点:A、自动化程度高,连续作业,主要工艺过程无需人工操作,品质稳定;B、生产过程数字化在线监控,时时管控品质,有异常及时报警;C、产能稳定,适宜大规模生产,小批量或换线成本高;D、纳米功能材料、沉积工艺、专用设备三位一体的系统技术,3重连贯的技术门槛。
纳米散热涂料
东莞市威臣材料科技有限公司谢君
受多家知名企业的委托,经过我司一年的全力研发,一种革命性的新产品横空出世了!EDNano—纳米降温涂料。
专利受理号:201110031374.6
这是一种什么样的技术?怎样的创新?怎样的产品呢?
当今世界,电子技术飞速发展,功能越来越强大,功率也越做越大,就以CPU 来说,就有功耗高达65瓦的存在。
家用电器,电力,交通,航空航天等各行各业,无不对散热问题高度重视。
散热的途径有四种方式:
A.传导散热:热量通过接触的方式,传送给温度较低物体的散热方式。
比如:CPU
的热量,通过CPU外封装的金属件与散热器紧密贴合,热量通过金属件传出来。
B.对流散热:凭借空气流动交换热量的散热方式。
还是以CPU说事,CPU散热器
与空气之间的散热,就是对流散热。
风扇的作用是加大空气流量,提高散热效率。
C.辐射散热:以热射线形式传给温度较低的周围环境中的散热方式。
CPU散热器,
有一部分热量就是通过这种方式发散出来。
人眼看不见,但依靠检测仪器,便可探测出来。
D.蒸发散热:发热体通过表面的液体蒸发,来进行散热的方式。
比如:人体的汗
液蒸发,就是一种有效的散热方式。
如何提高散热效率?不外乎是从提高以上四种散热方式的效率。
一.如何提高传导散热效率?
1. 选择导热系数高的材料制作散热器:
选择较高导热系数的材料来制作散热器。
受制于成本和材料的取得途径等原
因,常见的散热材料为铜、铝。
2. 提高发热体与散热器接触面的传导效率;降低热传导通路的热阻。
二.如何提高对流散热效率?
1.加大散热面积。
比如:增加散热器的翅片数量,在有限的体积范围和用料
范围内,面积的幅度有一个极限。
2.增大空气流量,充分发挥有限面积的空气。
受制于风扇的限制,噪音和寿
命、耗能是风扇的一大缺点。
三.如何提高辐射散热效率?
1.增大散热面积。
提高散热器的辐射量。
表面积的增加,有一个极限值。
2.表面披拂高辐射率的涂层,提高散热器的辐射率。
这种方式很好,任意一
个散热器,涂装一层高辐射率的涂层,就可显著增大散热效率。
四.如何提高蒸发散热效率?
1.喷淋散热器工作范围内可蒸发的液体。
比如:热电厂的水循环散热系统。
优点是散热效率提升明显;缺点是有些场合,限制使用液体。
很多场合都无法应用蒸发散热方式。
2.表面披拂吸收空气中水分的特殊涂层,气化水分增加蒸发散热。
这种方式
很有意思。
既避免了使用液体的不足,又使得蒸发散热可以广泛应用于任意有空气的场合。
我司产品的技术要点:
A.专利技术:我司经过一年多的刻苦攻关,成功应用纳米科技,研制出一种特种涂料,对任意材质的散热器,都可显著提升散热效率;性价比超高。
B.开发意图:针对散热领域的迫切需求,进行分析:客商开发出一款散热器,材质、外形、总的散热表面积、甚至风扇设置都基本定局。
要提高散热效率,只有从以下方面着手:
a.激发部件表面的高能振荡,从而大幅度提高热辐射性能,利用热辐射发散
热量;
b.激发部件与发热体接触面的分子振荡,提高接触面的热传导率,降低热阻,
从而使发热体的热量能有效传导出来。
c.添加特殊纳米材料,使部件表面具有吸收空气中水份的性能,并且将水气
化,赋予部件蒸发散热性能。
通过a、b、c三种途径,将部件的散热性能提升到最大极限。
C.工作原理:应用纳米技术,激发散热器表面的共振效应,显著提高远红外发射效率,加快热量从散热器表面的快速散发;降低散热器与发热体之间的接触面热阻,提高热传导效率。
D.使用方式:a. 采用传统液体喷涂方式喷涂到需要散热的部件表面;b. 采用电泳方式涂装到金属部件表面(这种施工方式,综合成本低,产能大,质量稳定,涂装部件无死角)
E.性价比:由于我司的EDNano涂层,仅12~20um(0.012~0.02mm),成本低廉;由于可显著提高散热效率,在测试的基础上,可以减少散热器的材料使用量,进一步降低散热器综合成本。
F.散热效果:同一批次的散热器,(材质:6063铝合金,铝挤型,LED散热器,型号MR16)分别采用阳极氧化和我司的EDNano涂层比较。
测试方法:同一个半导体电加热块(电阻值:14.5欧姆),施加稳压直流电压(11V),同一个测温探头,通电后,记录升温曲线。
比较40分钟后(达到热平衡状态)2者的温差。
数据请看下表:
以上测试结果,为第三方(CTI 华测检测)检测数据。
电子文本原件,欢迎索取。