有理数练习(6)
- 格式:doc
- 大小:99.50 KB
- 文档页数:4
有理数练习题及答案有理数是数学中的一种数,它包括整数和分数。
在学习有理数的过程中,练习题是必不可少的一部分。
通过解答练习题,可以巩固对有理数的理解和运算技巧。
下面,我将为大家提供一些有理数练习题及其答案,希望对大家的学习有所帮助。
1. 计算:(-3/4) + (-1/2) = ?答案:(-3/4) + (-1/2) = -6/8 - 4/8 = -10/8 = -5/42. 计算:(-5/6) - (1/3) = ?答案:(-5/6) - (1/3) = -10/12 - 4/12 = -14/12 = -7/63. 计算:(-2/3) × (-3/4) = ?答案:(-2/3) × (-3/4) = 6/12 = 1/24. 计算:(2/5) ÷ (3/4) = ?答案:(2/5) ÷ (3/4) = 8/15 ÷ 3/4 = 8/15 × 4/3 = 32/455. 计算:(-3/4) + 2/3 - 1/2 = ?答案:(-3/4) + 2/3 - 1/2 = -6/8 + 16/24 - 12/24 = -6/8 + 4/24 = -24/32 +4/32 = -20/32 = -5/86. 计算:(-2/5) - 1/3 + 1/4 = ?答案:(-2/5) - 1/3 + 1/4 = -8/20 - 20/60 + 15/60 = -24/60 - 20/60 + 15/60 = -29/60通过以上练习题,我们可以看到有理数的运算并不复杂,只需要熟练掌握分数的加减乘除运算规则即可。
在进行加减运算时,需要找到相同的分母,然后按照分数的加减法规则进行计算。
在进行乘除运算时,直接对分子和分母进行相应的运算即可。
有理数的运算规则是数学中的基础知识,掌握好这些规则对于解决实际问题和提高数学能力都非常重要。
因此,我们需要多做一些有理数的练习题,加深对有理数的理解和运算技巧。
《有理数及其运算》专项练习(含答案)第二章《有理数及其运算》专项练习李其明(山东枣庄十五中)同学们,你能用数简便地表示出每天的天气状况吗?你和你的伙伴会玩扑克游戏吗?你能用折线图表示身边的事物的变化吗?……,那么请跟我一起走进五彩缤纷的数字世界,在这里将为你介绍一个新的数---------负数,有了它,数将变得更加绚丽多彩,更加便于应用,本章首先让你认识什么是有理数,然后依次由低带高向你讲述有理数的加、减、乘、除以及乘方运算的意义法则和运算律,你将学会扑克玩“24”点游戏,学会用折线统计图表示水位的变化,用计算器进行数的简单计算,还为你提供丰富的数学活动机会,通过探索规律,体会数学与现实世界的联系.专题一:数怎么不够用了1、下列各数中,大于-21小于21的负数是( )A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A.文具店 B.玩具店 C.文具店西40米处 D.玩具店西60米处6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____.5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____.8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
有理数测试题A 一、选择题:本大题共6小题,每小题3分,共18分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 在有理数中,有( ) A.绝对值最大的数 B.绝对值最小的数 C.最大的数 D.最小的数 2. 计算1(7)(5)(3)(5)23--++---+的结果为( ) A .173- B .273- C .1123 D .1123- 3. 下列说法错误的是( ) A.绝对值等于本身的数只有1 B .平方后等于本身的数只有0、1 C .立方后等于本身的数是1,0,1- D .倒数等于本身的数是1-和1 4. 下列结论正确的是( ) A.数轴上表示6的点与表示4的点相距10 B.数轴上表示+6的点与表示-4的点相距10 C.数轴上表示-4的点与表示4的点相距10 D.数轴上表示-6的点与表示-4的点相距10 5. 下列说法中不正确的是( ) A.0既不是正数,也不是负数 B .0不是自然数 C .0的相反数是零 D .0的绝对值是0 6. 下列计算中,正确的有( ) (1)(5)(3)8-++=- (2)0(5)5+-=+ (3)(3)(3)0-+-= (4)512()()663++-= A .0个 B .1个 C .2个 D .3个 二、填空题:本大题共10小题,每小题3分,共30分,把答案填写在题中横线上. 7. 平方得25的数是_____,立方得64-的数是_____. 8. 若00xy z ><,,那么xyz =______0. 9. 某冷库的温度是16-℃,下降了5℃,又下降了4℃,则两次变化后的冷库的温度是______. 10. 已知130a b ++-=,则____________a b ==. 11. 2-的倒数是_____;23-的倒数是______;213-的倒数是______.12. 如果a b 、互为倒数,那么5ab -=______. 13. 2112(2)_____(3)()3_____33-⨯-=⨯-÷-⨯=;.14. 用算式表示:温度由4-℃上升7℃,达到的温度是______.班级______________________________________姓名____________________ 考场号________________考号_______________ ----------------------------------------------------密---------------------------------封--------------------------------线------------------------------------------------15. 若三个有理数的乘积为负数,在这三个有理数中,有_____个负数. 16. 151653_____50.2_____--=⨯=;;若m n 、互为相反数,则1m n -+=_____ 三、运算题:本大题共4小题,共20分,解答应写出必要的计算过程、推演步骤或文字说明.17.(本小题5分) 计算:211(10.5)2(3)3⎡⎤⎡⎤--⨯⨯--⎣⎦⎢⎥⎣⎦18.(本小题5分) 确定下列各式和的符号(1)(1)(2)-+- (2)(101)(100)-++ (3)0(0.1)+- (4)1223-+19.(本小题5分) 计算下列各题(1)(-7)+(-4);(2)3+(-12);(3)(-2)+2;(4)0+(-7);(5)113423⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭.20.(本小题5分) 52555(2)4757123÷--⨯-÷四、应用题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明.21.(本小题8分) 一条南北走向的公路,规定向南为正.怎样表示向北36千米?向南48千米?向北12.5千米?20-千米是什么意思?+25千米是什么意思?22.(本小题8分) 若数轴上的点A 和点B 表示两个互为相反数的数,并且这两个数间的距离为8.4,求A 点和B 点表示的数是什么.(A>B)五、合情推理题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明.23.(本小题8分) 先用计算器求出215222、25、35、45的值,你发现了怎样的规律,你能否用这个规律求228595、的结果吗?24.(本小题8分) 如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的矩形.如此进行下去,试利用图形揭示的规律计算:11111111248163264128256+++++++.有理数测试题A 答案一、选择题:本大题共6小题,每小题3分,共18分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. D2. D3. B4. C5. A6. B二、填空题:本大题共10小题,每小题3分,共30分,把答案填写在题中横线上.7. 9 >8. 5,3-9. 0.8-10. 5-11. 2412. 0, 2.8-13. 互为相反数14. -215. n a -,n a 16. 21515三、运算题:本大题共4小题,共20分,解答应写出必要的计算过程、推演步骤或文字说明.17.(本小题5分) 3.18.(本小题5分) 148- 19.(本小题5分) 70- 20.(本小题5分) (1)-1的相反数是1,数轴上表示为下图:(2)12的相反数是-12,数轴上表示为下图:(3)0的相反数是0,数轴上表示为下图:(4)2的相反数的相反数是2,数轴上表示为下图:四、应用题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明.21.(本小题8分) 1422.(本小题8分) (1)31℃ (2)计算.5日为28℃,6日为25℃,7日为31℃,8日为26℃,9日为22℃.因此九月7日气温最高 (3)图略五、合情推理题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明.23.(本小题8分) 255 25624.(本小题8分)2004312。
有理数练习题含答案1、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作______。
2、+10千米表示王玲同学向南走了10千米,那么-9千米表示_______;0千米表示_____。
3、在月球表面上,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到-183℃,那么-183℃表示的意义为_______。
4、七(8)班数学兴趣小组在一次数学智力大比拼的竞赛中的平均分数为90分,张红得了85分,记作-5分,则小明同学行92分,可记为____,李聪得90分可记为____,程佳+8分,表示______。
5、有理数中,最小的正整数是____,最大的负整数是____。
6、数轴上表示正数的点在原点的___,原点左边的数表示___,____点表示零。
7、数轴上示-5的点离开原点的距离是___个单位长度,数轴上离开原点6个单位长度的点有____个,它们表示的数是____8、数轴上表示的点到原点的距离是_____9、在1.5-7.5之间的整数有_____,在-7.5与-1.5之间的整数有_____10、已知下列各数:-23、-3.14、,其中正整数有__________,整数有______,负分数有______,分数有_________。
二、精心选一选,慧眼识金!(每小题3分,共30分)1、把向东运动记作“+”,向西运动记作“_”,下列说法正确的是()A、-3米表示向东运动了3米B、+3米表示向西运动了3米C、向西运动3米表示向东运动-3米D、向西运动3米,也可记作向西运动-3米。
2、下列用正数和负数表示相反意义的量,其中正确的是()A、一天凌晨的气温是-5℃,中午比凌晨上升4℃,所以中午的气温是+4℃B、如果+3.2米表示比海平面高3.2米,那么-9米表示比海平面低5.8米C、如果生产成本增加5%,记作+5%,那么-5表示生产成本降低5%D、如果收入增加8元,记作+8元,那么-5表示支出减少5元。
第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。
有理数无理数练习题一、选择题(每题3分,共15分)1. 下列数中,哪个是无理数?A. πB. 0.5C. √4D. -22. 有理数和无理数的区别是什么?A. 有理数可以表示为两个整数的比B. 无理数不能表示为两个整数的比C. 有理数可以表示为小数D. 所有选项都是3. 以下哪个数是有理数?A. eB. √2C. 0.33333...(无限循环)D. √34. 无理数的集合用符号表示是什么?A. QB. RC. ND. I5. 以下哪个表达式的结果是有理数?A. π + √2B. √2 × √2C. e - πD. √3 / 2二、填空题(每题2分,共10分)6. 有理数可以表示为两个整数的比,即分数形式,如3/4,其中分子和分母都是________。
7. 无理数是________的实数,不能表示为两个整数的比。
8. π是一个无理数,其值大约等于________。
9. 一个数如果是有理数,那么它一定可以表示为________形式。
10. √2是一个无理数,因为它不能表示为两个整数的比,且其小数部分是________。
三、判断题(每题2分,共10分)11. 所有整数都是有理数。
()12. 所有分数都是有理数。
()13. √2和π都是无理数。
()14. 0.33333...(无限循环)是有理数。
()15. 无理数不能进行四则运算。
()四、简答题(每题5分,共20分)16. 请解释什么是有理数,并给出两个例子。
17. 请解释什么是无理数,并给出两个例子。
18. 无理数和有理数在数学中有哪些不同的性质?19. 为什么说π是一个无理数?请简要说明。
五、计算题(每题5分,共20分)20. 计算下列表达式的值:(√3 + √2)²21. 如果x是一个无理数,y是一个有理数,计算x + y的值,如果x = √5,y = √2 - 1。
22. 计算下列表达式的值:(√7 - √5)²23. 如果a是一个有理数,b是一个无理数,计算a - b的值,如果a = 1/3,b = π。
七年级数学上册有理数练习题(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列不是有理数的是( )A .227B .3.14C .πD . 3.1415926-2.下列说法正确的是( )A .所有的整数都是正数B .非负数就是正数C .0既不是正数,也不是负数D .正数和负数统称为有理数3.在+8.3,﹣4,﹣0.8,15-,0,90中,分数共有( ) A .1个 B .2个 C .3个 D .4个4.在数 8-,0,5,π,0.01-,1322 中,属于非负整数的有( ) A .2 个 B .3 个 C .4 个 D .5 个5.如果温度上升1℃记作1+℃,那么温度下降5℃,应记作( )A .5+℃B .5-℃C .6+℃D .6-℃6.在数 15,7.35-,0,45-,0.303,117,0.101001000(每两个 1 中依次多一个 0)中,有理数有( )A .4 个B .5 个C .6 个D .7 个二、填空题7.若○中填入最小的正整数,℃中填入最小的非负数,□中填入大于﹣3且小于3的整数的个数,则(○+℃)×□=___.8.某居民的身份证如图所示,则该居民的出生年份是__.9.下列各数:()21-,12,0.2,其中有理数有______个. 10.______和______统称为有理数:有理数可分为:______数,______数和______. 11.把下列各数填入相应的集合中:+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%,π,﹣0.2020020002…(每相邻两个2之间0的个数逐次加1).正分数集合:{ …};正整数集合:{ …};整数集合:{ …};有理数集合:{ …}. 12.在 18%,112,4.5,17-,0,227,π2,56- 中,整数是____;正分数是____;有理数有____个. 13.2018年10月26日,全世界最长的跨海大桥--港珠澳大桥正式通车,其全长为55__(填单位).三、解答题14.将下列各数填入相应的圈内: 12-,7+, 2.8+,90-, 3.5-,193,0,4.15.把下列各数分类,并填在表示相应集合的大括号里:-2,37+,0.8,12,0,-2.1,375-,17%,0.4. (1)正数集合:{ }(2)整数集合:{ }(3)分数集合:{ }(4)负数集合:{ }(5)正整数集合:{ }(6)负分数集合:{ }16.已知正数x 的两个不等的平方根分别是214a -和2a +,1b +的立方根为-3;c(1)求x和b的值;(2)式子a b c-+的值=;(3是数(填“有理”或“无理”).17.下列六个数中:﹣2.5,132,0,+5,﹣4,12-.(1)整数有个;负分数有个;既不是正数也不是负数的是.(2)把所有数据分别在数轴上表示出来.参考答案:1.C【分析】根据有理数的定义,有理数包括分数和整数,据此分析即可.【详解】227,3.14, 3.1415926-都是分数,是有理数;π是无限不循环的小数,不是有理数;故选C.【点睛】本题考查了有理数的定义,掌握有理数的定义是解题的关键.2.C【分析】根据正数和负数的定义解答即可.【详解】解:A.整数包含正整数、0、负整数,错误;B.非负数就是0和正数,错误;C.0既不是正数,也不是负数,正确;D.零、正有理数和负有理数统称为有理数,错误.故选:C.【点睛】本题考查的是正数和负数的定义,熟知相关性质是解题的关键.3.C【分析】根据分数定义,把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数,分数分为正分数与负分数,对各数进行一一区分即可.【详解】解:分数有+8.3,﹣0.8,15 -,分数共有3个.故选:C.【点睛】本题考查分数,掌握分数定义是解题关键.4.A【分析】非负整数即为正整数与0,找出即可.【详解】解:在数8-,0,5,π,0.01-,1322中,属于非负整数的有0,5,共2个故选A.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.5.B【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可;【详解】如果温度上升1℃记作+1℃,即初始温度为0℃,那么温度下降5℃记作-5℃,故选:B .【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负;6.C【分析】根据有理数的定义,即可求解.有理数是整数(正整数、0、负整数)和分数的统称.【详解】解:在数 15,7.35-,0,45-,0.303,117,0.101001000(每两个 1 中依次多一个 0)中,有理数有15,7.35-,0,45-,0.303,117,共6个 故选C .【点睛】本题考查了有理数的定义,掌握有理数的定义是解题的关键.7.5【分析】最小的正整数为1,最小的非负数为0,大于﹣3且小于3的整数的个数为5个,然后根据算式计算即可.【详解】由题意可知:最小的正整数为1,最小的非负数为0,大于﹣3且小于3的整数的个数为5个; ○代表1,℃代表0,□代表5;则原式=(1+0)×5=5,故答案为:5【点睛】本题考查正整数、非负数等的概念,解决本题的关键是对有理数的分类要清晰明了. 8.1978【分析】由身份证号码第7—10位数字表示的是年份,即可得出结论.【详解】解:由身份证号码第710-位数字表示的是出生年份,得该居民出生年份是1978.故答案为:1978.【点睛】本题考查了数学常识,了牢记身份证号码18位数字的意义是解题的关键.9.3【分析】根据有理数的定义即可求解.【详解】解:根据有理数的定义知:2(1)-,12,0.2,是有理数,故答案为:3.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解题的关键.10.整数分数正有理负有理零【分析】根据有理数的分类及定义即可判定.【详解】解:整数和分数统称为有理数,有理数可分为正有理数和负有理数和0;故答案为:整数、分数、正有理、负有理、零【点睛】本题主要考查了有理数的定义及分类,解题时熟练掌握有理数的定义及不同的分类标准即可解决问题11.见解析【分析】直接根据有理数的分类进行解答即可.【详解】解:正分数集合:{0.75,245,9%…};正整数集合:{+6,+8…};整数集合:{+6,﹣3,0,+8…};有理数集合:{+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%…}.故答案为:0.75,245,9%;+6,+8;+6,﹣3,0,+8;+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%.【点睛】本题考查的是有理数和绝对值,掌握正分数、正整数、整数、有理数的概念是解决此题关键.12.17-,018%,112,4.5,2277【分析】根据有理数的定义与分类求解即可.【详解】解:在18%,112,4.5,17-,0,227,π2,56-中,整数是17-,0,正分数是18%,112,4.5,227;有理数有7个.故答案为:17-,0;18%,112,4.5,227;7.【点睛】本题考查了有理数的分类,掌握有理数的分类与定义是解题的关键.有理数是整数(正整数、0、负整数)和分数的统称.13.千米【分析】根据长度单位的认识即可求解.【详解】解:2018年10月26日,全世界最长的跨海大桥-港珠澳大桥正式通车,其全长为55千米.故答案为:千米.【点睛】考查了数学常识,关键是熟悉长度单位.14.见解析【分析】根据有理数的分类填写即可.有理数是整数(正整数、0、负整数)和分数的统称.【详解】解:如图【点睛】本题考查了有理数的分类,掌握有理数的定义与分类是解题的关键.15.(1)37+,0.8,12,17%,0.4(2)-2,12,0(3)37+,0.8,-2.1,375-,17%,0.4(4)-2,-2.1,3 75 -(5)12(6)-2.1,3 75 -【分析】根据有理数的定义及分类解答.(1)解:正数集合:{ 37+,0.8,12,17%,0.4 } (2)整数集合:{ -2,12,0 }(3)分数集合:{ 37+,0.8, -2.1,375-,17%,0.4 } (4)负数集合:{ -2, -2.1,375- } (5)正整数集合:{ 12 }(6)负分数集合:{ -2.1,375- } 【点睛】本题考查有理数及其分类,是基础考点,掌握相关知识是解题关键.16.(1)36x =,28b =-;(2)34;(3)有理【分析】(1)根据平方根性质,得()2421a a -=+-,通过求解一元一次方程,得a 的值,根据乘方的性质,计算得x ;根据立方根的性质,得()31327b +=-=-,通过求解方程即可得到答案;(2)结合题意,根据算术平方根、实数大小比较的性质,得2c =;再根据代数式的性质计算,即可得到答案;(3)结合题意,根据算术平方根和实数分类的性质分析,即可得到答案.【详解】(1)根据题意,得()2421a a -=+-℃4a =℃()2236x a =+=℃1b +的立方根为-3℃()31327b +=-=-℃28b =-;(2)℃c ,即23<<℃2c =℃()428234a b c -+=--+=故答案为:34;(34==故答案为:有理.【点睛】本题考查了平方根、立方根、一元一次方程、乘方、算术平方根、代数式、实数的知识;解题的关键是熟练掌握平方根、立方根、一元一次方程、代数式、实数分类的性质,从而完成求解.17.(1)3,2,0(2)见解析【分析】(1)根据有理数的分类进行分类即可;(2)根据数轴的定义,将数据表示在数轴即可.(1)解:整数有0,+5,﹣4共3个,负分数有﹣2.5,﹣12共2个,既不是正数也不是负数的是0.故答案为:3,2,0;(2)解:如图,【点睛】本题考查了有理数的分类和数轴表示数,解题的关键是掌握有理数的分类和用数轴表示数的方法.。
有理数认识习题及答案有理数是我们学习数学的基础,它包括整数和分数两部分。
在学习有理数的过程中,我们经常会遇到一些认识习题。
本文将介绍一些常见的有理数认识习题及其答案,帮助大家更好地理解和掌握有理数的概念。
1. 问题:判断下列数是否为有理数:-2,3/4,√2,π。
答案:-2是整数,属于有理数;3/4是分数,也属于有理数;√2是无理数,不属于有理数;π是无理数,不属于有理数。
2. 问题:将下列数按从小到大的顺序排列:-5,0,-2/3,1/2。
答案:首先,我们可以将-5和0转化为分数形式,即-5/1和0/1。
然后,将-5/1,0/1,-2/3,1/2按大小排列,即-5/1 < -2/3 < 0/1 < 1/2。
3. 问题:求下列数的相反数和绝对值:-7,2/5,0,-√3。
答案:-7的相反数是7,绝对值是7;2/5的相反数是-2/5,绝对值是2/5;0的相反数仍然是0,绝对值是0;-√3的相反数是√3,绝对值是√3。
4. 问题:判断下列数的正负性:-1/2,0,5,-√2。
答案:-1/2是负数;0既不是正数也不是负数,它是零;5是正数;-√2是负数。
5. 问题:计算下列数的倒数:2,-3/4,0,√5。
答案:2的倒数是1/2;-3/4的倒数是-4/3;0没有倒数,因为任何数乘以0都等于0;√5的倒数是1/√5。
6. 问题:计算下列数的平方:-3,2/5,0,√7。
答案:-3的平方是9;2/5的平方是4/25;0的平方仍然是0;√7的平方是7。
通过以上习题,我们可以更深入地理解有理数的概念和性质。
有理数包括整数和分数,可以是正数、负数或零。
而无理数则不能用两个整数的比值表示,如开方后为无限不循环小数的数。
有理数的大小可以通过比较绝对值来判断,绝对值越大,数值越大。
另外,有理数的相反数即为其绝对值相等但符号相反的数,而有理数的倒数是指与其相乘等于1的数。
有理数的平方是将其乘以自身得到的结果。
有理数练习题计算题一、基础运算1. 计算:(3) + 7 =2. 计算:5 (2) =3. 计算:4 × (3) =4. 计算:18 ÷ 3 =5. 计算:(5 + 3) × 2 =6. 计算:4 × (5) 6 ÷ 2 =7. 计算:7 9 + 4 × 2 =8. 计算:3 × (4) ÷ 2 =9. 计算:15 ÷ (3) + 8 =10. 计算:(6 4) × (3) ÷ 2 =二、分数运算1. 计算:$\frac{1}{2} + \frac{1}{3} = $2. 计算:$\frac{3}{4} \frac{1}{4} = $3. 计算:$\frac{2}{5} × \frac{5}{6} = $4. 计算:$\frac{8}{9} ÷ \frac{2}{3} = $5. 计算:$1\frac{1}{2} + 2\frac{1}{3} = $6. 计算:$3\frac{3}{4} 1\frac{1}{4} = $7. 计算:$\frac{4}{7} × \frac{7}{8} = $8. 计算:$\frac{9}{10} ÷ \frac{3}{5} = $9. 计算:$2\frac{2}{5} + 1\frac{1}{5} = $10. 计算:$4\frac{4}{9} 1\frac{1}{9} = $三、混合运算1. 计算:3 + $\frac{2}{5} × (4 \frac{1}{2}) = $2. 计算:$\frac{3}{4} ÷ (2) + 5 × \frac{1}{2} = $3. 计算:$4 × (2 + \frac{3}{5}) ÷ \frac{2}{3} = $4. 计算:$7 \frac{1}{2} × (6 \frac{3}{4}) = $5. 计算:$3\frac{1}{2} + 4 × \frac{2}{3} = $6. 计算:$\frac{5}{6} × (2 \frac{2}{3}) ÷ \frac{1}{2} = $7. 计算:$2\frac{2}{3} ÷ (1 \frac{1}{3}) + 4 = $8. 计算:$6 ÷ \frac{3}{4} \frac{4}{5} × 2 = $9. 计算:$5 + (3\frac{1}{2} \frac{2}{5}) × 2 = $10. 计算:$8 ÷ (2 \frac{1}{2}) + \frac{3}{4} = $四、简便运算1. 计算:$(3) × (2) + 4 × (3) = $2. 计算:$5 × (3) + 7 × (3) = $3. 计算:$4 + 6 8 + 10 = $4. 计算:$9 ÷ 3 + 12 ÷ 4 = $5. 计算:$7 9 + 11 13 = $6. 计算:$5 × (2) 4 × 2 = $7. 计算:$6 ÷ (3) + 9 ÷ 3 = $8. 计算:$8 + 4 6 + 2 = $9. 计算:$12 ÷ 4 + 15 ÷ 5 = $10. 计算:$10 20 + 30 40 = $五、绝对值运算1. 计算:|3 7| =2. 计算:|4 × 2| =3. 计算:|5 + (3)| =4. 计算:|6 ÷ 3| =5. 计算:|(2) + 4 × (1)| =6. 计算:|7 9| + |2 4| =7. 计算:|(3) × (4) ÷ 2| =8. 计算:|15 ÷ (5) 3| =9. 计算:|8 (6 2)| =10. 计算:|(5) × (6) ÷ (3)| =六、指数运算1. 计算:2^3 =2. 计算:(3)^2 =3. 计算:5^0 =4. 计算:(2)^3 =5. 计算:8^(1/3) =6. 计算:(4)^2 ÷ 2^3 =7. 计算:(2^3) × (3^2) =8. 计算:(4^2)^3 ÷ 4^2 =9. 计算:3^(2+1) ÷ 3^2 =10. 计算:(2^5) × (2^3) ÷ 2^2 =七、根式运算1. 计算:√16 =2. 计算:√(25/9) =3. 计算:√(49) ÷ √(4) =4. 计算:√(64) + √(81) =5. 计算:√(121) √(81) =6. 计算:3√27 =7. 计算:2√(64/9) =8. 计算:√(144) ÷ √(121) =9. 计算:√(225) + 2√(64) =10. 计算:√(324) 3√(121) =八、综合运算1. 计算:(3 + √9) × (2 √4) =2. 计算:|2^3 4^2| ÷ √16 =3. 计算:(5 √49) ÷(3 + √64) =4. 计算:(3)^3 + |(2)^4| =5. 计算:2√(25) 3√(16) + 4^0 =6. 计算:(√16)^3 ÷ 2^2 + |(5) × (6)| =7. 计算:(3√27) (2√64) + 7^1 =8. 计算:√(81) × (4)^2 ÷ √(16) =9. 计算:(2^5) ÷ (2^3) + √(121) √(81) =10. 计算:|(3)^2 2^3| ÷ √(36) =答案一、基础运算1. (3) + 7 = 42. 5 (2) = 73. 4 × (3) = 124. 18 ÷ 3 = 65. (5 + 3) × 2 = 166. 4 × (5) 6 ÷ 2 = 20 3 = 177. 7 9 + 4 × 2 = 2 + 8 = 68. 3 × (4) ÷ 2 = 12 ÷ 2 = 69. 15 ÷ (3) + 8 = 5 + 8 = 310. (6 4) × (3) ÷ 2 = 2 × (3) ÷ 2 = 6 ÷ 2 = 3二、分数运算1. $\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$2. $\frac{3}{4} \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$3. $\frac{2}{5} × \frac{5}{6} = \frac{10}{30} =\frac{1}{3}$4. $\frac{8}{9} ÷ \frac{2}{3} = \frac{8}{9} ×\frac{3}{2} = \frac{24}{18} = \frac{4}{3}$5. $1\frac{1}{2} + 2\frac{1}{3} = \frac{3}{2} +\frac{7}{3} = \frac{9}{6} + \frac{14}{6} = \frac{23}{6}$6. $3\frac{3}{4} 1\frac{1}{4} = \frac{15}{4} \frac{5}{4} = \frac{10}{4} = \frac{5}{2}$7. $\frac{4}{7} × \frac{7}{8} = \frac{28}{56} =\frac{1}{2}$8. $\frac{9}{10} ÷ \frac{3}{5} = \frac{9}{10} ×\frac{5}{3} = \frac{45}{30} = \frac{3}{2}$9. $2\frac{2}{5} + 1\frac{1}{5} = \frac{12}{5} +\frac{6}{5} = \frac{18}{5}$10. $4\frac{4}{9} 1\frac{1}{9} = \frac{40}{9}\frac{10}{9} = \frac{30}{9} = \frac{10}{3}$三、混合运算1. 3 + $\frac{2}{5} × (4 \frac{1}{2}) = 3 + \frac{2}{5} × \frac{7}{2} = 3 + \frac{14}{10} = 3 + 1.4 = 1.6$2. $\frac{3}{4} ÷ (2) + 5 × \frac{1}{2} = \frac{3}{8} + \frac{5}{2} = \frac{3}{8} + \frac{20}{8} = \frac{17}{8}$3. $4 × (2 + \frac{3}{5}) ÷ \frac{2}{3} = 4 ×\frac{13}{5} × \frac{3}{2} = \frac{78}{5} × \frac{3}{2} =\frac{234}{10} = 23.4$4. $7 \frac{1}{2} × (6 \frac{3}{4}) = 7 \frac{1}{2}× \frac{21}{4} = 7 \frac{21}{8} = \frac{56}{8} \frac{21}{8} = \frac{35}{8}$5. $3\frac{1}{2} + 4 × \frac{2}{3} = \frac{7}{2} +\frac{8}{3} = \frac{21}{6} + \frac{16}{6} = \。
有理数综合练习题一、选择题(每题3分,共30分)1. 下列哪个数不是有理数?A. πB. -2C. 0.5D. √42. 若a是有理数,且a < 0,下列哪个表达式的结果大于0?A. a + 1B. a - 1C. -aD. a × a3. 两个有理数相除,结果为负数的条件是:A. 两个数都是正数B. 两个数都是负数C. 一个正数除以一个负数D. 一个负数除以一个正数4. 有理数a和b,若a + b = 0,则a和b的关系是:A. 互为相反数B. 互为倒数C. 互为倍数D. 互为补数5. 下列哪个数的绝对值最小?A. 2B. -3C. 0D. -16. 有理数的四则运算中,哪个运算没有分配律?A. 加法B. 减法C. 乘法D. 除法7. 如果一个有理数的平方是正数,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数也可以是负数D. 既不是正数也不是负数8. 有理数a和b,若a × b < 0,则a和b:A. 都是正数B. 都是负数C. 一个正数一个负数D. 至少有一个是09. 下列哪个表达式的结果不是有理数?A. √9B. 2 - √2C. 2/3D. 2 + √210. 有理数a和b,若a × b = 1,则a和b:A. 都是正数B. 都是负数C. 互为倒数D. 互为相反数二、填空题(每题3分,共15分)11. 有理数-5的绝对值是_________。
12. 两个互为相反数的有理数之和是_________。
13. 如果一个有理数的立方是-27,则这个数是_________。
14. 有理数3和-2相乘的结果是_________。
15. 有理数-4的倒数是_________。
三、简答题(每题5分,共20分)16. 请解释什么是有理数,并给出两个有理数的例子。
17. 请说明有理数的加法规则。
18. 请说明有理数的除法规则。
19. 如果一个有理数的平方是25,那么这个数可能是什么?四、计算题(每题10分,共35分)20. 计算下列表达式的值:(-2) × 3 + 4 × √4 - 5。
中小衔接数学(6)
一、选择题
1.计算(-3)-(+5)+(-7)-(-5)+21
3
,所得结果是()
A.-71
3 B.121
3
C.-72
3
D.-122
3
2.若│a-6│+│b+5│=0,则-b+a-2
3
的值是()
A.101
3 B.-112
3
C.1
3
D.-4
3
3.若a是有理数,则│a│+a一定是()
A.非负数 B.负数 C.正数 D.非正数
4.当x<0,y>0时,x,xy,x-y,y中最大的数是()
A.x B.x-y C.x+y D.y
二、填空题
1.-6-8+8+6-5读作____________或读作___________.
2.把(-21)-(+10)+(-6)-(-9)写成省略加号的和的形式为__________.
3.-1
4+5
6
-1
2
-5
7
=______5
6
______1
4
______5
7
______1
2
.
4.如果一个数与另一个数的和是-48,其中一个数比10的相反数小8,则另一个数是______.
5.│25π-80│+25π+80=___________.
三、计算题
1.10-(-5)+(-9)-(+3)+(-7); 2.-71
2+(-21
4
)-(-55
6
)
3.-3
4+ 1
6
+(-2
3
)-5
2
; 4.53
7
+64
5
-(+53
7
)+(-41
5
)
5.+(-28)-│-26│+│+28│-│-32│-(+17)6.(-62.84)-(+38.57)+(-37.16)-(-32.57)
7-111+222-333+444-555 8.18
77-1
7
+19
37
-1
11
-56
37
四、解答题
某银行储蓄所办理了7件储蓄业务:取出190.5元,存入500元,取出300•元,•存入250元,存入200元,取出300.25元,取出150元,这时银行的存款是增加了还是减少了?
综合创新训练
五、学科内综合题
1.当b>0时,a,a-b,a+b三个数中哪个数最大?哪个数最小?2.当b是什么有理数时,│b-1│=│b│+1?
3.当a=5,b=-10,c=26,d=-20时,求下列式子的值.(1)(a+b)-(c-d);(2)(a-d)-(b-c).
4.一辆货车从超市出发,向东走了3千米到达小林家,继续走了2.5千米到达小李家,向西走了7.5千米到达小张家,最后回到超市.
(1)以超市为原点,以向东为正方向,用1个单位长度表示1千米,你能在数轴上表示出小林家、小李家、小张家的位置吗?
(2)小张家与小林家相距多远?(3)货车一共行驶了多少千米?
六、竞赛题
有一串分数按下列规律排列:
1 2,-1
3
,2
3
,-1
4
,2
4
,-3
4
,1
5
,-2
5
,3
5
,-4
5
,…,那么第100
个分数是什么?
中考题回顾
七、中考题
a,b,c在数轴上的位置如图所示,且│a│=│b│,则│c-a│+│c-b│+│a+b│=_________.
c
a。