高中数学 第2章 概率 2.5.1 离散型随机变量的均值学案 新人教A版选修23
- 格式:doc
- 大小:344.01 KB
- 文档页数:14
2.2 二项分布及其应用2.2.1 条件概率内容 标 准学 科 素 养 1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.利用数学抽象 发展数学建模 提升数学运算授课提示:对应学生用书第32页[基础认识]知识点 条件概率预习教材P 51-53,思考并完成以下问题(1)三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?提示:如果三张奖券分别用X 1,X 2,Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有六种可能:X 1X 2Y ,X 1YX 2,X 2X 1Y ,X 2YX 1,YX 1X 2,YX 2X 1.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含两个基本事件:X 1X 2Y ,X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为P (B )=26=13.(2)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?提示:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有X 1X 2Y ,X 1YX 2,X 2X 1Y 和X 2YX 1.而“最后一名同学抽到中奖奖券”包含的基本事件仍是X 1X 2Y 和X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为24,即12.知识梳理 1.条件概率 (1)事件个数法:P (B |A )=n AB n A(2)定义法:P (B |A )=P AB P A(1)0≤P (B |A )≤1.(2)如果B 和C 是两个互斥的事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[自我检测]1.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34 答案:C2.某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上或周五晚上值班的概率为________.答案:13授课提示:对应学生用书第32页探究一 求条件概率[阅读教材P 53例1]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率. 题型:求事件的概率及条件概率方法步骤:(1)先计算出不放回地依次抽2次的试验结果总数; (2)分别计算出第1次抽到理科题和两次都抽到的试验结果总数; (3)由概率的计算公式得出所求概率.[例1] 盒内装有除型号和颜色外完全相同的16个球,其中6个是E 型玻璃球,10个是F 型玻璃球.E 型玻璃球中有2个是红色的,4个是蓝色的;F 型玻璃球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是E 型玻璃球的概率是多少?[解析] 由题意得球的分布如下:E 型玻璃球F 型玻璃球总计 红 2 3 5 蓝 4 7 11 总计61016设A ={取得蓝球法一:∵P (A )=1116,P (AB )=416=14,∴P (B |A )=P AB P A =141116=411. 法二:∵n (A )=11,n (AB )=4, ∴P (B |A )=n AB n A=411. 方法技巧 求条件概率P (B |A )的关键就是抓住事件A 为条件和A 与B 同时发生这两点,公式P (B |A )=n AB n A=P AB P A既是条件概率的定义,也是求条件概率的公式,应熟练掌握.跟踪探究 1.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下.(1)求乙抽到的数比甲抽到的数大的概率; (2)求乙抽到偶数的概率;(3)集合A ={1,2,3,4,5,6},甲乙两人各从A 中任取一球.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解析:(1)设“甲抽到奇数”为事件C , “乙抽到的数比甲抽到的数大”为事件D ,则事件C 包含的基本事件总数为C 13·C 15=15个,事件CD 同时发生包含的基本事件总数为5+3+1=9个, 故P (D |C )=915=35.(2)在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.(3)甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.探究二 条件概率的性质及应用[阅读教材P 53例2]一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 题型:互斥事件的条件概率方法步骤:(1)不超过2次就按对包含“第1次按对”和“第1次没按对,第2次按对”两事件的和事件;(2)分别求出“第1次按对”和“第1次没按对,第2次按对”的概率; (3)由互斥事件概率的计算公式得出所求概率.[例2] 在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.[解析] 记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620, P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P A P D+P BPD =210C 62012 180C 620+2 520C 62012 180C 620=1358. 故获得优秀成绩的概率为1358.方法技巧 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P (B ∪C |A )=P (B |A )+P (C |A )便可求得较复杂事件的概率.跟踪探究 2.在一个袋子中装有除颜色外其他都相同的10个球,其中有1个红球,2个黄球,3个黑球,4个白球,从中依次不放回地摸2个球,求在摸出的第一个球是红球的条件下,第二个球是黄球或黑球的概率.解析:法一:设“摸出的第一个球为红球”为事件A ,“摸出的第二个球为黄球”为事件B ,“摸出的第二个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.∴P (B |A )=P AB P A =145110=1045=29, P (C |A )=P AC P A =130110=13. ∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.故所求的条件概率为59.法二:∵n (A )=1×C 19=9,n [(B ∪C )∩A ]=C 12+C 13=5,∴P (B ∪C |A )=59.故所求的条件概率为59.授课提示:对应学生用书第33页[课后小结](1)条件概率:P (B |A )=P AB P A=n AB n A.(2)概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.[素养培优]1.因把基本事件空间找错而致错一个家庭中有两名小孩,假定生男、生女是等可能的.已知这个家庭有一名小孩是女孩,问另一名小孩是男孩的概率是多少?易错分析:解决条件概率的方法有两种,第一种是利用公式P (B |A )=P AB P A.第二种为P (B |A )=n AB n A,其中找对基本事件空间是关键.考查数学建模的学科素养.自我纠正:法一:一个家庭的两名小孩只有4种可能:{两名都是男孩},{第一名是男孩,第二名是女孩},{第一名是女孩,第二名是男孩},{两名都是女孩}.由题意知这4个事件是等可能的,设基本事件空间为Ω,“其中一名是女孩”为事件A ,“其中一名是男孩”为事件B ,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}.∴P (AB )=24=12,P (A )=34.∴P (B |A )=P AB P A =1234=23. 法二:由方法一可知n (A )=3,n (AB )=2. ∴P (B |A )=n AB n A =23. 2.“条件概率P (B |A )”与“积事件的概率P (A ·B )”混同袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.易错分析:本题错误在于P (AB )与P (B |A )的含义没有弄清,P (AB )表示在样本空间S 中,A 与B 同时发生的概率;而P (B |A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率.考查数学建模的学科素养.自我纠正:P (C )=P (AB )=P (A )·P (B |A )=410×69=415.。
二随机变量及其分布1.条件概率的性质(1)非负性:0≤P(B|A)≤1.(2)可加性:如果是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件的性质(1)推广:一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).(2)对于事件A与B及它们的和事件与积事件有下面的关系:P(A+B)=P(A)+P(B)-P(AB).3.二项分布满足的条件(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n次独立重复试验中某事件发生的次数.4.均值与方差的性质(1)若η=aξ+b(a,b是常数),ξ是随机变量,则η也是随机变量,E(η)=E(aξ+b)=aE(ξ)+b.(2)D(aξ+b)=a2D(ξ).(3)D(ξ)=E(ξ2)-[E(ξ)]2.5.正态变量在三个特殊区间内取值的概率(1)P(μ-σ<X≤μ+σ)≈0.682 7.(2)P(μ-2σ<X≤ μ+2σ)≈0.954 5.(3)P(μ-3σ<X≤μ+3σ)≈0.997 3.1.求分布列时要检验概率的和是否为1,如果不是,要重新检查修正.2.要注意识别独立重复试验和二项分布.3.在记忆D(aX+b)=a2D(X)时要注意D(aX+b)≠a D(X)+b,D(aX+b)≠a D(X).4.易忽略判断随机变量是否服从二项分布,盲目使用二项分布的期望和方差公式计算致误.主题1 条件概率口袋中有2个白球和4个红球,现从中随机地不放回连续抽取两次,每次抽取1个,则:(1)第一次取出的是红球的概率是多少?(2)第一次和第二次都取出的是红球的概率是多少?(3)在第一次取出红球的条件下,第二次取出的是红球的概率是多少? 【解】 记事件A :第一次取出的是红球;事件B :第二次取出的是红球.(1)从中随机地不放回连续抽取两次,每次抽取1个,所有基本事件共6×5个;第一次取出的是红球,第二次是其余5个球中的任一个,符合条件的有4×5个,所以P (A )=4×56×5=23.(2)从中随机地不放回连续抽取两次,每次抽取1个,所有基本事件共6×5个;第一次和第二次都取出的是红球,相当于取两个球,都是红球,符合条件的有4×3个,所以P (AB )=4×36×5=25. (3)利用条件概率的计算公式,可得 P (B |A )=P (AB )P (A )=2523=35.条件概率的两个求解策略(1)定义法:计算P (A ),P (B ),P (AB ),利用P (A |B )=P (AB )P (B )⎝ ⎛⎭⎪⎫或P (B |A )=P (AB )P (A )求解. (2)缩小样本空间法:利用P (B |A )=n (AB )n (A )求解.其中(2)常用于古典概型的概率计算问题.(2018·河北“五个一名校联盟”二模)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.110B.15C.25D.12解析:选C.设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B|A )=P (AB )P (A )=1512=25.故选C.主题2 相互独立事件的概率与二项分布为了解某校今年高三毕业班报考飞行员的学生的体重情况,将所得的数据整理后,画出了如图所示的频率分布直方图,已知图中从左到右的前三组的频率之比为1∶2∶3,其中第2组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选3人,设X 表示体重超过60 kg 的学生人数,求X 的分布列.【解】 (1)设该校报考飞行员的人数为n ,前三个小组的频率分别为p 1,p 2,p 3,则由条件可得⎩⎪⎨⎪⎧p 2=2p 1,p 3=3p 1,p 1+p 2+p 3+(0.037+0.013)×5=1,解得p 1=0.125,p 2=0.25,p 3=0.375.又p 2=0.25=12n,解得n =48,所以该校报考飞行员的总人数为48.(2)由(1)可得,估计抽到一个报考学生的体重超过60 kg 的概率为P =1-(0.125+0.25)=58, 依题意有X ~B ⎝ ⎛⎭⎪⎫3,58,故P (X =k )=C k 3⎝ ⎛⎭⎪⎫58k·⎝ ⎛⎭⎪⎫383-k,k =0,1,2,3.所以随机变量X 的分布列为X 0 1 2 3P27512 135512 225512 125512求相互独立事件同时发生的概率需注意的三个问题(1)“P (A B)=P (A )P (B)”是判断事件是否相互独立的充要条件,也是解答相互独立事件概率问题的唯一工具.(2)涉及“至多”“至少”“恰有”等字眼的概率问题,务必分清事件间的相互关系. (3)公式“P (A +B)=1-P (A B)”常应用于求相互独立事件至少有一个发生的概率.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B.设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望. 解:记E ={}甲组研发新产品成功,F ={}乙组研发新产品成功,由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={}至少有一种新产品研发成功,则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (EF )=13×25=215,P (X =100)=P (EF )=13×35=315=15, P (X =120)=P (EF )=23×25=415, P (X =220)=P (EF )=23×35=615=25.故所求的分布列为X 0 100 120 220 P2151541525数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+1 32015=2 10015=140.主题3 离散型随机变量的均值与方差(2017·高考全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温 [10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解】 (1)由题意知,X 所有可能取值为200,300,500,由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4,P (X =500)=25+7+490=0.4. 因此X 的分布列为X 200 300 500 P0.20.40.4(2)200瓶,因此只需考虑200≤n ≤500. 当200≤n ≤500时,若最高气温不低于25,则Y =6n -4n =2n ;若最高气温位于区间[20,25),则Y =6×300+2(n -300)-4n =1 200-2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n .因此E (Y )=2n ×0.4+(1 200-2n )×0.4+(800-2n )×0.2=640-0.4n . 当200≤n <300时,若最高气温不低于20,则Y =6n -4n =2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n . 因此E (Y )=2n ×(0.4+0.4)+(800-2n )×0.2=160+1.2n . 所以n =300时,Y 的数学期望达到最大值,最大值为520元.求离散型随机变量的期望与方差的步骤一次同时投掷两枚相同的正方体骰子(骰子质地均匀,且各面分别刻有1,2,2,3,3,3六个数字).(1)设随机变量η表示一次掷得的点数和,求η的分布列;(2)若连续投掷10次,设随机变量ξ表示一次掷得的点数和大于5的次数,求E (ξ),D (ξ). 解:(1)由已知,随机变量η的取值为:2,3,4,5,6. 投掷一次正方体骰子所得点数为X ,则P (X =1)=16,P (X =2)=13,P (X =3)=12,即P (η=2)=16×16=136,P (η=3)=2×16×13=19, P (η=4)=2×16×12+13×13=518, P (η=5)=2×13×12=13,P (η=6)=12×12=14.故η的分布列为P 2 3 4 5 6 η136195181314(2)由已知,满足条件的一次投掷的点数和取值为6,设其发生的概率为p ,由(1)知,p =14,因为随机变量ξ~B ⎝ ⎛⎭⎪⎫10,14, 所以E (ξ)=np =10×14=52,D (ξ)=np (1-p )=10×14×34=158.主题4 正态分布设X ~N (10,1).(1)证明:P (1<X <2)=P (18<X <19); (2)设P (X ≤2)=a ,求P (10<X <18).【解】 (1)因为X ~N (10,1),所以,正态曲线φμ,σ(x )关于直线x =10对称,而区间(1,2)和(18,19)关于直线x =10对称,所以⎠⎛12φμ,σ(x )d x =⎠⎛1819φμ,σ(x )d x ,即P (1<X <2)=P (18<X <19).(2)因为P (X ≤2)+P (2<X ≤10)+P (10<X <18)+P (X ≥18)=1,P (X ≤2)=P (X ≥18)=a , P (2<X ≤10)=P (10<X <18),所以,2a +2P (10<X <18)=1, 即P (10<X <18)=1-2a 2=12-a .根据正态曲线的对称性求解概率的三个关键点(1)正态曲线与x 轴围成的图形面积为1;(2)正态曲线关于直线x =μ对称,则正态曲线在对称轴x =μ的左右两侧与x 轴围成的面积都为0.5;(3)可以利用等式P (X ≥μ+c )=P (X ≤μ-c )(c >0)对目标概率进行转化求解.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( )(参考数据:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)≈68.27%,P (μ-2σ<X ≤μ+2σ)≈95.45%,P (μ-3σ<X ≤μ+3σ)≈99.73%.) A .1 193 B .1 359 C .2 718D .3 413解析:选B.对于正态分布N (-1,1),μ=-1,σ=1,正态曲线关于x =-1对称,故题图中阴影部分的面积为12×(0.954 5-0.682 7)=0.135 9,所以点落入题图中阴影部分的概率P =0.135 91=0.135 9,所以投入10 000个点,落入阴影部分的个数约为10 000×0.1359=1 359., [A 基础达标]1.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.447 B .0.628 C .0.954D .0.997解析:选C.因为随机变量ξ服从标准正态分布N (0,σ2), 所以正态曲线关于x =0对称.又P (ξ>2)=0.023, 所以P (ξ<-2)=0.023.所以P (-2≤ξ≤2)=1-2×0.023=0.954.2.船队若出海后天气好,可获利5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知,天气好的概率为0.6,则出海效益的均值是( ) A .2 000元 B .2 200元 C .2 400D .2 600元解析:选B.出海效益的均值为E (X )=5 000×0.6+(1-0.6)×(-2 000)=3 000-800=2 200(元).3.盒中装有10个乒乓球,其中5个新球,5个旧球,不放回地依次取出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A.35 B.110C.49D.25解析:选C.A ={}第一次取到新球,B ={}第二次取到新球,则n (A )=C 15C 19,n (AB )=C 15C 14.所以P (B |A )=P (AB )P (A )=C 15C 14C 15C 19=49.4.某人射击一次命中目标的概率为12,则此人射击6次,3次命中且恰有2次连续命中的概率为( )A .C 36⎝ ⎛⎭⎪⎫126B .A 24⎝ ⎛⎭⎪⎫126C .C 24⎝ ⎛⎭⎪⎫126D .C 14⎝ ⎛⎭⎪⎫126解析:选B.根据射手每次射击击中目标的概率是12,且各次射击的结果互不影响,故此人射击6次,3次命中的概率为C 36⎝ ⎛⎭⎪⎫126,恰有两次连续击中目标的概率为A 24C 36,故此人射击6次,3次命中且恰有2次连续命中的概率为C 36⎝ ⎛⎭⎪⎫126·A 24C 36=A 24⎝ ⎛⎭⎪⎫126. 5.甲命题:若随机变量ξ~N (3,σ2),若P (ξ≤2)=0.3,则P (ξ≤4)=0.7.乙命题:随机变量η~B (n ,p ),且E (η)=300,D (η)=200,则p =13,则正确的是( )A .甲正确,乙错误B .甲错误,乙正确C .甲错误,乙也错误D .甲正确,乙也正确解析:选D .随机变量ξ服从正态分布N (3,σ2),所以曲线关于ξ=3对称,所以P (ξ≤4)=1-P (ξ≤2)=0.7,所以甲命题正确;随机变量η~B (n ,p ),且E (η)=np =300,D(η)=np (1-p )=200,解得p =13,所以乙命题正确.6.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________. 解析:每一次摸得红球的概率为610=35,由X ~B (4,35).则E (X )=4×35=125.答案:1257.两位工人加工同一种零件共100个,甲加工了40个,其中有35个合格,乙加工了60个,其中有50个合格,令事件A 为“从100个产品中任意取一个,取出的是合格品”,事件B 为“从100个产品中任意取一个,取到甲生产的产品”,则P (A |B )=________. 解析:由题意知P (B )=40100,P (AB )=35100,故P (A |B )=P (AB )P (B )=3540=78.答案:788.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.解析:由题意知,3秒内蚂蚁向左移动一个单位,向右移动两个单位,所以蚂蚁在x =1处的概率为C 23(23)2(13)1=49.答案:499.甲、乙、丙三人打算趁股市低迷之际“入市”.若三人在圈定的10支股票中各自随机购买一支(假定购买时每支股票的基本情况完全相同).(1)求甲、乙、丙三人恰好买到同一支股票的概率; (2)求甲、乙、丙三人中至少有两人买到同一支股票的概率. 解:(1)三人恰好买同一支股票的概率为P 1=10×110×110×110=1100.(2)三人中恰好有两人买到同一支股票的概率为P 2=10×C 23×⎝ ⎛⎭⎪⎫1102×910=27100.由(1)知,三人恰好买到同一支股票的概率为P 1=1100,所以三人中至少有两人买到同一支股票的概率为P =P 1+P 2=1100+27100=725.10.某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放”演讲比赛活动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ). 解:(1)ξ的所有可能取值为0,1,2. 依题意P (ξ=0)=C 34C 36=15.P (ξ=1)=C 24C 12C 36=35.P (ξ=2)=C 14C 22C 36=15.所以ξ的分布列为(2)则P (C)=C 34C 36=420=15.所以所求概率为P (C)=1-P (C)=1-15=45.(3)P (B )=C 25C 36=1020=12,P (B |A )=C 14C 25=410=25.[B 能力提升]11.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销运动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=(1-14-12)×(1-16-23)=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)由题意得,ξ所有可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124,所以ξ的分布列为E (ξ)=0×24+40×4+80×12+120×4+160×24=80.12.某学校的功能室统一使用“佛山照明”的一种灯管,已知这种灯管使用寿命ξ(单位:月)服从正态分布N (μ,σ2),且使用寿命不少于12个月的概率为0.8,使用寿命不少于24个月的概率为0.2.(1)求这种灯管的平均使用寿命μ;(2)假设一间功能室一次性换上4支这种新灯管,使用12个月时进行一次检查,将已经损坏的灯管换下(中途不更换).求至少两支灯管需要更换的概率.解:(1)因为ξ~N (μ,σ2),P (ξ≥12)=0.8,P (ξ≥24)=0.2,所以P (ξ<12)=0.2,显然P (ξ<12)=P (ξ>24).由正态分布密度函数的对称性可知,μ=12+242=18,即每支这种灯管的平均使用寿命是18个月.(2)每支灯管使用12个月时已经损坏的概率为1-0.8=0.2,假设使用12个月时该功能室需要更换的灯管数量为η支,则η~B (4,0.2),故至少两支灯管需要更换的概率P =1-P (η=0)-P (η=1)=1-C 04×0.84-C 14×0.83×0.21≈0.18.13.(选做题)(2017·山西太原二模)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种:方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a 、b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖? 解:(1)按方案a 抽奖一次,获得奖金的概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次. 此时中奖次数服从二项分布B ⎝ ⎛⎭⎪⎫3,110.设所得奖金为w 1元,则E (w 1)=3×110×30=9.即顾客A 所获奖金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 1⎝⎛⎭⎪⎫2,110,由方案b 中奖的次数服从二项分布B 2⎝⎛⎭⎪⎫1,310,设所得奖金为w 2元,则E (w 2)=2×110×30+1×310×15=10.5.若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 3⎝ ⎛⎭⎪⎫2,310.设所得奖金为w 3元,则E (w 3)=2×310×15=9.结合(1)可知,E (w 1)=E (w 3)<E (w 2).所以顾客A 应该按方案a 抽奖两次,按方案b 抽奖一次.。
2.2.2 事件的独立性自主预习·探新知情景引入在一次有关“三国演义”的知识竞赛中,三个“臭皮匠”能答对某题目的概率分别为50%,45%,40%,“诸葛亮”能答对该题目的概率为85%,如果将“三个臭皮匠”组成一组与“诸葛亮”进行比赛,各选手独立答题,不得商量,团队中只要有一人答出即为该组获胜.试问:哪方获胜的可能性大?新知导学相互独立事件1.概念(1)设A,B为两个事件,若事件A是否发生对事件B发生的概率没有影响,即__P(B|A)=P(B)__,则称两个事件A,B相互独立,并把这两个事件叫做__相互独立事件__.(2)对于n个事件A1,A2,…,A n,如果其中任一个事件发生的概率不受__其他事件是否发生__的影响,则称n个事件A1,A2,…,A n相互独立.2.性质(1)如果事件A与B相互独立,那么事件A与__B__,A与__B__,__A__与__B__也都相互独立.(2)若事件A与B相互独立,则P(A|B)=__P(A)__,P(A∩B)=__P(A)×P(B)__.(3)若事件A1,A2,…,A n相互独立,那么这n个事件都发生的概率,等于__每个事件发生的概率积__,即P(A1∩A2∩…∩A n)=P(A1)×P(A2)×…×P(A n).并且上式中任意多个事件A i换成其对立事件后等式仍成立.预习自测1.(2020·刑台高二检测)甲、乙两人各用篮球投篮一次,若两人投中的概率都是0.7,则恰有一人投中的概率是( A )A .0.42B .0.49C .0.7D .0.91[解析] 设甲投篮一次投中为事件A ,则P (A )=0.7, 则甲投篮一次投不中为事件A ,则P (A )=1-0.7=0.3, 设乙投篮一次投中为事件B ,则P (B )=0.7,则乙投篮一次投不中为事件B ,则P (B )=1-0.7=0.3, 则甲、乙两人各投篮一次恰有一人投中的概率为:P =P (A ∩B )+P (A ∩B )=P (A )·P (B )+P (A )·P (B )=0.7×0.3+0.7×0.3=0.42.故选A . 2.国庆节放假,甲、乙、丙去北京旅游的概率分别是13、14、15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( B )A .5960B .35C .12D .160[解析] 设甲、乙、丙去北京旅游分别为事件A 、B 、C ,则P (A )=13,P (B )=14,P (C )=15,P (A )=23,P (B )=34,P (C )=45,由于A ,B ,C 相互独立,故A ,B ,C 也相互独立,故P (A B C )=23×34×45=25,因此甲、乙、丙三人至少有1人去北京旅游的概率P =1-P (A B C )=1-25=35. 3.已知A 、B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B )=__16__;P (A B )=__16__.[解析] ∵A 、B 是相互独立事件, ∴A 与B ,A 与B 也是相互独立事件. 又∵P (A )=12,P (B )=23,故P (A )=12,P (B )=1-23=13,∴P (A B )=P (A )×P (B )=12×13=16;P (A B )=P (A )×P (B )=12×13=16.4.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于__0.128__.[解析] 此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.互动探究·攻重难互动探究解疑 命题方向❶事件独立性的判断典例1 判断下列各对事件是不是相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.[解析] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6}, ∴P (A )=36=12,P (B )=26=13,P (AB )=16,∴P (AB )=P (A )·P (B ), ∴事件A 与B 相互独立.『规律总结』 (1)利用相互独立事件的定义(即P (AB )=P (A )·P (B ))可以准确地判定两个事件是否相互独立,这是用定量计算方法,较准确,因此我们必须熟练掌握.(2)判别两个事件是否为相互独立事件也可以从定性的角度进行分析,即看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件,有影响就不是相互独立事件.┃┃跟踪练习1__■一个家庭中有若干个小孩,假设生男孩和生女孩是等可能的,设A ={一个家庭中既有男孩,又有女孩},B ={一个家庭中最多有一个女孩}. 对下列两种情况讨论事件A 与B 的独立性.(1)家庭中有两个小孩; (2)家庭中有三个小孩.[解析] (1)有两个小孩的家庭,对应的样本空间Ω={(男,男),(男,女),(女,男),(女,女)},有4个基本事件,每个基本事件的概率均为14,这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (AB )=12.由此可知P (AB )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,样本空间为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},每个基本事件的概率均为18,这时A 中有6个基本事件,B 中有4个基本事件,AB 中含有3个基本事件,于是P (A )=68=34,P (B )=48=12.P (A )·P (B )=38,即P (AB )=38=P (A )P (B )成立,从而事件A 与B 是相互独立的. 命题方向❷求相互独立事件的概率典例2 (2020·鹤岗高二检测)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.[解析] 用A ,B ,C 分别表示这三列火车正点到达的事件,则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A )=0.2,P (B )=0.3,P (C )=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为P 1=P (A BC )+P (A B C )+P (AB C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P 2=1-P (ABC )=1-P (A )P (B )P (C )=1-0.2×0.3×0.1=0.994.『规律总结』 与相互独立事件有关的概率问题求解策略明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么: (1)A ,B 中至少有一个发生为事件A +B ; (2)A ,B 都发生为事件AB ; (3)A ,B 都不发生为事件A B ; (4)A ,B 恰有一个发生为事件A B +A B .(5)A ,B 中至多有一个发生为事件A B +A B +A B . 它们之间的概率关系如表所示:┃┃跟踪练习2__■(2020·浙江杭州高级中学检测)甲、乙两人各射击一次,击中目标的概率分别为23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲、乙各射击一次均击中目标概率; (2)求甲射击4次,恰有3次连续击中目标的概率;(3)若乙在射击中出现连续2次未击中目标则会被终止射击,求乙恰好射击4次后被终止射击的概率.[解析] (1)记事件A 表示“甲击中目标”,事件B 表示“乙击中目标”. 依题意知,事件A 和事件B 相互独立,因此甲、乙各射击一次均击中目标的概率为P (AB )=P (A )·P (B )=23×34=12.(2)记事件A i 表示“甲第i 次射击击中目标”(其中i =1,2,3,4),并记“甲4次射击恰有3次连续击中目标”为事件C ,则C =A 1A 2A 3A 4∪A 1A 2A 3A 4,且A 1A 2A 3A 4与A 1A 2A 3A 4是互斥事件. 由于A 1,A 2,A 3,A 4之间相互独立,所以A i 与A j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (A 1)=P (A 2)=P (A 3)=P (A 4)=23,故P (C )=P (A 1A 2A 3A 4∪A 1A 2A 3A 4)=P (A 1)P (A 2)P (A 3)P (A 4)+P (A 1)P (A 2)P (A 3)P (A 4) =(23)3×13+13×(23)3=1681. (3)记事件B i 表示“乙第i 次射击击中目标”(其中i =1,2,3,4),并记事件D 表示“乙在第4次射击后终止射击”,则D =B 1B 2B 3B 4∪B 1B 2B3B 4,且B 1B 2B3B 4与B 1B 2B 3B 4是互斥事件.由于B 1,B 2,B 3,B 4之间相互独立,所以B i 与B j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (B i )=34(i =1,2,3,4),故P (D )=P (B 1B 2B3B 4∪B 1B 2B3B 4)=P (B 1)P (B 2)P (B 3)P (B 4)+P (B 1)P (B 2)P (B 3)P (B 4) =(34)2×(14)2+34×(14)3=364. 命题方向❸相互独立事件的综合应用典例3 (2020·西安高二检测)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列. [解析] (1)设事件A 表示:观众甲选中3号歌手且观众乙未选中3号歌手. 观众甲选中3号歌手的概率为23,观众乙未选中3号歌手的概率为1-35.所以P (A )=23×(1-35)=415.因此,观众甲选中3号歌手且观众乙未选中3号歌手的概率为415.(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,则X 可取0,1,2,3. 观众甲选中3号歌手的概率为23,观众乙、丙选中3号歌手的概率为35.当观众甲、乙、丙均未选中3号歌手时,这时X =0, P (X =0)=(1-23)×(1-35)2=475.当观众甲、乙、丙中只有1人选中3号歌手时,这时X =1,P (X =1)=23×(1-35)2+(1-23)×35×(1-35)+(1-23)×(1-35)×35=8+6+675=2075.当观众甲、乙、丙中只有2人选中3号歌手时,这时X =2,P (X =2)=23×35×(1-35)+(1-23)×35×35+23×(1-35)×35=12+9+1275=3375.当观众甲、乙、丙均选中3号歌手时,这时X =3, P (X =3)=23×(35)2=1875.X 的分布列如下表:『规律总结』 概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A )=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.┃┃跟踪练习3__■某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.[解析] (1)两地区用户满意度评分的茎叶图如图.通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”;则C A 1与C B 1相互独立,C A 2与C B 2相互独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2. P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2),由所给数据得C A 1,C A 2,C B 1,C B 2的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020, P (C B 2)=820,所以P (C )=1020×1620+820×420=0.48.学科核心素养正难则反的思想的应用正难则反的思想在求解概率问题中应用广泛,尤其是解概率问题的综合题中,出现“至少”或“至多”等事件的概率求解问题,如果从正面考虑,它们是诸多事件的和或积,求解过程繁杂,而且容易出错,但如果考虑“至少”或“至多”事件的对立事件往往会简单,其概率很容易求出,此时可逆向分析问题,先求出其对立事件的概率,再利用概率的和或积的互补公式求出原来事件的概率.典例4三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局的胜者对第一局的败者,第四局是第三局的胜者对第二局的败者,求乙队连胜四局的概率.[思路分析]乙队每局胜利的事件是相互独立的,可由其公式计算概率.[解析]设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6,第二局中乙胜丙(A2),其概率为0.5,第三局中乙胜甲(A3),其概率为1-0.4=0.6,第四局中乙胜丙(A4),其概率为0.5,因各局比赛中的事件相互独立,故乙队连胜四局的概率为P(A)=P(A1A2A3A4)=0.62·0.52=0.09.『规律总结』(1)求复杂事件的概率一般可分三步进行:①列出题中涉及的各个事件,并用适当的符号表示它们;②理清各事件之间的关系,列出关系式;③根据事件之间的关系准确地运用概率公式进行计算.(2)直接计算符合条件的事件个数较复杂,可间接地先计算对立事件的个数,求得对立事件的概率,再求出符合条件的事件的概率.┃┃跟踪练习4__■在一段线路中并联着3个自动控制的常开开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.[解析]如图所示,分别记这段时间内开关J A,J B,J C能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P(A B C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.7)(1-0.7)(1-0.7)=0.027,于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P (A B C )=1-0.027=0.973.易混易错警示因混淆独立事件和互斥事件而致错典例5 设事件A 与B 相互独立,两个事件中只有A 发生的概率和只有B 发生的概率都是14,求事件A 和事件B 同时发生的概率.[错解] ∵A 与B 相互独立,且只有A 发生的概率和只有B 发生的概率都是14,∴P (A )=P (B )=14,∴P (AB )=P (A )·P (B )=14×14=116.[正解] 在相互独立事件A 和B 中,只有A 发生即事件A B 发生,只有B 发生即事件A B 发生.∵A 和B 相互独立,∴A 与B ,A 和B 也相互独立.∴P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=14,① P (A B )=P (A )·P (B )=[1-P (A )]·P (B )=14.② ①-②得P (A )=P (B ).③联立①③可解得P (A )=P (B )=12.∴P (AB )=P (A )·P (B )=12×12=14.[误区警示] 在A 与B 中只有A 发生是指A 发生和B 不发生这两个事件同时发生,即事件A B 发生.课堂达标·固基础1.下列事件A ,B 是相互独立事件的是( A )A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A =“一个灯泡能用1 000小时”,B =“一个灯泡能用2 000小时”[解析] 把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A 是相互独立事件;B 中是不放回地摸球,显然A 事件与B 事件不相互独立;对于C,其结果具有唯一性,A ,B 应为互斥事件;D 中事件B 受事件A 的影响.故选A .2.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( C )A .事件A ,B 同时发生B .事件A ,B 至少有一个发生C .事件A ,B 至多有一个发生D .事件A ,B 都不发生[解析] P (A )P (B )是指A ,B 同时发生的概率,1-P (A )P (B )是A ,B 不同时发生的概率,即至多有一个发生的概率.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是( C )A .512B .12C .712D .34[解析] 由题意P (A )=12,P (B )=16,事件A 、B 中至少有一个发生的概率P =1-12×56=712. 4.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为__12__. [解析] 若都取到白球,P 1=812×612=13,若都取到红球,P 2=412×612=16, 则所求概率P =P 1+P 2=13+16=12. 5.甲、乙两人独立地破译密码的概率分别为13、14.求: (1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;(3)恰有一人译出密码的概率;(4)至多一人译出密码的概率;(5)至少一人译出密码的概率.[解析] 记事件A 为“甲独立地译出密码”,事件B 为“乙独立地译出密码”.(1)两个人都译出密码的概率为P (AB )=P (A )P (B )=13×14=112.(2)两个人都译不出密码的概率为P(A B)=P(A)P(B)=[1-P(A)][1-P(B)]=(1-13)(1-14)=12.(3)恰有一人译出密码分为两类:甲译出乙译不出,乙译出甲译不出, 即A B+A B,∴P(A B+A B)=P(A B)+P(A B)=P(A)·P(B)+P(A)P(B)=13×(1-14)+(1-13)×14=512.(4)至多一人译出密码的对立事件是两人都译出密码,∴其概率为1-P(AB)=1-112=1112.(5)至少一人译出密码的对立事件为两个都没有译出密码, ∴其概率为1-P(A B)=1-12=12.。
章末复习课[整合·网络构建][警示·易错提醒]1.“互斥事件”与“相互独立事件”的区别.“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否对另一个事件发生的概率没有影响.2.对独立重复试验要准确理解.(1)独立重复试验的条件:第一,每次试验是在同样条件下进行;第二,任何一次试验中某事件发生的概率相等;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.(2)独立重复试验概率公式的特点:关于P(X=k)=C k n p k(1-p)n-k,它是n次独立重复试验中某事件A恰好发生k次的概率.其中n是重复试验次数,p是一次试验中某事件A发生的概率,k是在n次独立试验中事件A恰好发生的次数,弄清公式中n,p,k的意义,才能正确运用公式.3.(1)准确理解事件和随机变量取值的意义,对实际问题中事件之间的关系要清楚.(2)认真审题,找准关键字句,提高解题能力.如“至少有一个发生”“至多有一个发生”“恰有一个发生”等.(3)常见事件的表示.已知两个事件A、B,则A,B中至少有一个发生为A∪B;都发生为A·B;都不发生为—A ·—B ;恰有一个发生为(—A ·B)∪(A·—B );至多有一个发生为(—A ·—B )∪(—A ·B)∪(A·—B ).4.对于条件概率,一定要区分P(AB)与P(B|A).5.(1)离散型随机变量的期望与方差若存在则必唯一,期望E (ξ)的值可正也可负,而方差的值则一定是一个非负值.它们都由ξ的分布列唯一确定.(2)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ) 越大表明平均偏离程度越大,说明ξ的取值越分散;反之D (ξ)越小,ξ的取值越集中.(3)D (aξ+b )=a 2D (ξ),在记忆和使用此结论时,请注意D (aξ+b )≠aD (ξ)+b ,D (aξ+b )≠aD (ξ).6.对于正态分布,要特别注意N (μ,σ2)由μ和σ唯一确定,解决正态分布问题要牢记其概率密度曲线的对称轴为x =μ.专题一 条件概率的求法条件概率是高考的一个热点,常以选择题或填空题的形式出现,也可能是大题中的一个部分,难度中等.[例1] 坛子里放着7个大小、形状相同的鸭蛋,其中有4个是绿皮的,3个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第1次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿出绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.解:设“第1次拿出绿皮鸭蛋”为事件A ,“第2次拿出绿皮鸭蛋”为事件B ,则“第1次和第2次都拿出绿皮鸭蛋”为事件AB .(1)从7个鸭蛋中不放回地依次拿出2个的事件数为n (Ω)=A 27=42, 根据分步乘法计数原理,n (A )=A 14×A 16=24. 于是P (A )=n (A )n (Ω)=2442=47.(2)因为n (AB )=A 24=12, 所以P (AB )=n (AB )n (Ω)=1242=27.(3)法一 由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P (B |A )=P (AB )P (A )=27÷47=12. 法二 因为n (AB )=12,n (A )=24, 所以P (B |A )=n (AB )n (A )=1224=12.归纳升华解决概率问题的步骤.第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验、条件概率,然后把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式.第三步,利用条件概率公式求解:(1)条件概率定义:P (B |A )=P (AB )P (A ).(2)针对古典概型,缩减基本事件总数P (B |A )=n (AB )n (A ).[变式训练] 已知100件产品中有4件次品,无放回地从中抽取2次每次抽取1件,求下列事件的概率:(1)第一次取到次品,第二次取到正品; (2)两次都取到正品.解:设A ={第一次取到次品},B ={第二次取到正品}.(1)因为100件产品中有4件次品,即有正品96件,所以第一次取到次品的概率为P (A )=4100,第二次取到正品的概率为P (B |A )=9699,所以第一次取到次品,第二次取到正品的概率为P (AB )=P (A )P (B |A )=4100×9699=32825. (2)因为A ={第一次取到次品},且P (A )=1-P (A )=96100, P (B |A )=9599,所以P (AB )=P (A )P (B |A )=96100×9599=152165. 专题2 独立事件的概率要正确区分互斥事件与相互独立事件,准确应用相关公式解题,互斥事件是不可能同时发生的事件,相互独立事件是指一个事件的发生与否对另一个事件没有影响.[例2] 某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比赛活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1)若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率.(2)计划在2018年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E (ξ)≥5,求P 2的取值X 围.解析:(1)因为P 1=23,P 2=12,根据“先进和谐组”的定义可得,该小组在一次检测中荣获“先进和谐组”的包括两人两次都射中,两人恰好各射中一次,所以该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13·⎝ ⎛⎭⎪⎫C 12·12·12+⎝ ⎛⎭⎪⎫23·23⎝ ⎛⎭⎪⎫12·12=13.(2)该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13[C 12·P 2·(1-P 2)]+⎝ ⎛⎭⎪⎫23·23()P 2·P 2=89P 2-49P 22, 又ξ~B (12,P ),所以E (ξ)=12P , 由E (ξ)≥5知,⎝ ⎛⎭⎪⎫89P 2-49P 22·12≥5,解得34≤P 2≤1.[变式训练] 甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率. (2)2人中恰有1人射中目标的概率. (3)2人中至少有1人射中目标的概率.解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,与B , A 与B ,与为相互独立事件.(1)2人都射中目标的概率为P (AB )=P (A )·P (B )=0.8×0.9=0.72.(2)“2人中恰有1人射中目标”包括两种情况:一种是甲射中、乙未射中(事件A 发生),另一种是甲未射中、乙射中(事件B 发生).根据题意,知事件A 与B 互斥,所求的概率为P =P (A )+P (B )=P (A )P ()+P ()P (B )=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26.(3)“2人中至少有1人射中目标”包括“2人都射中”和“2人中有1人射中”2种情况,其概率为P =P (AB )+[P (A )+P (B )]=0.72+0.26=0.98.专题三 独立重复试验与二项分布二项分布是高考考查的重点,要准确理解、熟练运用其概率公式P n (k )=C kn ·p k(1-p )n -k,k =0,1,2,…,n ,高考以解答题为主,有时也用选择题、填空题形式考查.[例3] 现有10道题,其中6道甲类题,4道乙类题,X 同学从中任取3道题解答. (1)求X 同学所取的3道题至少有1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设X 同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示X 同学答对题的个数,求X 为1和3的概率.解:(1)设事件A =“ X 同学所取的3道题至少有1道乙类题”,则有A =“X 同学所取的3道题都是甲类题”.因为P (— A )=C 36C 310=16,所以P (A )=1-P (— A )=56.(2)P (X =1)=C 12⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+C 02⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·45=28125; P (X =3)=C 22⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫25·45=36125. 归纳升华解决二项分布问题必须注意: (1)对于公式P n (k )=C k n ·p k (1-p )n -k,k =0,1,2,…,n 必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.[变式训练] 口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖.每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为()A.80243B.100243C.80729D.100729解析:每次摸球中奖的概率为C 14C 15C 29=2036=59,由于是有放回地摸球,故3次摸球相当于3次独立重复实验, 所以3次摸球恰有1次中奖的概率P =C 13×59×⎝ ⎛⎭⎪⎫1-592=80243.答案:A专题四 离散型随机变量的期望与方差离散型随机变量的均值和方差在实际问题中具有重要意义,也是高考的热点内容. [例4] (2016·某某卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为:X 0 1 2 P415715415随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.归纳升华(1)求离散型随机变量的分布列有以下三个步骤:①明确随机变量X 取哪些值;②计算随机变量X 取每一个值时的概率;③将结果用表格形式列出.计算概率时要注意结合排列组合知识.(2)均值和方差的求解方法是:在分布列的基础上利用E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 求出均值,然后利用D (X )=∑i =1n[x i -E (X )]2p i 求出方差.[变式训练] 根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:0.3,0.7,0.9,求:(1)工期延误天数Y 的均值与方差.(2)在降水量至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4,P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1.所以Y 的分布列为于是,E (Y )=0×0.3D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.专题五 正态分布及简单应用高考主要以选择题、填空题形式考查正态曲线的形状特征与性质,抓住其对称轴是关键. [例5] 某市去年高考考生成绩服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550~600分的人数.解:因为考生成绩X ~N (500,502),所以μ=500,σ=50,所以P (550<X ≤600)=12[P (500-2×50<X ≤500+2×50)-P (500-50<X ≤500+50)]=12(0.954 4-0.682 6)=0.135 9.故考生成绩在550~600分的人数为25 000×0.135 9≈3 398(人). 归纳升华正态分布概率的求法1.注意3σ原则,记住正态总体在三个区间内取值的概率.2.注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.[变式训练] 某镇农民年收入服从μ=5 000元,σ=200元的正态分布.则该镇农民平均收入在5 000~5 200元的人数的百分比是________.解析:设X 表示此镇农民的平均收入,则X ~N (5 000,2002). 由P (5 000-200<X ≤5 000+200)=0.682 6. 得P (5 000<X ≤5 200)=0.682 62=0.341 3.故此镇农民平均收入在5 000~5 200元的人数的百分比为34.13%. 答案:34.13% 专题六 方程思想方程思想是解决概率问题中的重要思想,在求离散型随机变量的分布列,求两个或三个事件的概率时常会用到方程思想.即根据题设条件列出相关未知数的方程(或方程组)求得结果.[例6] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:记A ,B ,C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件. 由题设条件有⎩⎪⎨⎪⎧P (A — B )=14,P (B — C )=112,P (AC )=29,即⎩⎪⎨⎪⎧P (A )[1-P (B )]=14, ①P (B )[1-P (C )]=112,②P (A )P (C )=29. ③由①③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0.解得P (C )=23或P (C )=119(舍去).将P (C )=23分别代入②③可得P (A )=13,P (B )=14.故甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件.则P (D )=1-P (— D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.归纳升华(1)在求离散型随机变量的分布列时,常利用分布列的性质:①p 1≥0,i =1,2,3,…,n ;②∑i =1np i =1,列出方程或不等式求出未知数.(2)在求两个或多个概率时,常根据不同类型的概率公式列出方程或方程组求出未知数. [变式训练] 若离散型随机变量ξ的分布列为:ξ 0 1 P9a 2-a3-8a求常数a 解:由离散型随机变量的性质得⎩⎪⎨⎪⎧9a 2-a +3-8a =1,0≤9a 2-a ≤1,0≤3-8a ≤1,解得a =23(舍去)或a =13.所以,随机变量的分布列为:ξ 0 1 P2313。
第一课时 离散型随机变量的均值[对应学生用书P31]求离散型随机变量的均值[例1] (重庆高考)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级 摸出红、蓝球个数获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖2红1蓝10元(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列与数学期望EX . [思路点拨] (1)利用古典概型结合计数原理直接求解.(2)先确定离散型随机变量的取值,求出相应的概率分布,进一步求出随机变量的期望值.[精解详析] 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能值为0,10,50,200,且 P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105,P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.综上知,X 的分布列为X 0 10 50 200 P6743521051105从而有EX =0×67+10×35+50×105+200×105=4(元).[一点通] 求离散型随机变量X 的均值的步骤 (1)理解X 的意义,写出X 可能取的全部值; (2)求X 取每个值的概率;(3)写出X 的分布列(有时可以省略);(4)利用定义公式EX =x 1p 1+x 2p 2+…+x n p n ,求出均值.1.(广东高考)已知离散型随机变量X 的分布列为X 1 2 3 P35310110则X 的数学期望EX =( A.32 B .2 C.52D .3解析:EX =1×35+2×310+3×110=1510=32.答案:A2.某高等学院自愿献血的20位同学的血型分布情形如下表:血型 A B AB O 人数8732(1)现从这20(2)现有A 血型的病人需要输血,从血型为A 、O 的同学中随机选出2人准备献血,记选出A 血型的人数为X ,求随机变量X 的数学期望EX .解:(1)从20人中选出两人的方法数为C 220=190, 选出两人同血型的方法数为C 28+C 27+C 23+C 22=53, 故两人血型相同的概率是53190.(2)X 的取值为0,1,2, P (X =0)=C 22C 210=145,P (X =1)=C 18C 12C 210=1645,P (X =2)=C 28C 210=2845.X 的分布列为X 0 1 2 P14516452845∴EX =145×0+1645×1+2845×2=45=5.二项分布及超几何分布的均值[例2] 甲、乙两人各进行3次射击,甲每次击中目标的概率为2,乙每次击中目标的概率为23,记甲击中目标的次数为X ,乙击中目标的次数为Y ,求(1)X 的概率分布; (2)X 和Y 的数学期望.[思路点拨] 甲、乙击中目标的次数均服从二项分布. [精解详析] (1)P (X =0)=C 03⎝ ⎛⎭⎪⎫123=18,P (X =1)=C 13⎝ ⎛⎭⎪⎫123=38, P (X =2)=C 23⎝ ⎛⎭⎪⎫123=38, P (X =3)=C 33⎝ ⎛⎭⎪⎫123=18. 所以X 的概率分布如下表:X 0 1 2 3 P18383818(2)由题意X ~B ⎝ ⎛⎭⎪⎫3,12,Y ~B ⎝ ⎛⎭⎪⎫3,23, ∴EX =3×12=1.5,EY =3×23=2.[一点通] 如果随机变量X 服从二项分布即X ~B (n ,p ),则EX =np ;如果随机变量X 服从参数为N ,M ,n 的超几何分布时,则EX =n MN,以上两特例可以作为常用结论,直接代入求解,从而避免了繁杂的计算过程.3.若随机变量X ~B ⎝ ⎛⎭⎪⎫n ,12,EX =2,则P (X =1)等于________. 解析:由X ~B ⎝ ⎛⎭⎪⎫n ,12∴EX =n ·12=2, ∴n =4,∴P (X =1)=C 14⎝ ⎛⎭⎪⎫121⎝ ⎛⎭⎪⎫123=14.答案:144.袋中有7个球,其中有4个红球,3个黑球,从袋中任取3个球,以X 表示取出的红球数,则EX 为________.解析:由题意知随机变量X 服从N =7,M =4,n =3的超几何分布,则EX =3×47=127.答案:1275.(浙江高考)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列; (2)求X 的数学期望EX .解:(1)由题意得X 取3,4,5,6,且 P (X =3)=C 35C 39=542,P (X =4)=C 14C 25C 39=1021,P (X =5)=C 24C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为X 3 4 5 6P542 1021 514 121(2)由(1)知EX =3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.数学期望的实际应用[例3] 某商场准备在“五一”期间举行促销活动.根据市场行情,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.(1)试求选出的3种商品中至少有一种是日用商品的概率;(2)商场对选出的家电商品采用的促销方案是有奖销售,即在该商品成本价的基础上提高180元作为售价销售给顾客,同时允许顾客有3次抽奖的机会,若中奖一次,就可以获得一次奖金.假设顾客每次抽奖时获奖的概率都是12,且每次获奖时的奖金数额相同,请问:该商场应将每次中奖的奖金数额至多定为多少元,此促销方案才能使商场自己不亏本?[思路点拨] (1)利用间接法求概率;(2)先求中奖的期望,再列不等式求解. [精解详析] (1)设选出的3种商品中至少有一种是日用商品为事件A ,则P (A )=1-C 35C 39=3742. 即选出的3种商品中至少有一种是日用商品的概率为3742.(4分)(2)设顾客抽奖的中奖次数为X ,则X =0,1,2,3,于是P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=18,P (X =1)=C 13×⎝ ⎛⎭⎪⎫1-122×12=38, P (X =2)=C 23×⎝⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫122=38, P (X =3)=12×12×12=18,∴顾客中奖的数学期望EX =0×18+1×38+2×38+3×18=1.5.(10分)设商场将每次中奖的奖金数额定为x 元,则1.5x ≤180,解得x ≤120,即该商场应将每次中奖的奖金数额至多定为120元,才能使自己不亏本. (12分)[一点通] 处理与实际问题有关的均值问题,应首先把实际问题概率模型化,然后利用有关概率的知识去分析相应各事件可能性的大小,并写出分布列,最后利用有关的公式求出相应的概率及均值.6.(湖南高考)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}. 由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25.且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立. (1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220. 因P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=615.故所求的X 分布列为X 0 100 120 220P 215315415615数学期望为E(X)=0×15+100×15+120×15+220×15=+480+1 32015=2 10015=140.7.某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应的预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采取、联合采取或不采取,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.) 解:①不采取预防措施时,总费用即损失期望值为E1=400×0.3=120(万元);②若单独采取预防措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为E2=400×0.1=40(万元),所以总费用为45+40=85(万元);③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为E3=400×0.15=60(万元),所以总费用为30+60=90(万元);④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为E4=400×0.015=6(万元),所以总费用为75+6=81(万元).综合①②③④,比较其总费用可知,选择联合采取甲、乙两种预防措施,可使总费用最少.1.求随机变量的数学期望的方法步骤:(1)写出随机变量所有可能的取值.(2)计算随机变量取每一个值对应的概率.(3)写出分布列,求出数学期望.2.离散型随机变量均值的性质 ①Ec =c (c 为常数);②E (aX +b )=aEX +b (a ,b 为常数); ③E (aX 1+bX 2)=aEX 1+bEX 2(a ,b 为常数).[对应课时跟踪训练十三]1.一名射手每次射击中靶的概率均为0.8,则他独立射击3次中靶次数X 的均值为( )A .0.8B .0.83C .3D .2.4解析:射手独立射击3次中靶次数X 服从二项分布,即X ~B (3,0.8),∴EX =3×0.8=2.4.答案:D2.已知离散型随机变量X 的概率分布如下:X 0 1 2 P0.33k4k随机变量Y =2X +1,则Y A .1.1 B .3.2 C .11kD .33k +1解析:由题意知,0.3+3k +4k =1,∴k =0.1.EX =0×0.3+1×0.3+2×0.4=1.1, ∴EY =E (2X +1)=2EX +1=2.2+1=3.2. 答案:B3.口袋中有5个球,编号为1,2,3,4,5,从中任取3个球,以X 表示取出的球的最大号码,则EX =( )A .4B .5C .4.5D .4.75解析:X 的取值为5,4,3. P (X =5)=C 24C 35=35,P (X =4)=C 23C 35=310,P (X =3)=1C 35=110.∴EX =5×35+4×310+3×110=4.5.答案:C4.(湖北高考)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值EX =( )A.126125B.65C.168125D.75解析:由题意知X 可能为0,1,2,3,P (X =0)=33125=27125,P (X =1)=9×6125=54125,P (X =2)=3×12125=36125,P (X =3)=8125,EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)=0×27125+1×54125+2×36125+3×8125=150125=65,故选B. 答案:B5.设10件产品有3件次品,从中抽取2件进行检查,则查得次品数的均值为________. 解析:设查得次品数为X ,由题意知X 服从超几何分布且N =10,M =3,n =2.∴EX =n ·M N =2×310=35.答案:356.某射手射击所得环数X 的分布列如下X 7 8 9 10已知EX =8.9,则y 解析:由⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +8×0.1+9×0.3+10y =8.9,解得y =0.4. 答案:0.47.某工厂生产甲、乙两种产品,每种产品都是经过第一道和第二道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A ,B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品.表一表二(1)已知甲、乙两种产品每一道工序的加工结果为A 级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P 甲、P 乙;(2)已知一件产品的利润如表二所示,用X ,Y 分别表示一件甲、乙产品的利润,在(1)的条件下,分别求甲、乙两种产品利润的分布列及均值.解:(1)P 甲=0.8×0.85=0.68,P 乙=0.75×0.8=0.6.(2)随机变量X ,Y 的分布列是EX =5×0.68+2.5×0.32=4.2,EY =2.5×0.6+1.5×0.4=2.1.所以甲、乙两种产品利润的均值分别为4.2万元、2.1万元.8.(山东高考)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果互相独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意知,各局比赛结果相互独立,故P (A 1)=⎝ ⎛⎭⎪⎫233=827, P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427. 所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4,由题意知,各局比赛结果相互独立,所以P (A 4)=C 24⎝ ⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意知,随机变量X 的所有可能的取值为0,1,2,3,根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627,又P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327, 故X 的分布列为所以EX =0×1627+1×27+2×27+3×27=9.。
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
2.3.2 离散型随机变量的方差[目标] 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法.[重点] 离散型随机变量的方差和标准差的概念和计算;方差的性质以及两点分布、二项分布的方差的求法.[难点] 离散型随机变量的方差的计算与应用.知识点一 离散型随机变量的方差、标准差[填一填]1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差D (X )=∑i =1n(x i -E (X ))2·p i . (2)标准差为D (x ). 2.方差的性质 D (aX +b )=a 2D (X ).[答一答]1.方差与标准差有什么实际意义?提示:随机变量X 的方差和标准差都反映了随机变量X 取值的稳定与波动、集中与离散的程度.D (X )越小,稳定性越高,波动越小.显然D (X )≥0,随机变量的标准差与随机变量本身有相同的单位.2.你能类比样本数据方差的计算公式,理解离散型随机变量方差的计算公式吗? 提示:设x 1、x 2、…、x n 为样本的n 个数据,x =x 1+…+x n n ,则该样本数据的方差s 2=∑i =1n(x i -x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:D (X )=∑i =1n(x i -E (X ))2·p i (i =1,2,…,n ).3.随机变量的方差与样本方差有什么关系?提示:随机变量的方差即为总体的方差,它是一个客观存在的常数,不随抽样样本的变化而变化;样本方差则是随机变量,它是随着样本的不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.知识点二 两个常见分布的方差[填一填]1.若X 服从两点分布,则D (X )=p (1-p ). 2.若X ~B (n ,p ),则D (X )=np (1-p ).[答一答]4.两点分布的方差同二项分布的方差存在什么关系?提示:由于两点分布是特殊的二项分布,故两点分布的方差同二项分布的方差存在特殊与一般的关系.1.对随机变量X 的方差、标准差的理解(1)随机变量X 的方差的定义与一组数据的方差的定义是相同的.(2)随机变量X 的方差和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.(3)D (X )越小,稳定性越高,波动越小.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 2.剖析方差的性质当a ,b 均为常数时,随机变量η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地: (1)当a =0时,D (b )=0,即常数的方差等于0.(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身.(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.类型一 离散型随机变量的方差及性质【例1】 已知η的分布列如下:η 0 10 20 50 60 P1325115215115(1)求η(2)设Y =2η-E (η),求D (Y ).【分析】 (1)首先求出均值E (η),然后利用D (η)的定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D [2η-E (η)]=22D (η).【解】 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,∴D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6.(2)∵Y =2η-E (η),∴D (Y )=D [2η-E (η)]=22D (η)=4×384=1 536.(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X 的方差的性质:当a ,b 为常数时,随机变量Y =aX +b ,则D (Y )=D (aX +b )=a 2D (X ),可以简化解答过程,提高解题效率.某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (1)所选3人中女生人数为ξ,求ξ的分布列及方差. (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 解:(1)ξ的可能取值为0,1,2. 由题意P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15,所以ξ的分布列为ξ 0 1 2 P153515E (ξ)=0×15+1×35+2×15=1,D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C ,男生甲被选中的种数为C 25=10,男生甲被选中,女生乙也被选中的种数为C 14=4,所以P (C )=C 14C 25=410=25,在男生甲被选中的情况下,女生乙也被选中的概率为25.类型二 二项分布的方差【例2】 已知某运动员投篮命中率p =0.6. (1)求一次投篮命中次数ξ的数学期望与方差;(2)求重复5次投篮时,命中次数η的数学期望与方差.【分析】 解本题的关键是正确地判断出第(1)小题属于两点分布,第(2)小题属于二项分布,利用相应的公式计算可得解.【解】 (1)投篮一次命中次数ξ的分布列为:ξ 0 1 P0.40.6则E (ξ)=0×0.4+1×0.6=0.6,D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.(2)由题意知重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6). 由二项分布的数学期望与方差的公式得: E (η)=5×0.6=3,D (η)=5×0.6×0.4=1.2.解此类题的一般步骤如下:第一步,判断随机变量X 服从什么分布(两点分布还是二项分布).第二步,代入相应的公式,X 服从两点分布时,D (X )=p (1-p );X 服从二项分布,即X ~B (n ,p )时,D (X )=np (1-p ).甲、乙比赛时,甲每局赢的概率是p =0.51,乙每局赢的概率是p =0.49.甲乙一共进行了10次比赛,当各次比赛的结果是相互独立时,计算甲平均赢多少局,乙平均赢多少局,哪一个技术比较稳定?解:用X 表示10局中甲赢的次数,则X 服从二项分布B (10,0.51).E (X )=10×0.51=5.1,即甲平均赢5.1局.用Y 表示10局中乙赢的次数,则Y 服从二项分布B (10,0.49).E (Y )=10×0.49=4.9,于是乙平均赢4.9局.又D (X )=10×0.51×0.49=2.499,D (Y )=10×0.49×0.51=2.499.所以他们技术一样稳定.类型三 离散型随机变量方差的应用【例3】 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤15时,y =5n -5(16-n )=10n -80.得:y =⎩⎨⎧10n -80(n ≤15),80(n ≥16)(n ∈N ).(2)①X可取60,70,80.P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 607080P 0.10.20.7E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=162×0.1+62×0.2+42×0.7=44.②购进17枝时,当天的利润的期望值为y=(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.由76.4>76得,应购进17枝.有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.解:在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙)=80×0.4+90×0.2+100×0.4=90.方差分别为D (X 甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, D (X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80. 由上面数据,可知E (X 甲)=E (X 乙),D (X 甲)<D (X 乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.离散型随机变量期望与方差的综合应用【例4】 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求abc .【思路分析】 第一问关键是分清取出2个球所得分数之和的所有情况,然后分类讨论,根据情况算出相应的概率、写出分布列;第二问类似地写出分布列,根据期望、方差的公式建立方程求解.【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 paa +b +cba +b +cca +b +c所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59.化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故abc =321.【解后反思】 离散型随机变量的分布列和期望是理科数学考题中的高频考点之一,其中,浙江省又多以摸球为背景,以对立事件、相互独立事件、两点分布、二项分布等知识为载体,综合考查事件发生的概率及随机变量的分布列、数学期望与方差.解题时首先要理解关键词,其次要准确无误地找出随机变量的所有可能取值,计算出相应的概率,后面一般就是计算问题.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D (ξ)的最大值; (2)求2D (ξ)-1E (ξ)的最大值.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E (ξ)=0×(1-p )+1×p =p , D (ξ)=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D (ξ)=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,∵0<p <1,∴当p =12时,D (ξ)取得最大值,最大值为14.(2)2D (ξ)-1E (ξ)=2(p -p 2)-1p =2-(2p +1p ),∵0<p <1,∴2p +1p≥2 2.当2p =1p ,p =22时,取“=”,因此,当p =22时,2D (ξ)-1E (ξ)取得最大值2-2 2.1.下面说法中正确的是(D)A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平解析:由于离散型随机变量ξ的期望E(ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A错.而D(ξ)则反映随机变量的集中(或稳定)的程度,即波动水平.2.若X~B(n,p),且E(X)=1.6,D(X)=1.28,则(A)A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.45解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.3.已知随机变量ξ,D(ξ)=19,则ξ的标准差为13.解析:D(ξ)=19=13.4.有两台自动包装机甲与乙,包装质量分别为随机变量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),则自动包装机乙的质量较好.解析:均值仅体现了随机变量取值的平均大小,如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,方差大说明随机变量取值较分散;方差小,说明取值较集中.故乙的质量较好.5.已知随机变量X的分布列是X 0123 4P 0.2m n 0.20.1且E(X)=1.8.(1)求D(X);(2)设Y=2X-1,求D(Y).解:(1)由分布列可知0.2+m+n+0.2+0.1=1,且E(X)=0×0.2+1×m+2×n+3×0.2+4×0.1=1.8.即⎩⎪⎨⎪⎧ m +n =0.5,m +2n =0.8,解得m =0.2,n =0.3. ∴D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.(2)∵D (X )=1.56,∴D (2X -1)=4D (X )=6.24.。
关于《离散型随机变量的均值》的说课稿银川二中(西校区)黄海霞说课内容:普通高中人教A版(数学选修2-3)第二章第3节第一课时─《离散型随机变量的均值》.下面,我将分别从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计等六个方面对本节课的设计进行说明.一、背景分析:1、学习任务分析《离散型随机变量的均值》是《随机变量及其分布》第三节第一小节的内容,本节课是第一课时. 本节课主要的学习任务是从平均的角度引入离散型随机变量均值的概念,引导学生通过实际问题建立取有限值的离散型随机变量均值的概念,然后推导出离散型随机变量均值的线性性质()()bE+aX+.=XaEb取有限值的离散型随机变量的均值是在学生学习完离散型随机变量及其分布列的概念基础上,进一步研究离散型随机变量取值特征的一个方面.学习本节课的内容既是随机变量分布的内容的深化,又是后续内容离散型随机变量方差的基础,所以学好本节课是进一步学习离散型随机变量取值特征的其它方面的基础.离散型随机变量的均值是刻画离散型随机变量取值的平均水平的一个数字特征,是从一个侧面刻画随机变量取值的特点.在实际问题中,离散型随机变量的均值具有广泛的应用性.因此我以为本节课的重点是:取有限值的离散型随机变量均值的概念.2、学生情况分析本节课之前,学生已有平均值、概率、离散型随机变量及其分布列,二项分布及其应用等基础知识,具备了学习本节知识的知识储备.本节课是一节概念新授课,教材从学生熟悉的平均值出发,从身边的实际问题中抽象出了取有限值的离散型随机变量均值的概念,这需要一定的概括和抽象能力.鉴于学生的概括、抽象能力不是太强,因此学生对概念的形成和理解会有一定的困难.基于以上认识,我以为本节课的教学难点是:离散型随机变量均值概念的形成和理解。
二、教学目标设计:依据《普通高中数学课程标准(实验)》对本节课的要求,并考虑到学生的实际和学习能力,特将本节课的教学目标设定为:1.通过实际问题,使学生体会离散型随机变量均值的概念,理解离散型随机变量均值的线性性质,会计算简单的离散型随机变量的均值,并能解决一些简单的实际问题.2.通过离散型随机变量均值概念的探究形成,经历建构数学概念这一过程,使学生学会概括、抽象数学问题的方法,通过简单的应用,培养学生的数学应用意识.三、课堂结构设计:本节课从总体上讲是一节概念教学课.在教学活动中,学生是一个积极的探索者,教师的作用是要创设一种学生能够主动探究的情境,帮助学生形成科学的数学概念。
2.5.1 离散型随机变量的均值预习课本P60~63,思考并完成以下问题1.什么是离散型随机变量的均值?怎么利用离散型随机变量的分布列求出均值?2.离散型随机变量的均值有什么性质?3.两点分布、二项分布的均值是什么?[新知初探]1.离散型随机变量的均值或数学期望若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n则称E(X)=x1p1+x2p2+…+x i p i+…+x n p n_为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.2.离散型随机变量的均值的性质若Y=aX+b,其中a,b为常数,则Y也是随机变量且P(Y=ax i+b)=P(X=x i),i=1,2,…,n,E(Y)=E(aX+b)=aE(X)+B.3.两点分布与二项分布的均值(1)若X服从两点分布,则E(X)=p;(2)若X服从二项分布,即X~B(n,p),则E(X)=np.[点睛] 两点分布与二项分布的关系(1)相同点:一次试验中要么发生要么不发生.(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1, 二项分布中随机变量的取值X =0,1,2,…,n . ②试验次数不同,两点分布一般只有一次试验;二项分布则进行n 次试验.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)随机变量X 的数学期望E (X )是个变量,其随X 的变化而变化.( ) (2)随机变量的均值与样本的平均值相同.( )(3)若随机变量ξ的数学期望E (ξ)=3,则E (4ξ-5)=7.( ) 答案:(1)× (2)× (3)√ 2.已知离散型随机变量X 的分布列为X 1 2 3 P35310110则X 的数学期望E (X )=( ) A .32 B .2 C .52 D .3答案:A3.设随机变量X ~B (16,p ), 且E (X )=4, 则p =________. 答案:144.一名射手每次射击中靶的概率均为0.8, 则他独立射击3次中靶次数X 的均值为________.答案:2.4求离散型随机变量的均值[典例] 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料.(1)求甲中奖且乙、丙都没有中奖的概率; (2)求中奖人数ξ的分布列及均值E (ξ).[解] (1)设甲、乙、丙中奖的事件分别为A ,B ,C ,那么P (A )=P (B )=P (C )=16.P (A ·B ·C )=P (A )P (B )P (C )=16×56×56=25216.故甲中奖且乙、丙都没有中奖的概率是25216.(2)ξ的可能取值为0,1,2,3.P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫16k ⎝ ⎛⎭⎪⎫563-k,k =0,1,2,3. P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫160×⎝ ⎛⎭⎪⎫563=125216; P (ξ=1)=C 13×16×⎝ ⎛⎭⎪⎫562=2572; P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫162×56=572, P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫163×⎝ ⎛⎭⎪⎫16=1216. 所以中奖人数ξ的分布列为ξ 0 1 2 3 P12521625725721216E (ξ)=0×125216+1×2572+2×572+3×1216=12.求离散型随机变量的均值的步骤(1)确定取值:根据随机变量X 的意义,写出X 可能取得的全部值; (2)求概率:求X 取每个值的概率; (3)写分布列:写出X 的分布列; (4)求均值:由均值的定义求出E (X ).其中写出随机变量的分布列是求解此类问题的关键所在. [活学活用]1.甲、乙两人各进行3次射击, 甲每次击中目标的概率为12, 乙每次击中目标的概率为23, 记甲击中目标的次数为X, 乙击中目标的次数为Y , (1)求X 的概率分布列; (2)求X 和Y 的数学期望.解:(1)已知X 的所有可能取值为0,1,2,3.P (X =k )=C k 3⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫123-k. 则P (X =0)=C 03×⎝ ⎛⎭⎪⎫123=18;P (X =1)=C 13×12×⎝ ⎛⎭⎪⎫122=38; P (X =2)=C 23×⎝ ⎛⎭⎪⎫122×12=38; P (X =3)=C 33×⎝ ⎛⎭⎪⎫123=18. 所以X 的概率分布列如下表:(2)由(1)知E (X )=0×18+1×38+2×38+3×18=1.5,或由题意X ~B ⎝ ⎛⎭⎪⎫3,12,Y ~B ⎝ ⎛⎭⎪⎫3,23,∴E (X )=3×12=1.5,E (Y )=3×23=2.2.某运动员投篮投中的概率P =0.6. (1)求一次投篮时投中次数ξ的数学期望. (2)求重复5次投篮时投中次数η的数学期望. 解:(1)ξ的分布列为:则E (ξ)=0×0.4+1×0.6=0.6,即一次投篮时投中次数ξ的数学期望为0.6. (2)η服从二项分布,即η~B (5,0.6). ∴E (η)=np =5×0.6=3,即重复5次投篮时投中次数η的数学期望为3.离散型随机变量均值的性质[典例] 已知随机变量X 的分布列为:X -2 -1 0 1 2 P141315m120若Y =-2X ,则E (Y )=________. [解析] 由随机变量分布列的性质, 得 14+13+15+m +120=1, 解得m =16, ∴E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.由Y =-2X ,得E (Y )=-2E (X ),即E (Y )=-2×⎝ ⎛⎭⎪⎫-1730=1715.[答案]1715[一题多变]1.[变设问]本例条件不变,若Y =2X -3, 求E (Y ). 解:由公式E (aX +b )=aE (X )+b 及E (X )=-1730得,E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215.2.[变条件,变设问]本例条件不变, 若ξ=aX +3, 且E (ξ)=-112, 求a 的值.解:∵E (ξ)=E (aX +3)=aE (X )+3=-1730a +3=-112,∴a =15.与离散型随机变量性质有关问题的解题思路若给出的随机变量ξ与X 的关系为ξ=aX +b ,a ,b 为常数.一般思路是先求出E (X ),再利用公式E (aX +b )=aE (X )+b 求E (ξ).也可以利用ξ的分布列得到η的分布列,关键由ξ的取值计算η的取值,对应的概率相等,再由定义法求得E (η).均值的实际应用[典例] 某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P0.40.20.20.10.13期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求事件A “购买该商品的3位顾客中,至少有1位采用1期付款”的概率P (A ); (2)求η的分布列及均值E (η).[解] (1)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”知,A 表示事件“购买该商品的3位顾客中无人采用1期付款”.P (A )=(1-0.4)3=0.216, P (A )=1-P (A )=1-0.216=0.784.(2)η的可能取值为200元,250元,300元.P (η=200)=P (ξ=1)=0.4,P (η=250)=P (ξ=2)+P (ξ=3)=0.2+0.2=0.4,P (η=300)=P (ξ=4)+P (ξ=5)=0.1+0.1=0.2,因此η的分布列为η 200 250 300 P0.40.40.2E (η)1.实际问题中的均值问题均值在实际中有着广泛的应用,如在体育比赛的安排和成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益等,都可以通过随机变量的均值来进行估计.2.概率模型的解答步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些. (2)确定随机变量的分布列,计算随机变量的均值.(3)对照实际意义,回答概率、均值等所表示的结论. [活学活用]甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.求投篮结束时甲的投球次数ξ的分布列与数学期望.解:设A k ,B k 分别表示甲、乙在第k 次投篮投中, 则P (A k )=13,P (B k )=12,(k =1,2,3).ξ的所有可能值为1,2,3.由独立性知P (ξ=1)=P (A 1)+P (A 1B 1)=13+23×12=23,P (ξ=2)=P (A 1B 1A 2)+P (A 1B 1A 2B 2)=23×12×13+⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122=29,P (ξ=3)=P (A 1B 1A 2B 2)=⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122=19.综上知,ξ的分布列为ξ 1 2 3 P232919数学期望为E (ξ)=1×23+2×29+3×19=139.层级一 学业水平达标1.若离散型随机变量X 的分布列为X 0 1Pa 2a 22则X 的数学期望E (X )=( A .2 B .2或12C .12D .1解析:选C 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.故选C .2.若随机变量ξ的分布列如下表所示,则E (ξ)的值为( )A .118B .9C .209D .920解析:选C 根据概率和为1,可得x =118,E (ξ)=0×2x +1×3x +2×7x +3×2x +4×3x+5×x =40x =209.3.某射击运动员在比赛中每次击中10环得1分,击不中10环得0分.已知他击中10环的概率为0.8,则射击一次得分X 的期望是( )A .0.2B .0.8C .1D .0解析:选B 因为P (X =1)=0.8,P (X =0)=0.2,所以E (X )=1×0.8+0×0.2=0.8. 4.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的均值为( )A .2.44B .3.376C .2.376D .2.4解析:选C X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+1×0.096+0×0.064=2.376.5.有10件产品,其中3件是次品,从中任取2件,用X 表示取到次品的个数,则E (X )等于( )A .35B .815C .1415D .1解析:选A X 的可能取值为0,1,2,P (X =0)=C 27C 210=715,P (X =1)=C 17C 13C 210=715,P (X =2)=C 23C 210=115.所以E (X )=1×715+2×115=35. 6.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的数学期望为________.解析:X 的可能取值为3,2,1,0,P (X =3)=0.6;P (X =2)=0.4×0.6=0.24; P (X =1)=0.42×0.6=0.096; P (X =0)=0.43=0.064.所以E (X )=3×0.6+2×0.24+1×0.096+0×0.064 =2.376. 答案:2.3767.设离散型随机变量X 可能的取值为1,2,3,P (X =k )=ak +b (k =1,2,3).又X 的均值E (X )=3,则a +b =________.解析:∵P (X =1)=a +b ,P (X =2)=2a +b ,P (X =3)=3a +b ,∴E (X )=1×(a +b )+2×(2a +b )+3×(3a +b )=3, ∴14a +6b =3.①又∵(a +b )+(2a +b )+(3a +b )=1, ∴6a +3b =1.②∴由①②可知a =12,b =-23,∴a +b =-16.答案:-168.设p 为非负实数,随机变量X 的概率分布为:则E (X )的最大值为________. 解析:由表可得⎩⎪⎨⎪⎧0≤12-p ≤1,0≤p ≤1,从而得P ∈⎣⎢⎡⎦⎥⎤0,12,期望值E (X )=0×⎝ ⎛⎭⎪⎫12-p +1×p+2×12=p +1,当且仅当p =12时,E (X )最大值=32.答案:329.盒中装有5节同品牌的五号电池,其中混有2节废电池,现在无放回地每次取一节电池检验,直到取到好电池为止.求:(1)抽取次数X 的分布列; (2)平均抽取多少次可取到好电池. 解:(1)由题意知,X 取值为1,2,3.P (X =1)=35; P (X =2)=25×34=310; P (X =3)=25×14=110.所以X 的分布列为(2)E (X )=1×35+2×310+3×110=1.5,即平均抽取1.5次可取到好电池.10.某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;(2)若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为X ,求随机变量X 的分布列和数学期望.解:(1)从50名教师中随机选出2名的方法数为C 250=1 225,选出2人使用版本相同的方法数为C 220+C 215+C 25+C 210=350,故2人使用版本相同的概率为P =3501 225=27.(2)X 的所有可能取值为0,1,2. P (X =0)=C 215C 235=317,P (X =1)=C 120C 115C 235=60119.P (X =2)=C 220C 235=38119.∴X 的分布列为∴E (X )=0×317+1×60119+2×38119=136119=87.层级二 应试能力达标1.已知随机变量ξ的分布列为若η=aξ+3,E (η)=73,则a =( )A .1B .2C .3D .4解析:选B 由分布列的性质得12+13+m =1,∴m =16.∴E (ξ)=-1×12+0×13+1×16=-13.∴E (η)=E (aξ+3)=aE (ξ)+3=-13a +3=73,∴a =2.2.设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人三次上班途中遇红灯的次数的期望为( )A .0.4B .1.2C .0.43D .0.6解析:选B ∵途中遇红灯的次数X 服从二项分布,即X ~B (3,0.4),∴E (X )=3×0.4=1.2.3.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为67,则口袋中白球的个数为( ) A .3B .4C .5D .2解析:选A 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2,P (ξ=0)=C 27-x C 27=(7-x )(6-x )42,P (ξ=1)=C 1x ·C 17-x C 27=x (7-x )21, P (ξ=2)=C 2x C 27=x (x -1)42,∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=67,解得x =3.4.甲、乙两台自动车床生产同种标准件,ξ表示甲车床生产1 000件产品中的次品数,η表示乙车床生产1 000件产品中的次品数,经一段时间考察,ξ,η的分布列分别是:据此判定( ) A .甲比乙质量好 B .乙比甲质量好 C .甲与乙质量相同D .无法判定解析:选A E (ξ)=0×0.7+1×0.1+2×0.1+3×0.1=0.6,E (η)=0×0.5+1×0.3+2×0.2+3×0=0.7.∵E (η)>E (ξ),故甲比乙质量好.5.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E (ξ)为________. 解析:依题意,知ξ的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫132=59.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有P (ξ=2)=59,P (ξ=4)=49×59=2081,P (ξ=6)=⎝ ⎛⎭⎪⎫492=1681, 故E (ξ)=2×59+4×2081+6×1681=26681.答案:266816.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.解析:节日期间这种鲜花需求量的均值为E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5 =3.4ξ-450,所以E (η)=3.4E (ξ)-450=3.4×340-450=706(元). 答案:7067.(重庆高考)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故E (X )=0×715+1×715+2×15=5(个).8.购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1-0.999104.(1)求一投保人在一年度内出险的概率p;(2)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).解:各投保人是否出险相互独立,且出险的概率都是p,记投保的10 000人中出险的人数为ξ,则ξ~B(104,p).(1)记A表示事件:保险公司为该险种至少支付10 000元赔偿金,则A发生当且仅当ξ=0,P(A)=1-P(A)=1-P(ξ=0)=1-(1-p)104,又P(A)=1-0.999104,故p=0.001.(2)该险种总收入为104a元,支出是赔偿金总额与成本的和.支出:104ξ+5×104,盈利:η=104a-(104ξ+5×104),由ξ~B(104,10-3)知,E(ξ)=10,E(η)=104a-104E(ξ)-5×104=104a-105-5×104.由E(η)≥0⇔104a-105-5×104≥0⇔a-10-5≥0⇔a≥15(元).故每位投保人应交纳的最低保费为15元.。